M.L.T. Laboratory for Computer Science ‘ July 22, 1978

Computer Systems Research Division - Request for Comments No.165

AESOP: An Architecture for an Object Based Machine

By Allen W. Luniewski

In recent years there has been considerable interest in programming languages that support
both procedural and data abstractions(3,8]. The use of data and prdcedural abstractions makes
program development and verification simpler since o‘nly the semantics, and not the implementation
details, of the abstractions need be known. Currently these languages tend to be implemented on
traditional Von Neumann computers. This docgment presents AESOP, an Advanced Experimental
Small Object Processor, as one possible machine architectu}e for supporting the use of data and

procedural abstractions directly.

1. Introduction

AESOP is a high level description at the instruction set processor (ISP) level of a machine
architecture that supports srocedural and data abstractions. The description is of the interface of

the machine; details that only relate to performance or methods of implementation have been

excl'uded'.‘

The choice of a high level description is a very fundamental one. It enables AESOP to be
used as a vehicle to explore various issues involved in the implementation of an object based

~ machine. In particular, the issues of efficient storage of many small objects (the "small object”

This note is an informal working paper of the M.LT. Laboratory for Computer Science, Computer
Systems Research Division. It should not be.reproduced without the author’s permission, and it
should not be cited in other publications. .

-2- July 22,1978

problem) and the problem of permanent storage and cataloging of these same objects can be

explored. AESOP provides a language in which such issues can be discussed.

An underlying design goal is that fhe machine be able to support languages such as CLU
and ALPHARD, that provide objects, in an efficient and "reasonable” manner - that is, the
architecture should provide a natural base on which to implement such languages. “To this end the
machine must support the notion of typed objects - all objects have a type. However the machine

itself does not do complete type checking, except for the hardware implemented types. Instead the
machine musf provide the means for the programs running on it to perform any desired type
checking. The decision not to have the machine perform complete type checking is based upon two
concerns. First, including these checks in the basic hardware may slow the whole machine down to
an unacceptable extent. This is especially true if AESOP is to be implemented by emulation.
Second, for the most part a compiler for a high level language can do most such checks at compile
time eliminating the need for most runtime checks. CLU, for instance, has this property. As a
result of these considerations the architecture provides complete type checking of hardware types
and the mechanism to ensure that extended type objects are only manipulated by their type.
managers. It fails to do complete type checking in that it does not provide an explicit mechanism to
enforce the correct type of arguments passed to procedures or a mechanism to enforce the type of

variables.

One of the more fundamental issues to be addressed in an object oriented machine is "What
is an object?” and the related question "What does a variable contain?”. Although it might be nice
to avoid these issues by putting them off as implementation issues, addressing them has very
fundamental effects upon the way that programs see the world and the ways in which the

architecture can develop. AESOP takes the view that variables contain the names of objects and

.3. | July 22, 1978

not the objects themselves. Objects contain the names of other objects and nothing more. In
particula{r, objects do not physically contain other objects. The important implications of this
approach are that an object may be contained in more than one object (e.g. shared between objects)

and shared between processes on the same machine (at the Iea‘st).1

The notion of type is also essential tc; understanding AESOP. .Every object has a type, thus

"type” is an attribute of all objects. The type of an object is the name of the type manager that
implements operations upon that object. A‘type manager must, at a minimum,Z enforce the
specifications on objects that have that type. To look at it slightly differently. a type manager
provides a collection of objects that have it as ?heir type and a collection of operations on those

objects.

2. The Naming Architecture

One of the fundamental architectural decisions that must be made in designing a machine
is how objects are named by other objects, including how executing procedures make references.
AESOP takes the approach of allowing every non-code object (e.g. not procedures) to directly refer

to other ohjects by containing the name of the object to be used while code objects refer to other

objects indirectly through name spaces (or naming contexts[6]).

I. Note that no position is taken on the important issue of whether objects can be shared across
machine boundaries as in a network environment. Allowing such sharing' may be an important
architectural issue in designing a distributed system, but tackling this problem in the context of
designing an object based machine that is intended to illustrate the hard problems in the local case
seems excessive. Thus the position in this paper is that if such sharing across machine boundaries
is allowed then it does not have architectural effects at this level.

2. Since a type manager may do more than just enforce type oriented specifications, the more
limited terms of cluster as in CLU or form as in ALPHARD are avoided.

4- July 22,1978

Thus there is an asymmetry between the ways in which procedural and non-procedural
objects refer to objects: procedures only have context dependent names while non-procedural objects
only have context independent names. The template LNS of a procedure, to be described later,
provides a means for procedures to have what amounts to context independent names by inserting
constant names into the template LNS. There is no mechanism for objects to easily simulate the
effects of context dependent names. Although it is interesting to 'speculate on the need for context
dependent data in non-procedural objects, AESOP does not provide such a facility since the need is

not well documented in the literature.

Associated with évery executing procedure are two name spaces - the local name space
(LNS) and the global name space (_GNS).1 A procedure basically uses small integers as names; when
it wants to refer to. an object it uses an ordered pair of the form (name-space, short-name) where
name-space specifies either the current LNS or the current GNS and short-name is a small integer.
The effect i§ that a name is retrieved from the named name space (eg. LNS or GNS) using
short-name as an index into the name space. This name is then directly used to refer to the desired
object: Thus procedures name objects indirectly through name spaces and not directly. Therefore
by executing using a different LNS and/or GNS, the names used by a procedure change meaning;

' i.e. they are context dependent names with the pair (LNS, GNS) as the context.

The LNS is an important part of the system. The LNS (and the use of name spaces in
general for indirection) allows procedures to be reentrant since the LNS will contain the names of
objects that are local to the current invocation of the procedure, e.g. local variables. Parameters are
handled by reserving entries in the LNS for each parameter that the procedure expects. Local

variables are simply slots in the LNS that are reserved at compile time to contain the names of

1. Name spaces are very similar to Hydra C-lists[9] and the indirectories of CAP[7).

-5- . July 22, 1978

objects focal to each invocation of the procedure. The other items in the LNS will be objects that
all invocations of the procedure need to know about such as external procedures and static/own

variables.

The need for the GNS is not quite so clear cut. The intent is that the objects named in the
GNS will be objects that need to be known to most procedures in the system. For instance, basic
types (strings, reals and integers), operating system interfaces and language runtime support
routines might appear in the GNS. These uses of the GNS represent an optimization - "factoring”
common objects out of the LNS’s of a collection of procedures. The alternative is to require that
procedures refer to all other objects through their LNS. The existence of the GNS does have the
property that by creating a name space containing the names of a new set of support routines and
running procedhres with that name space as a GNS it is possible t.o present a new virtual machine

interface to those programs. This feature may be very useful for debugging prog'réms and

encapsulating programs.

3. Basic Types

This section will piesent a set of proposed basic types for AESOP. The set is not intended
to be complete, but, rather, representative of the types that the basic machine should (and in some
<I:as¢s must) support. The types code segment, procedure, name space, .RCG (to be presented later)
and one basic data type (any will do) must be supported in the underlying implementation of

AESOP; all others can, in principle, be implemented out of these basic mechanisms.

-6- | July 22,1978

The basic types are probably supported entirely by the hardware although that is an
implementation decision not addressed in this paper. Since these are defined as basic types it does
" not make much sense to try to fit their implementati‘on into the AESOP formalism. Attempts to do
s0 seem to lead to infinite recursion of implementations of one type depending on another (either A
depends on B which depends on ... which depends on A ... o dependencies of the form A; depends |
on Ao .. depends on Ay depends on .3} The following discussion presents the basic types and

suggests some operations on those types. that AESOP should support.

Boolean is one basic type. There are two boolean objects - true and false. They are
immutable objects and may only be named by other objects in the system; they may never be
created or destroyed. They exist from the begipning of time until the end of time. There are
operations to get the name of the object true and the name of the object false.2 The sixteen binary
operations on booilean's are supported. In addition there are operations to branch depending on the

* value of some boolean variable.?’

Another basic type is the integer type. The objects of this type are again immutable and
may not be created or destfoyed but only named. An implementation defined subset of the integers
are supported. Operations that are supported include plus minus, times, divide, mod.. min, max
and abs. The integer type should also support comparison operations such as less-than, equal and
greater-than that take two integers as operands and return a boolean as a result. Branching based
upon the value of some ir;teger variable may be supported although boolean based branching plus

comparison operations on integers is sufficient.

1. This is not to say that it all cannot be made consistent. Rather, such an attempt seems to serve
no practical purpose. '

2. Alternatively, the names of the objects true and false could be kept in the GNS in
conventionally known places

3. The manner and form of branches are discussed later in this paper.

-7- ‘ July 22, 1978

Another basic type is that of character (not character string). Once again characters are
immutable and may only be named, not created or destroyed. The actual set of characters is
implementation defined. One operation allowed on characters is the comparison operation which
returns true if and only if its two operands are the same character. Other operations are allowed to

convert characters to an integer representation (eg. ASCII value) and back.

A mechanism is needed to aggregate a number of objects into a larger one. The mechanism
to do this is the string. We consider strings to be a type for this discussion although they are more
properly considered type generantors.l A string is just a vector of names indexed by positive
integers. Thus a character string might be formed by calling the string type manager to create a
string of some length and then filling in the entries in the string with the names of .characters. The
same mechanism is used to construct integer vectors, name spaces, procedures and type managers.
From these examples it should be clear that strings need not have elements of uniform type within
them. This is not to say that strings of uniform type are not useful. In fact, strings of some of all
- of the basic types should be supported by the hardware for efficiency reasons (for instance character
strings). The basic operations on strings are to create a string of some length, to lengthen (shorten)
a string, to extract an element of a string, to insert an element into a string and to return the
current length of a stn;ing. Some potentially useful operations are derived from the analogy of
character strings: concatenate two strings, extract a.substring' of a string, replace a substring of a
string and search for a substring in a string. It is also possible to construct record objects like those

of CLU, Algol-W or Pascal using strings so that the record mechanism need not be explicitly

included.

l. String-of-integer is a type as is string-of-any but string is not a type. The discussion that
follows, though, can be regarded as discussing the type string-of-mixed-types as a basic type.

-8- July 22, 1978

A name space is represented as a string-of-mixed-types. A name space is more than that
since it may be used as an LNS or GNS while an object of type string-of-mixed-types may not be

used in this way.

Ahother basic type is the code segment. A code segment is the basic executable unit of
AESOP. It coﬁtains instructions that the processor can execute. The only operations allowed on
code segments are to create them (from some as of yet unspecified external form) and to execute
them using some given (LNS, GNS) as the pair of name spaces (the naming context) for the
executing code segment. Execution of a code segment always begins at the beginning of a code

segment and continues until the end.

Procedures are represented by a string of two elements: the first is a template LNS and the

second is a code segment (see figure)] When the procedure is called, the template LNS is copied

code_segment

procedure_X

v

template
LNS

v

Figure 1. The format of the procedure object.

1. Actually the string contains the names of these objects but the terminology here is used where
confusion will not result.

-9- July 22, 1978

into a newly created name space and the copy becomes the LNS for the pfocedure activation.! The
template LNS will name all objects that the procedure needs to refer to during its execution (other
than parameters and local variables). In particular it will contain the names of other procedures
and type. managers that the proceddre may wish to call. The code segment in the procedure’s
representation is the code segrhent that will be initially executed when the procedure is called. The

template LNS may name other code segments that will be used as part of the execution of the

. procedure.

Conceptually a type manager is a string of procedures, one for each operation that the type
manager supports (see figure 2)2 When an attempt is made to use an operation on same type, the
string representing that type manager is examined and the name of the procedure that implements

that operation is extracted. Then that procedure is called to perform the operation.

The representation chosen for pfocedures and type managers has a very interesting; and
useful, property: their imp.lementation may be changed (compatibally of course) without changing
the names used by their cail’ers. Moreover, the implementation can be changed without the danger
of overwri.ting a piece of code that is being executed, or of destroying a template LNS that is being
copied. In the éase of procedures, the two pointers in the representation of the procedure only need

to be changed atomically. For type managers only the name of the procedure being replaced need

be changed in the operation list.

1. The complete procedure call mechanism, including the passing of parameters, is described in a
later section. '
2. Actually a type manager is two strings of procedures, one string for each of the two sets of

operations that a type manager provides. The details of this are not important here and will be
presented in a later section.

10- July 22,1978

Procedure for
operation 1

[eeee—
Procedure: for‘
type ° operation 2
manager
X [}
L]
Procedure for
~ operation N
e ——

Figure 2. The format of a type manager.

4. Operation Name Spaces

Every type manager supports a collection of operations on objects of that type. Some
operations, however, will have the same high level semantics in most, if not all, type managers.

The existence of such operations is the motivation for operation name spaces.

The operations that a type manager supports are divided into two classes: the local
operations and the global operations. The local operations are those operations on the type that are

unique to that type; that is, most types do not support a similar operation. For instance in a stack

-1- ~ July 22,1978

abstraction there is a push operation to put an element on the stack although most abstractions do
not have an operation that even vaguely resembles a push operation (consider for instance
integers!). The global operations are those operations that are common to most types. Some

examples of global operations are:

Get the type of an object.
Copy the name of some objéct.

“Test to see if two names name equivalent objects (The analog of LISP's
EQUAL function).

Test to see if two names reference the same object (this is LISP’s EQ
function).

ORD - for ordered tyApes only, given an object return the index of that
object in the ordered type (this is a generalization of Pascal’s ord
function). For example convert a character to its ASCII representation.

ORD! - Given an index (integer) return the corresponding element of the
ordered type (this generalizes Pascal’s chr function).

Create a copy of an object.

All of these operations seem to have the property that most types will support them. It is not
. necessary that a type manager support all of these global operations, although it is not unreasonable
to expect most type managers to support most global operations. Rather, it provides a means for

providing global names for certain kinds of operations.

Some possible operations (and tﬁe first two above) exist so that the hardware can do some
operations on all types directly without actually invoking the type manager involved. One possible
use of global operations is that it makes it easy to write procedures that accept objects of variable
type so long as the opérations on that type that are needed by the called procedure are global

operations. In this case any object of a type that. supports the needed global operations can be

-12- _ July 22, 1978

_ passed to that procedure. For instance a sorting procedure could easily be written using the ORD

global operation.

5. Instruction Format

AESOP has only one instruction, call_type_manager, and it is the purpose of this section to
describe this very versatile instruction. First though it will be useful to motivate the need for only

one instruction - call_type_manager.

Every object in AESOP is typed. This means that the object can only be manipulated by
its type mﬁnager and not by any program that decides it should examine the object. For this
reason it makes; no sense to have an instruction that is not call type manager as it coﬁld not do
énything. At first the reader might object that a procedure call operation is needed or that a "Go
To" instruction is needed. However a procedure is just an object and, as such, all operations on it
are provided by its type manager. Thus to "call” a procedure invdlves calling the procedure type
manager and asking it to perform the call operation on a specified procedure using given
arguments. Similarly a go-to operation involves‘ calling on some type manager to cause the current

instruction counter (?) to be changed.l

The basic format of an instruction is given in figure 3. The effect of the instruction is to
call some type manager, passing the objects specified in the instruction as arguments and possibly

returning some objects as results.

. This is in principle what happens in AESOP although the actual details involve the code
segment type manager and basic data types and are described in a later part of this paper.

- July2a,1978

Implicit/Explicit
Flag

Operation
Specification

Type Manager
‘Specification

Parameter |

Parameter N

Figure 3. Basic instruction format.

The name of the type manager to be called is derived based upon the value of the
Implicit/Explicit flag. If the flag says "Explicit” then the field type_manager is present and names

the type manager to be called. If the flag says "implicit" then the type_maﬁagér field is not presént
and, instead, the name of tne type manager is obtained by examining the first parameter. The type
manager called in this case is the type rﬁanager corresponding to the type of the first parameter.
Thus implicit calls to a tyi:e manager only work if the first parameter of that call is an object of

that type.

At first-it might seem that explicit type manager calls are all that are needed. However
there is one case in which it is not sufficient to have just explicit type manager calls. Consider a

procedure that has no expectations as to the type of one or more of the arguments passed to it. In

- 14 - ' v July 22,1978

CLU terms these arguments ére of type any. In some manner the prbcedure must be able to call
the type manager of that object as otherwise there was little point in passing the object as an
argument. The implicit method of calling a type manager provides an easy, and obvious, way to
solve this problem. One might argue that instead of using the implicit type manager call
mechanism the procedure could simply determine the type of the object and then use explicit type
manager calls. If the type of the object is passed as a parameter (eg. the name of the type manager
is passed) then there is no problem. If not, the called procedure must find out the type of the object
in some way and this is a problem. In the AESOP formalism the only way to derive this
information is to perform some operation on the object but tﬁis involves knowing the name of the

type manager which .. (Catch-221[1]). Thus some escape is needed and AESOP has chosen the
| implicit type manager call mechanism. This approach also has the desirable property of efficient
encoding of instructions since in many cases the type manager field will not be needed. On the
other hand it is basically a special case mechanism and is somewhat “unclean” because of that. An
~ equally dirty and special case mechanism would be fo provide two instructions in the machine - the
explicit type manager call and an instruction to extract the type manager name corresponding to an
object (thus showing the "magic” through to the architectural level). A third possibility, not
considered in depth to this point in the design of AESOP, is that the extract type manager name
operation is not the responsibility of thé type manager of tha't object but, rather, is the responsibility
of some other type manager. In this case no problem exists so long as the name of that type

manager is globally known. On the other hand, explicit type manéger calls are themselves needed

since not all operations on a type take an argument of that type (e.g. create and ORD).

. It should be clear, however, that the underlying implementation must have some way of
determining the type of any object without calling a type manager in order to make implicit type
manager calls work. The way of doing this is simply "magic” at the architectural level.

-15- July 22,1978

Operation Type Operation

Flag ' Number

Figure 4. Operation specification in an instruction.

The operation to be called is spécified by the operation field of the instruction (see figure 4).
The.operation field consists of two subfields - the operation type flag and the operation number. If
the operation flag says "Global" then operation operation_number in the global operation name
space of the specified type manager is invoked. If the operation flag says "Local” then operation
operation_number in the local operation name space of ,the type manager is invoked. The
operation number is just a positive integer and is ﬁsed to index intd the éppropfiate .ope'ration
name space of the called type manager. This representation requires that the operation number be
kndwn at compile time. This may be somewhat restrictive when arguments of variable type are
passed to a procedure as arguments since the correct operation number may not be known at
compile time. This can, however, be countered in at least three ways. One way is t6 modify the
operation number field to allow either an index or the specification of an LNS/GNS slot that
contains the name of an iuteger. In this way the correct operation number can be passed.as a
parametér and then specified in the instruction appropriately. A second possib-ilitj is that the
procedure that is to use the oéeration with an unknown operation number may instead be passed a
type manager that implements the operation desired with an interface to that operation that the
called procedure expects (e.g. the correct operation number and parameters). In a similar way, the
third possibility is to pass a procedure as a parameter;and allow that procedure to perform the

operation. In each of the second two choices, the called procedure has, in effect, defined away the

problem by modifying its interface to require an object as an argument that can be manipulated in

-16 - July 22, 1978

an interface specified manner. Since the number of cases in which the operation number is
unknown is probably small, we reject modifying the instruction format to allow a variable operation
number. Instead, one of the second two methods should be used when a variable operation number

is needed.

The type_manager field, if present, names the type manager to be called. It does so by
specifying a slot in the executing procedure’s LNS or GNS in a manner identical to that used by

the parameters, as is described in the next paragraph.

The instruction contains specifications of the parameters to be passed to the called type
manager. Each parameter is specified in a manner pictured in figure 5. The local/global flag
specifies whether the LNS or the GNS is to be used to find the object to be passed as a parameter.
The index is the index of the entry in the LNS or GNS (as appropriate) in which the name of the
object to be passed will be found. The last-parameter? flag is turned on if this parareter is the last

parameter to be passed to the type manager.

The instruction format allows the instruction interpreter to know precisely how many

parameters (>0)! are to be passed and it allows a variable number of them to be passed. The

Local/Global ' Last
Index
Flag : Parameter?

Figure 5. Parameter format.

I. Note that procedures with no parameters are not possible. If this turns out to be too restrictive,
an additional flag, any-parameters?, can easily be added to the instruction format.

-17- July 22,1978

variability is clearly needed for flexibility in writing type managers and procedures while allowing
the precise determination of the number of parameters passed allows some run time checking of the

correctness of the call by the hardware.

6. RCG’s

Now this paper will examine the mechanism used to implement extended type objects and
. provide the capability for access restriction and access revocation. The surprising fact is that these
three activities, seemingly different at first, can be regarded‘ as being special cases of the same
general mechanism. The property that all three of these activities have in common is that they all
perhit different users vbf an object to have different views of that object. Extended type obje;ts
hide the representation of an object from its users and only allow its interface specifications to show
through; access restriction presents an object that does not support all of the operations normally
associated with objects of that'type and access revocation takes this to the extreme that no
operations are supported on that object. Thus the common property of these activifies is that they
present a colored view of the object, thus the mechanism used to implement these activities is called

the RCG (Rose Colored Glasses) mechanism.

In thinking about RCG’s the following analogy may help. An RCG is like a window that
“allows you to only see some aspects of an object while other aspects are hidden by the window. The
window is unbreakable so that the restricted view that it provides cannot be avoided unless another

window is found. Moreover, the the presence of the window cannot be detected in any way.

The basic mechanism used to perform all three functions is illustrated in figure 6. It is
inspired by the access revocation mechanism proposed by Redell[4). An RCG is a string of three

items. The first is the name of a type manager. This name specifies the type of object that is seen

-18 - July 22, 1978

Type » Type manager
Object ‘
» Some object
Pointer
Access
» A bit string
Specification

Figure 6. An RCG.

;vhen the RCG is referred through. The second field is the name of an object. It is the actual
object referred to when an attempt is made to reference through the RCG (e.g. use the name of the
RCG). The third field is a bit string (actually the name of a bit string!) which specifies which
operations can and cannot be performed upon the viewed object (the object “seen” in the RCG
. provided "window"). This field is used to festrict access to the object provided by the RCG. In
order to illustrate the interactions of these three fields in the RCG the next few paragraphs will

show how this basic mechanism can be used to solve the varied problems mentioned earlier.

The first problem is that of accéss restriction. Suppose thét a program wants to pass an
object Y to another program but does not wish certain operations to be performed upon that object.
For instance modifications of the object may be undesirable. In this case the first program creates
an RCG by calling RCGQaccess_restrict(Y, AR, X) producing the structure of objects illustrated in
figure 7 and passes the nhame X to the called program. The RCG in this case specifies that the

name X refers to an object of type FOO (the same as that of Y). The representation, in some sense,

FOO |

-19 -

AR

Figure 7. An RCG, X, being used for access restriction.

v

July 22, 1978

Y (of type FOO)

of the object X is the object Y so that references to X are actually references to Y. The bit string

AR specifies the restrictions upon the way that the called program may use the object it has been

passéd (e.g. it specifies the permissible operations that can be performed on the object Y).

FOO

FOO

AR’

v

AR

Figure 8. Chained RCG's in the access restriction mode.

v

Y (of type FOO)

-90- July 22,1978

If the second program wanted to pass along the object X to a third program and restrict the
third prograh‘s access to the object it can also do so. In this case a picture such as that in figure 8
results after calling RCG#access_restrict(X, AR’, W). The second program then passes the name W
along to th.e third program. W is an RCG that specifies that the viewed object is of type FOO, is
represented by the object X and hasvthe access réstrictions specified by AR’. When the third
program uses the name W it "sees” the object Y of type F00>. Any operations performed by using
the name W result in operations on the object Y. This means that the only way that users of W
(and X) can possibly detect the presence of the RCG(s) is by noting that certain operations on the
object do not work. The access allowed to the object X by users of the name W are spécified by the
minimal access rights specified by AR and -AR’; Thus if AR and AR’ specify access restrictions
then the resulting' access restrictions are the OR of AR and. AR’ and if AR and AR’ specify access
. privileges then the resulting access privileges are the AND of AR and AR’. In this way the effect

“of RCG’s as access restrictors is cumulative.

FOO
X > Y >
Y (of type BAR)
AR

Figure 9. Type extension using RCG’s.

_ofe | July 22, 1978

An interesting side issue is whether EQ(W X) is true in figure 8! Itis certainly the case
that EQUAL(W,X) is true since W and X ultimately refer to the same object. EQ, however, is
another story. Since the two views of Y provided by W and X are not (necessarily) the same, then
EQ(W,X) would seem to be false. On the other hand, any changes effected by using one of W and
X results in a gﬂrect and immediate effect in what users of the other name see. Thus from this
point of viéw EQ({W,X) would seem to be true. The case is not particularly strong in either
direction so AESOP makes the arbitrary choice that EQ(W,X) is false. This choice has the
advantage that EQ(W,X) can be implemented by simply looking at the names (e.g. UID’s) W and
X and comparing them. In the long run the addition of a third kind of equality, RCG equality,

may be needed to handle the case represented by figure 8.

Another use of RCGs is for type extension. Suppose that it is desired to create an extended

type object, which will be named X, of type FOO from an object named Y of type BAR. Figure 9
illustrates how RCG'’s would be used to accompli.sh this. In this figure X is an RCG that specifies
that the use of the name X refers to an object of t);pe FOO and that that object is representedv by
the object Y. The access restrictions AR specify which operations on the object may be performed
when using the name X. This enables the creator of the extended type object X'(pres'umably the
type manager for objects of type FOO) to create objects of that type with varying ré'stfictions on
access to that object.2 The only things that can be done with the name X are to copy the name
and to pass the name X to the type manager FOO to have operations performed on the extended
type object X. The type manager FOO, however, can "unseal” the RCG and get at the

representation object- Y. This is performed by the operation:

1. And also the more general issue of when EQ(W X) is true for two RCG’s W and X such that
W and X specify access restrictions on (uitimately) the same object. ’

2. This could also be done by creating the object X with full access rights and then creating a
second RCG that specifies access restrictions.

-99- July 22, 1978

RCGHunseal(X, rep_object, access_restrictions)
Unseal is passed the name of the object X, an RCG, and returns in the variable rep_object (which .
is just a slot in the current LNS) the name Y (the representation of the object X) and the access
restrictions AR are returned in the variable access_restrictions. This then allows the type manager
to:
I. Determine which operations are permitted on the object X by examining
the variable access_restrictions.

2. Perform operations on the representation object Y.

No other facilities seem necessary at the architectural level to allow the type manager to perform its

job.

Clearly if the RCG named by X is to truely “seal” the object, th;zn permission to perform the
unseal operation must be restricted to the type manager FOO. To this end AESOP checks that the
procedure attempting to perform the unseal operation is part of a type manager and that the name
of that type manager is the same as the name specified as the viewed type in the RCG that is being
unseaﬂed. Thus the name of the type manager is the key that allows the RCG to be unsealed. If

both conditions are satisfied then the unseal operation is allowed, otherwise an error is indicated.

This implies some additional complication in the procedure call mechanism since a
procedure implementing an operation on some type may be calling procedures that it does not want
to have the unseal capability. When a type manager makes a procedure call it must be careful to
- specify whether the called procedure is or is not a part of the current type manager for unsealing
(and, as will be seen, for sealing) purposes. To this end there are two kiﬁds of procedure calls:

internal_call and external_call. An internal_call does not change the fact that some type manager is

-23- - July 22,1978

being executed while an external_call suspends the ability to unseal (and seal) until the called

procedure returns!

In a similar manner the ability to perform‘ the "seal” operation must be restricted. If it were
not restricted then any program could ;eal an object making an object of arbitrary type. When this
object was passed to the type manager for that type the representation of the extended type object

.might be incorrect. This could result in incorrect operation of the type manager. The type
manager could protect itsglf from this kind of misbehaviour,2 however this seems to be an added
burden on the programmer that is best avoided (especially since the programmer is unlikely to
remember to perform the necessary checking at all of the appropriate times). For this reason the

seal operation is restricted in the following manner: -

1. It may only be performed by a type manager.
2. The field "type" in the created RCG is filled in with the name of the
type manager performing the seal operation.
With this restriction only a type manager may create an RCG that makes an object look like an
object of that type (or equivalently, only a type manager may create extended type objects of that

typé).

1. One alternative is to "unseal” all of the appropriate objects upon entry to the type manager.
This is workable although it does add complication to the procedure call mechanism. This was not
chosen, however, since it prevents the type manager from ever regarding the objects that it
implements as anything but their representation. Another possibility is to allow unseal in the first
procedure called in a type manager and not in any subsequent ones.

2. Perhaps by including an unforgeable key in the representation for each object (this is similar to
the mechanism proposed by Henderson[2]). Such a key might be the name of an object that the
type manager never allows to be passed beyond its control.

-94 - July 22, 1978

The operation that creates an RCG for use as a type extender allows an access restriction
field to be specified for the newly created RCG. The possible high level semantics of this are
interesting. It allows one type manager to implement a collection of "types".l each a restriction of
~ one basic type. For instance, with file as a basic type, by setting AR appropriately the “types”

read-only-file, append-only-file, stream-file, direct-access-file and others can be created.

In order to illustrate the r’evocation of access to an object it is necessary to show how RCGs
may be modified once created. Figure 10 shows the basic mechanism. X is an RCG that has as its
type field RCG and its object pointer names another RCG, Y. Assume for the moment that the
access restrictions mentioned in X, AR, permit all access to the RCG Y. By using the name X it is
then possible to modify the RCG Y. In particular the access restrictions and the object pointer in Y
can be modified. Note, however, that the type ‘field cannot be modified for to allow such
modification would lead to the same problems as mentioned in the case of restricting the ability to
perform the "seal” and "unseal” operations. If AR does not allow full access then, as usual, some
operations may not be allowed on Y (such as modifying the object pointer). A program possessing
the name X clearly has great power over the coﬁtents of the RCG Y and so such possession must

be carefully controlled.

In this regard the question arises as to how the object X came into being. It cannot just be
created at random whenever the need for it arises, rather its creation must obey restrictions so that
the security provided by RCG's/ is not compromised. To this end the only time that objects such as
X are created is as part of the creation operation of other RCG’s. Looking at figure 10, assume that

object Y is an RCG that was created by the seal operation. As part of that seal operation the object

1. These are not types in the normal AESOP sense since there is a one-to-one relation between
AESOP types and type managers.

-95- : July 22,1978

"RCG

>
v
<

AR

FOO

AR’

Figure 10. The use of an RCG to modify another RCG.

X should optionally be created and its name returned. If, the bther hand, Y was simply performing
an access restriction function then the object X should oétionally be returned at the same time that
the bbject Y was creafed. In this way the ability to create a given RCG also gives the ability to
modify that RCG and there is no other way to gain that ability. Thus only the type manager for a
given type may manipulate the sealing RCG's for objects of that type. Similarly, a program

restricting access to an object by Ereating an RCG is the only program that can modify that RCG.

-26- July 22, 1978

In this way the security provided by RCG's is protected by the correctness of the procedures

creating these RCG's.

The way of performing access revocation should now be clear: To give revocable access to
the object Z in figure 10 the RCG Y should be created and at the same time the RCG X should be
created. The name Y should be passed to the program that is to be given revocable access and the
name X should be remembered. Later when it is desired to revoke some, or all, access to the object
Z the object X provides the means to do so. If complete and permanent revocation is desired, then -
X can be used to destroy object Y, making any outstanding references to it invalid. If partial
revocation, access enhancement or non-permanent, complete revocation is desired then the object X
can be used to modify the access restriction field in Y appropriately. This is done by calling

RCG#set(X, Y, AR’) to change the access restriction field to AR’ from AR.

Up to this point this section has presented the basic RCG mechanism and examples of how
to use it in solving various problems. The next few paragraphs will present a few rules for using

RCG's.

The first issue is finding the actual object referred to when using a name that is an RCG.
Let X be the RCG that is named. Then the object that is referred to is:!
1. If Xuobject_pointer names another RCG and if Xtype =
(X.object_pointer).type then the object referenced by X.object_pointer

(i.e. recurse on these rules).

2. If X.object_pointer names another RCG and if Xtype #
(X.object_pointer).type then X.

I. ‘The notation X.Y is used to denote field Y in the RCG X.

-21- July 22, 1978

3. If X.object_pointer does not name another RCG and if X.type =
type_of(X .object_pointer) then X.object_pointer.

4. If X.object_pointer does not name another RCG and if X.type #
‘ type_of(X.object_pointer) then X.
Cases 1 and 3 correspond to following a chain of RCG’s being used as access restrictors. Cases 2
and 4 correspond to the use of RCG’s as type extenders. The effect of the rules are that chains of
RCG’s are followed until an RCG being used for type extension is found or until a non-RCG

object is found.

The determination of permitted access to an object that is referred to through an RCG must
also be specified. -Again there are three cases to consider:

1. If X.object_pointer names another RCG and if Xtype =
(X .object_pointer).type then min_access(X.access_restrictions,
access_to(X .object_pointer)).

2. If X.object_pointer names another RCG and if Xtype #
(X.object_pointer).type then min_access(X .access_restrictions,
(X.object_pointer).access_restrictions).

3. If X.object_pointer does not name another RCG then .
X.access_restrictions. o :

Case | corresponds to thc case of RCG’s in a chain being used as access restrictors. Case 2 is

RCG’s in a chain being used as type extenders. Case 3 covers the case of non-chained RCG's. The
access is used to determine whether or not an operation may be performed upon some object. At‘
the time that an object is passed to its type manager the type manager must be able to exercise the
name and discover wh;t the effective access to the object is. The type manager can then use this
information to determine whether or not the requested operation can be performedv’up‘on that
object. Thus the enforcement of access restriction is the responsibility of the .type manager while

the hardware provides the basic mechanism to implemeht the access policy.

- 28 - - July 22,1978

'

These rules for RCG’s now allow some of the philosophy behind RCG’s to be discussed.
The rules presented clearly differentiate between the two uses of RCG's - as type extenders and as
access restrictors. In fact the two uses almost represent different objects. AESOP has recognized
that the two uses are close enough that with a slight push a single mechanism can provide them
both. The second interesting philosophical issue is "Who provides RCG’s?". This discussion has
presented RCG's as a type. In fact, another way of thinking of them is as provided by the name

interpretation mechanism. If thought of in this way, the rules in the preceeding paragraphs may

seem more rational.

Finally we review the various operations permitted upon RCG’s (see figure 11). The
allowable operations are the following (output arguments are in bold face):
RCG#seal ~ (sealed_object, access_restrictions, sealing_ob ject,
revoker_ob ject)
RCG#unseal (sealing_object, sealed_ob ject, access_restrictions)

RCGHaccess_restrict (protected_object, access_restrictions,
protected_ob ject, revoker_ob ject)

RCG | Type
Y
revoker_object > X ot Y >
Access
AR
Restrictions

Where X is a sealing or protecting object and
Y is the sealed or protected object (e.g. the "rep" object).

Figure 11. Example of the use of operations on RCG's.

-99- July 22,1978

RCG#extract. (revoker_object, type, sealed_ob ject,
access_restrictions)

RCGset (revoker_object, rep_object, access_restrictions)

Another operation that is intimately related to RCG’s is the effective_access operation:
RCGfeffective_access(X, access_restrictions)
which returns the effective access permitted to the object named by X. (If X is not an RCG then

access_restrictions is returned to indicate full access).

These are all of the operations that can be performed on RCG's. Using these operations it
is possible to implement type extension, access restriction, access revocation and even change the

representation object for extended type objects. No further mechanisms are provided or needed in

AESOP for these purposes.

7. Control Structures

A number of architectural features of AESOP have been described thus far in this
document. The one important aspect of the architecture that has not been described is the method
of flow control in the machine. This section describes the method of procedure calls, branching

within a procedure, type manager calls, error mechanisms and extended control mechanisms.

The basic unit of execution within AESOP is the code segment which is a linearly ordered
~ set of instructions. The .instructions within a code segment are executed sequentially from
beginning to end and there is no way to begin execution of a code seghent except at the beginning
or to cause execution of a code segment to skip execution of some instructions within the code

segment.

-20- ‘ July 22, 1978

Type manager calls are the basic mechanism of controlling the point of execution in
AESOP. Every instruction is a type manager call. When an instruction is decoded the result is the
name of a type manager to call, the name of the bperation to be performed and a list of objects to
be passed to the type manager as arguments. The fact that a type manager is in execution is
remembered, as is the name of the called type manager. From this point on the call of the type

~manager looks the same as the call of a proceclure.l

The basic proced‘ure call mechanism consists of determining the name of the procedure to
be called, supplying the input arguments to the procedure and specifying where the output
arguments are to go (in the LNS or GNS of the calling procedure). Once the name of the
procedure is determined an LNS is created and filled in with the template LNS of the called
procedure. At this point the names of the input arguments are copied into the correct spots in the
newly created LNS (by convention these are the first N slots in the LNS for a procedure that has N
input parameters). Execution is now continued using the newly created LNS as the LNS, the GNS
remains the same as the callers GNS and the newly executing code segment is the initial code
segment of the called procedure. When the procedure returns, the output parameters are copied
from the LNS of the called procedure into the correct slots in the LNS and GNS of the calling
procédure. Procedure return is initiated in one of two ways. If the initial code segment of the
called procedure should ever be completely executed then a return is initiated at that time. The
other way is to execute a procedurefireturn call explicitly. The second mechanism is provided in
case it should prove awkward to write all procedures so that the last instruction in the initial code

segment is the last instruction that the procedure wishes to execute.

. In some sense the procedure call mechanism is the basic mechanism in AESOP although from
an ISP point of view the procedure looks like another extended type. This brings up a tricky point
as to which comes first: procedures or extended types. The view taken here is that they are
intertwined to a point that trying to separate them would serve no useful or practical purpose.

-3- July 22, 1978

The instruction execution mechanism presented so far only allows unconditional execution
of code. There is, however, a clear need for the ability to execute sequences of code conditionally.
- To this end it is possible to call the code_s;egment type manager and ask it to execute some given
code segment using a given pair of name spaces as the LNS and GNS fdr the execution. This
mechanism is sufficient to implement the neeaéd conditional execution of code segments once the
~ appropriate operations are provided on one or more of the basic types. A sufficient mechanism is
to provide the operation

' booleansbranch_t;f(boolean_value, true_code_segment, false_code_segment,
LNS, GNS)
that tests the value of the booleah variable - boolean;_'\lalue and if it is true executes
true_code_segment using (LNS, GNS) as the environment for the execution and executes
false_code_segment using (LNS, GNS) as ‘the environment for the execution if boolean_value is
false. For efficiency, other basic types may also provide branching constructs. Examples might be

operations to branch based upon the relative values of two integers or upon the relation between

two characters or character strings.

This mechanism for flow control has been chosen since it seems to lend itself to current
methods of writing structured programs. Moreover, this architecture almost forces this style of

programming which may' be a good idea.

Using the basic conditional execution mechanism it is possible for the user to write his own

control structures. For instance to write a "do while" looping construct the following procedure will

suf fice:1

1. The code is written in a PL/I-like style and the meaning should be fairly obvious.

-39 July 22, 1978

do_while:procedure(boolean_variable, code_seg, Ins, gns);
dcl boolean_variable name_space_slot boolean,
code_seg code_segment,
(Ins, gns) name_space;
if boolean_variable
then dojcall code_segfiexecute_code_seg(code_seg, Ins, gns);
call do_while(boolean_variable, code_seg, Ins, gns);
end;
return;
end do_while;
This procedure is relatively straightforward. A boolean variable is tested and if it true the code
segment, which is the body of the ioop and should modify the value of the loop control variable, is
executed in the correct environment and then do_while is called recursively to re-test the variable
and possibly reexecute the code segment. Note that this recursive call is an example of tail
recursion and so need not be expensive. The only unusual item in this procedure is the declaration
of the variable boolean_variable. It is intended to be a name that allows access to a particular slot
in the callers LNS so that the do_while procedure may test the value of the loop control variable
. (conceptually boolean_variable is a pointer to a name slot that can contain boolean values). Note
that just passing a boolean variable (e.g. dcl b boolean; ..call do_while(b,cs,ins,gns);) does not work
since AESOP passes arguments by assignment (in the same way as CLU does). The parameter
boolean_variable must be a cell that takes on boolean values and whose contents is changed by the
body of the loop. It can be implemented in at least two ways. A substring type could be created
that allows access to a substring of another string but nbthing else. Then a substring object could
be created that has as its representation the appropriate slot in the caller’s LNS. This object could
then be passed to the do_while procedure. This approach has the advantage that the substring
type manager, which is probably in hardware, enforces the access restrictions. The second

approach is that what is passed to do_while is a pair (name_space, index) which specifies that the

variable to be examined is in slot index of the given name space. This approach has the

-33- July 22,1978

advantage that no additional architectural mechanisms are needed to implement it (as it is a
language defined runtime convention) and the disadvantage that to provide access to the one
variable of interest it is necessary to give acces§ to the entire name space. This method is workable
and safe provided that the compiler is capable of p‘erforming the needed checks or if such checks
are deemed unnecessary. Both mechanisms are sufficient although the enforced protection of the

first mechanism seems to be worth the added complexity of a new basic type.

The reader will note that the procedure above can not really exist in AESOP in the given

form. Rather the procedure consists of the two code segments A (the initial code segment) and B.
They have the following form:
Accall booleanfbranch_if_true(boolean_variable, B, Ins, gns);

end A;
B:call code_segfiexecute(code_seg, Ins, gns);

call do_while(boolean_variable, code_seg, Ins, gns);

end B; :
This structure occurs because there is no go-to statement, rather only a means to execute code

segments conditionally.

The subject of e-ror control in the machine is an important one. Procedures need to be
ab’le to signal errbrs. the‘hardware needs to signal errors when an error in using the basic types
occurs and when hardware errors (failures) occur. This area is one where further thought is
needed. The only fair‘ly firm decision that is proposed is that when a type manager detects an
error, the error must be reflected at the point of call and not at the actual point of error. If this
were not tﬁe. case, there might be a means to compromise the integrity of the type manager. The
ability for procedures to "catch” errors is probably needed so that errors can be detectéd and

corrected by procedures and not reflected back to the caller unnecessarily.

- 34 - July 22, 1978

8. Remaining Issues, The Ultimate Truth and Conclusions

This paper has presented the basic architecture of AESOP. The description is not cast in
concrete nor is it complete. This description is intended as a starting point for a continuing design

effort and comments regarding the design are solicited.

There are a number of issues that remain to be specified in AESOP. The notion of process
is missing. Should the basic architecture support processes and if so in what form? Perhaps the
virtual processor mechanism of Reed[5])? If processes exist, must the notion of processor state be
introduced? Is the processdr state an object t.hat can be manipulated? Or is it outside of the typed
environment? | What synchronizing mechanisms are needed? What is the interprocess

- communication mechanism?

The whole area of 1/O is unexplored. How should standard devices such as disks, tapes
and line printers be integrated into the system? How should communication networks be added?

In what ways should the architecture support objects that are shared across machine boundaries?

What about protection mechanisms? The éurrent protection mechanism in AESOP consists
of RCG’s and the fact that names cannot be forged (i.e. it is a capability machine). This means that
the only way to get access to an object is if someone who already }';as access to the object gives it
away. RCG's provide the means to limit the amount of access given away. The mechanisms as
presented certainly seem sufficient to implement hierarchical models of protection. Solving
problems such as the mutual suspicion problem does not seem to be as easy to do using the given
mechanisnﬁ. Are the mechanisms sufficient to solve all of the "interesting™ protection problems that
need to be answered? If one views AESOP as the model for a personal computer, as opposed to a

multi-user shared processor, are the protection mechanisms sufficient?

.35 - ~ July 22,1978

This paper has very carefully avoided the issue of storage management. Are objects deleted
automatically when no longer needed (i.e. garbage collection) or are objects only deleted explicitly?
Is a hybrid scheme the right approach? Does the architecture need to have "hooks” in it to help
solve various aspects of the small object problem? Must it provide "hooks" to allow cataloging and

permanent storage of objects?

In conclusion it is useful to note a number of unique features of AESOP. There is, in
reality, only one type of basic object in AESOP and that is "string_of_names". Every other object is
- constructed out of such objects. There are other primitive types such as integers aﬁ'd booleans bﬁt
they are objects that are probably never realized explicitly, rather the narﬁes of these objects are
sufficient to represent them. ':I'he érchitecture (;nly supports one instruction - type manager call.” All
~of the other "obviously needed” operations are in actuality calls on one type manager or another.
The RCG mechanism is a uniform mechanism that serves to‘solve the problems of type extension,
access restriction and access fevocation. The uniformity. of the mechanism seems to be unique in
the érea of machinesl'that support objects. Finally AESOP is a machine architecture that is

designed to support completely the notion of typed objects.

Acknowledgement

The initial design of AESOP (then known as the 510 Machiﬁe) was perfdrmed in January,
1978. It was the collabrative effort of the authqr, Warren Montgomery, Dave Reed and Karen
Sollins and their efforts are gratefully acknoWledged. Many of the ideas presented in this paper are
the result of that Aesign effort but the author takes full responsibility for any errors of omission or

~ commission that are present in this paper.

(i

(2]

(3]

(4]

(5]

(6]

7]

(8]

[9)

-3 - July 22,1978

References

Heller, Joseph, Catch-22, New York, Modern Library (1966, cl961). .

Henderson, D.A, "The Binding Model: A Semantic Base for Modular Programming
Systems,” MIT-LCS TR-145, February, 1975.

Liskov, B.H., et al, "Abstraction Mechanisms in CLU,” CACM 20, 8 (August 1977), pp.
564-576.

Redell, D.D.,, "Naming and Protection in Extendible Operating Systems,” M.LT. LCS
Technical Report TR-140, November 1974.

Reed, D.P., "Processor Multiplexing in a Layered Operating System,” M.L.T. LCS Technical
Report TR-164, June 1976.

Saltzer, J.H., "Naming in Information Systems,” chapter 5 of 6.033 notes, fall, 1976.

Walker, R.D.H, "The Structure of a Well Protected Computer,” Ph.D. Dissertation,
University of Cambridge, England, December, 1973.

Wulf, W.A, "ALPHARD: Towards a language to support structured programming,”
Carnegie-Mellon University Dept. of Computer Science, April 1974.

Wulf, W.A, Levin, R. and Pierson, C, "Overview of the Hydra operating system
development”, Proc. Fifth Symposium on Operating Systems Principles, 131, November 1975.

