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I. TINTRODUCTION

Components of a database are related to each other in
certain ways. Such relations are usually called consistency
constraints. Since these consistency constraints cannot
necessarily be enforced at each primitive action on the
components ( called entities hereafter ) such as read and write,
sequences of actions are grouped to form transactions, which are
units of consistency. Each transaction transforms the database
from a consistent state to a new consistent state{7][9][10].
Therefore transactions are also units of recovery. (Tﬁe concept
of a transaction is similar to the concept of a sphere of
control{4][6], the concept of a conversation [23], or more
generally, the concept of an atomic action[24][20]. Also it has

close relation to the concept of a monitor[13][12].)

Although transactions, when executed one at a time ,preserve
consistency, concurrent execution of transactions and various

failures occurring during transaction processing could cause such
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anomalies as lost updates , dirty read and unrepeatable read[10].
To prevent these anomalies from occurring, it is usually required
that ,for a given concurrent schedule of transactions, there
exists some serial schedule that is equivalent to it. Schedules
that satisfy such a property are called consistent schedules. In
addition, it is necessary to be able to restore the database to
an earlier consistent state by backing out affected transactions

when a failure occurs during transaction processing.

Gray et al[7][9][10] proposed a lock protocol that
guarantees any legal schedule to be consistent and transaction
backout to be feasible. Their lock protocol requires each
transaction to:

(a) set an exclusive lock on any entity it dirties

(b) set a share lock on any entity it reads

(c) hold all locks to the end of transaction.
Apparently this lock protocol seriously restricts concurrent
execution of transactions since it almost serializes any pair of
transactions if there exists at least one entity that 1is needed
in exclusive mode by both of them. In fact, the degree of
concurrency in system R, which forces transactions to observe
this lock protocol, is reported to be less than two[ll]. In

addition, it is subject to deadlock.

The consistent schedule adopted in SDD-1 directly controls
the ordering of actions on each entity by utilizing timestamps
assigned to transactions and the information about the necessary

degree of synchronization that is acquired from the pre—analysis



of transactions([3]. The point is to eliminate unnecessary
invocation of the synchronization mechanism and thereby reduce
the run-time overhead. However SDD-1 does not seem to pursue
maximum concurrent execution of transactions that need some
degree of synchronization. In addition, the concurrency control
mechanism of SDD-1 described in [3] does not assure the

recoverability of the database from various kinds of failures.

(1)

Reed [25] used a similar timestamp mechanism to implement a
consistent schedule of transactions. He also introduced the
concept of versions and tokens of mutable objects to reinforce
the availability and recoverability of the database. Although
this concept will make it easier to cope with availability and
recoverability issues, the degree of concurrency will be much

the same as the above approaches.

Montgomery’s scheme[22] allows high degree of concurrency.
But the interface to the database manager seems to become very
different from conventional ones under his scheme since, for
example, a read action returns multiple possible values of the

data and the user has to perform computation on all of them.

The scheme for concurrent and reliable updates proposed in
this paper is somewhat related to that of Reed[25] and Bernstein

et al[3] in the sense that it also uses a timestamp mechanism,

¢
However some work to built recoverability into SDD-1 is in
progress.



although the scheduling policy #s different. Moreover, the paper
develops the concept of multiple uncommitted versions of objects.
These uncommitted versions are somewhat similar to the tokens of
Reed. However, there exists a crucial difference between the
concept of uncommitted versions and the concept of tokens.
Namely, in Reed”s scheme, an object generally can not have more
than one token at a time, whereas it can have multiple
uncommitted versions in the scheme proposed here. This difference
seems to result from the differences in motivation. The
objective of the scheme discussed in this paper is to achieve
almost maximum possible degree of concurrency as well as
recoverability ( although stress is mainly placed on crash
resistence ). (1) Therefore this scheme and Reed’s scheme are
almost disjoint and supplementary rather than competitive. In
addition, it is proposed to use different schemes for concurrency
control and recovery at different levels of the system although
more than one level may share the same scheme. No other paper
published so far explicitly mentioned this issue ( especially in
the context of distributed databases ). Randell([23][24],
Verhofstad{29] and Anderson et al[l] treated a different aspect

of the recovery issue in a multi-level system.

(1)

To cope with more serious media failures such as a head crash,
dust on magnetic media etc. ( including serious failures of the
operating system ), we have to resort to such schemes as
incremental dump, long-term checkpoint, differential files

etc. (51[10][21][30] or multiple versions proposed by Reed.



2. ATOMIC ACTIONS =--- A GENERAL DISCUSSION

This section discusses the characteristics of atomic actions
in general ( rather than transactions ) and the shemes to
implement them. The representation of an atomic action generally
consists of a set of underlying objects and a sequence of (
possibly atomic ) actions on them. An example of an atomic
action is a transaction in which case underlying objects are

database entities accessed by the transaction.

Atomic actions are considered to be indivisible and
instantaneous, as far as their users ( callers ) are concerned,
such that their effect on the system is the same as if they were
executed sequentially[24][20]. These characteristics must be
preserved even 1f several atomic actions are invoked concurrently
or any kinds of failures occur during the processing of atomic
actions. Therefore, our primary concerns are to ensure that:

(1) conflicts among atomic actions never occur (i.e. the
schedule of atomic actions is equivalent to some serial
schedule )

(2) temporary inconsistency neverAbecomes permanent (i.e. each

atomic action either completed or backed out ).

Consistent Schedule of Atomic Actions

A schedule S for a set of atomic actioms Al, A2, ..., An
defines the binary relation < such that Al<A2 if atomic action Al
performs action al on object e at some step in S and atomic

action A2 performs action a2 on e at a later step in S. Let <* be




the transitive closure of < . Then we can restate the condition
that " the effects on the system be as if they were executed
sequentially " more formally as the condition that " the schedule
- of atomic actions must be such that the relation <* is a partial
order[7]1[9][10] ". Such a schedule is called a consistent

schedule.

There are three alternative schemes that can be used to
implement a consistent schedule.
(1) serial schedule
(2) schedule based on a lock protocol
(3) schedule based on timestamps
The first one completely serializes any pair of atomic
actions between which the relation < exists. This occurs in most
conventional operating systems where ( at least a part of )
supervisor programs are executed serially. (1) Clearly this
scheme is simplest and the associated overhead is smallest.
However the degree of concurrency achieved by this scheme is zero
( of course, mutually independent atomic actions can be executed

concurrently even in this scheme ).

The second one was explored by Gray et al[7][9][1l0] and is
widely used in many database systems. Although an atomic action
has to lock underlying objects 1in this scheme, it is possible to

ensure that any legal schedule is consistent if each atomic

(L)
Such programs are called " serially reusable programs " in IBM
0S/360 and were renamed " monitor procedures " by Hoare[l13].




action observes a two-phase lock protocol[7] ( i.e. an atomic
action can not request new locks after releasing a lock )..
Therefore the degree of concurrency achieved by this scheme is
supposed to be better than the first one. But it is not the best
since the two-phase restriction is only a sufficient

condition[7]. It is also subject to deadlock.

The third one is based on the observation that a consistent
schedule of atomic actions is merely a sequencing of lower level
actions performed on the underlying objects by these atomic
actions such that the relation <* be a partial order. This
sequencing is directly controled using a timestamp mechanism
rather than a lock mechanism. Namely, each atomic action is
assigned a globally unique timestamp, and thereby all atomic
actions are totally ordered. The manager of each object
schedules actions on the object in the timestamp order of atomic
actions that request these actions. This scheme was used by
Bernstein et al[3] and Reed[25]. (1) This distributed (i.e.
per-object-based ) scheduling algorithm guarantees that, for any
pair of atomic actions Al and A2, Al < A2 if and only if the
timestamp assigned to Al is smaller than the timestamp assigned

to A2. Therefore the relation <* defined by this scheduling
algorithm is a partial order that can be extended to the

timestamp order. Since this scheme imposes no more constraints

(1)

The schedule based on timestamps 1s somewhat similar to the
methods that was devised to solve the mutual exclusion problem by
Lamport[l15], Rivest et al[26] etc..



than necessary ( i.e. the relation <* be a partial order ), it
ensures the maximum degree of concurrency. In addition, it is
deadlock free since <* is an acyclic relation. However, this
scheme requires a non-trivial algorithm that ensures that atomic
actions are eventually scheduled in the timestamp order even if
components of the system fail or sequence anomalies occur because
of communication delays, processing delays etc.. (1) Such an

algorithm may induce a greater overhead than previous schemes do.

All or Nothing Property of Atomic Actions

In order to prevént a temporary inconsistency from becoming
permanent when a failure is encountered , it must be always
possible to decide whether or not to complete any outstanding
atomic actions and perform the alternative thus‘selected.
Unfortunately there exists no finite length protocol which
ensures that each aﬁomic action is either completed or backed out
in a distribpted system in which nodes or communication lines may
fail at any time[ZZ]. Therefore the second best policy is to
relax the requirement for finiteness of the protocol, but attempt

to minimize the time window during which a failure causes

unnecessary delay. This is the main aim of the two-phase commit

()

For example, suppose that both of Al and A2 performe actions on
two objects Ol and 02. Then it may happen that Ol gets a request
from Al before that from A2, but 02 gets requests in the reverse
order.

(2)

Commitment of an atomic action means deletion of the recovery
data for this action. Therefore, after the atomic action is
committed, there is no way of undoing the action.



(2) protocol that was first advocated by Lampson et al[l7] and

was refined by Gray{1l0] and Reed[25]. In the two-phase commit

protocol, a commit point is established after the first phase of

commitment is successfully completed. If something goes wrong

before the commit point, the atomic action is backed out. On the

other hand, the atomic action is completed no matter what

happened after the commit point ( it may cause an infinite delay

).

(1) Backing out

In order to back out an atomic action:

1) the states of the underlying objects that were

2)

accessed by the atomic action so far must be restored
to the states they were in when the atomic action was
invoked

the information flow from the atomic action must be
undone and all other atomic actions affected by this
information flow must also be backed out ( this is
called cascading of backouts[l0] or domino effect[24]

)

(a) Recovery of objects

Recovery of underlying objects accessed by an atomic

action consists of two phases as follows.

9]

2)

In

deciding which objects the atomic action accessed
restoring the states of these objects to ones they
were in before the atomic action was invoked

this paper, a recovery scheme used to implement the
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first phase is called a process-oriented scheme because
the first phase associates objects on which a given
atomic action ( it may be a process ) performed actions
with each other. On the other hand, a recovery scheme
used to implement the second phase is called an
object-oriented scheme because the second phase deals
with a history of actions performed on a given object by

different atomic actions.

A process-oriented scheme basically remembers the
identifiers of the objects accessed by the atomic action,
and requests object-oriented schemes associated with
these objects to restore the states of the objects when
something goes wrong. An audit trail ( or a log )[5][10]
and a recovery cache[l4] can be used as a

process—oriented scheme.

Before discussing object-oriented schemes, it 1is
necessary to give a definition to recoverability of
objects. Objects are classified into two categories:
recoverable objects and non-recoverable objects. A
recoverable object is one whose manager provides
recovery. Namely, the manager saves recovery data and
restores an earlier state when something goes wrong. On
the other hand, a non-recoverable object is one whose

manager does not provide recovery. The manager of a
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non-recoverable object does not save recovery data. (1)
But actually, there exist good possibilities that the
user (the atomic action ) can undo the effect of the
earlier action by invoking an inverse or a compensating
action[4] ( if any ) if he keeps sufficient recovery

data.

In an object-oriented recovery scheme for a
recoverable object, the manager of the object remembers
each state of the object and identifiers of atomic
actions (2) which depend on that state. How fully to
remember the state changes depends on the kind of a
failure to cope with and the kind of recovery (3) to
provide. As was stated earlier, this paper mainly
discusses crash resistance[28][30]). Crash resistance is
provided if, after some kiand of failure (4) , the system
is always in the state it was in before the last set of

atomic actions (i.e. the atomic actions interrupted by

(1)

Strictly speaking, an object whose manager performs recovery
using an audit trail saved by the user should be distinguished
into another category. However this kind of object is included
into non-recoverable objects in this paper since such distinction
is not essential as far as this paper is concerned.

(2)
As will be discussed later, this information is necessary in
order to control the cascading of backout of atomic actions.

(3)
See Verhofstad[30] for further details.

(4)
Failure such as action failure and system failure excluding media
failure.
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the failure ) were invoked. A careful replacement,
multiple copies and differential files are examples of
object-oriented recovery scheme used to implement crash

resistance that were proposed so far.

In an object-oriented recovery scheme for a
non-recoverable object, on the other hand, the user of
the object has to save recovery data. However, it is
difficult to implement a truely object-oriented and
efficient recovery scheme for a non-recoverable object
since recovery data concerning the object are distributed
among the users of the object. For example, suppose that
several atomic actions are permitted to be executed
concurrently. Then in order for a given atomic action to
undo the action on a non-recoverable object, it has to
consult all other atomic actions that may have accessed
this object. (1) Saving recovery dataxas global data
(e.g. an audit trail ) is only a partial solution for
this problem since handling of recovery data is still
inefficient (in particular, this inefficiency will be
intolerable in a distributed environment ). Therefore a
non-recoverable object 1s usefull only in a limited
environment where the cascading of backout is not
necessary, namely where an atomic action is not permitted

to access objects until all previous atomic actions that

(1)

This is necessary to control the cascading of backout.
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accessed them are completed. Unifying both of a
process—-oriented scheme and an object-oriented scheme
into a single scheme is considered to be usefull. An

audit trail and a recovery cache are such examples.
(b) New recovery schemes

This paper proposes two new recovery schemes for
crash resistance: a backout/commit cache and multiple

uncommitted versions of mutable objects.

None of object-oriented recovery schemes for
non-recoverable objects proposed so far are sufficiently
general in the sense that they can be applied to limited
classes of objects. In particular, none of them can be
applied to a non-recoverable object whose manager does
not provide an inverse or a compensating action for each

action.

A backout/commit cache is associated with an atomic
action. A backout cache contains a set of actions to be
performed in the case of backout, on the other hand, a
commit cache contains a set of actions to be performed
after the commit poit is passed. (1) An atomic action
performs each action in one of the following ways

depending on the kind of the underlying object on which

(1)
A commit cache can be considered to be an extension of an
intention list proposed by Lampson et al[l7].
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the action is performed. ( Also, examples that were

derived from Appendix B are shown in Table.l. )

Case l: write the action into the commit cache, but do
not perform the original action ( when the object
is non-recoverable and neither inverse nor
compensating action is provided )

Case 2: write the inverse action or compensating action
into the backout cache and perform the original
action ( when the object 1is non-recoverable, but
either inverse or compensating action is provided
)

Case 3: write the undo action (1) into the backout cache,
write the commit action into the commit cache and
perform the original action ( when the object is
recoverable )

The backout/commit cache associated with a given atomic

action is deleted when this atomic action is committed.

Under this scheme, backing out and committing an atomic

action are merely executing the actions saved in the

backout and commit cache, respectively. Thus this
scheme, unlike other ones proposed so far, reflgcts the
all or nothing property of atomic actions explicitly. And
this scheme is a general one in the sense that it can be

applied to any kind of object.

(1)

An action that requests the manager of a recoverable object to
undo the last action performed by the requester.
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No object—~oriented recovery scheme proposed so far,
except for Montgomery’s scheme[22], permits several
mutually dependent atomic actions to be executed
concurrently. Therefore this paper proposes a new
object-oriented recovery scheme for recoverable objects
--- multiple uncommitted versions of mutable objects —---
that 1s an extension of careful replacement. In this
scheme, whenever an atomic action tries to perform an
action on an underlying object, a new version of the
object 1s created and the actual action is performed on
this new version. An atomic action can perform actions
on the underlying objects before the previous actions
performed on these objects are committed. Each version
contains the additional information such as the
identifier of the atomic action that performed the action
(i.e. created this version ) and the time at which the
action was performed. Each version continues to exist
until the immediately succeeding version is committed.
Therefore this new scheme records not only a complete
history of the state change of the object caused by

uncommitted actions but also the identifiers of the
atomic actions that depend on each version. (1) This

makes it possible to control the cascading of backout

Maintaining multiple committed versions and distributing them
among different media and different nodes will be usefull as it
was discussed in the previous section. But this is another
subject and beyond the scope of this paper. See Reed[25].
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caused by the backout of an uncompleted atomic action,
and therefore atomic actions can be executed highly

concurrently.
(¢) Cascading of backout

The main problem of cascading of backout is to keep
track of the information flow which originates from a
given atomic action. There are two approaches to the
problem.

1) preventing interactions

This approach prevents each atomic action from

interacting with other atomic actions until the end of
the atomic action. All known database systems follow
this approach, partly because most of them use locking
schemes to avoid conflicts among atomic actions (
transactions ) and therefore backing out of
transactions may cause déadlock[lO], and partly
because they do not have elegant schemes to keep track
of the information flow and to back out affected
transactions. Obviously the drawback of this approach
is that it seriously restricts concurrent executlon of
atomic actions. For example, prevention of
interactions 1s achieved by holding all locks to the
end of transaction in database systems which uses

locking schemes.
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2) Control the cascading

This approach is to devise a ( new ) scheme which
keeps track of the information flow and backs out the
affected atomic actions when a failure occurs. As was
discussed above, the multiple uncommitted versions
also serve as such a scheme. In the later sections,
we show how simply the backout can be done using this
scheme. Since each atomic action can perform actions
on the underlying objects before the previous actions
are committed, a highly concurrent schedule can be

achieved.
(2) Forcing completion

As was stated before, an atomic action must be completed
( i.e. commitment must be completed ) no matter what happens
after the commit point. In order to complete commitment by
all means, actions performed after the commit point
1) must not be lost even if a failure occurs at any point of
execution
2) must be repeatable ( idempotent[10][17] ). (1)

A commit cache proposed in this paper satisfies the first
requirement because the cache is implemented in a stable

storage[l7]. There are few methods of satisfying the second

(H

Repeatability ( or idempotency ) of actions means that performing
them once produces the same result as performing them several
times.
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requirement. One method is to reduce the actions performed
after the commit point to a sequence of write actions which
are well known to be idempotent[l7]. Another method 1is to
prevent the actions from being performed more than once by
using a mechanism which provides an unique identifier ( such

as a timestamp ) for each invocation of atomic action.

3. BASIC STRATEGIES

Database systems are considered to be composed of multiple
levels, and therfore there exist multiple levels of atomic
actions. The highest atomic action is a transaction, and the
lowest is a machine instruction or a micro instruction. One of my
ideas 1s that it is most appropriate to apply different schemes
for achieving atomicity to different levels although more than
one level may share the same scheme. This is because different

levels generally have different requirements.

Higher level atomic actions such as transactions must be
executed as concurrently as possible since their processing time
tends to be very long ( especially when transactions spread over
more than one node in a distributed system ). Also, scheduling
of higher level atomic actions must be deadlock free since
deadlock detection tends to be very expensive[l0)]. In addition,
it is necessary to support recoverable objects at such a high
level where a non-recoverable object is not useful, partly
because the users (i.e. the atomic actions ) are distributed and

executed concurrently, and partly because the users do not want
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to be iavolved in cumbersome details of recovery issues. And, of
course, these three requirements must be compatible. The only
feasible solution is to adopt a schedule based on timestamps as a
consistent scheduling sceme and multiple uncommitted versions as

an object-oriented recovery scheme.

On the other hand, simplicity and low overhead are more
important than concurrency in the case of lower level atomic
actions since these atomic actions are frequently invoked as
primitive functions and their processing time is much shorter.
Also a non-recoverable object is feasible at a lower level where
the users (atomic actioms) are almost serially executed. A
non-recoverable object might be even desirable at a lower level
from the viewpoint of performance(29]. Therefore it would be
appropriate at a lower level to adopt a serial schedule as a
consistent scheduling scheme and a backout/commit cache as an

object-oriented recovery scheme.

Since a backout/commit cache is so universal as a
process-oriented recovery scheme, this could be applied to most

levels.

This paper assumes a simplified multi-level distributed
system which consists of three levels. The top level provides
transactions, the intermediate level provides logical actions on
database entities, and the bottom level, which is supported by
the underlying operating system, provides physical actions on

disk storages. The above discussion justifies the following basic
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strategies.
1) Assume that disk storage is a non-recoverable object and
‘ physical actions on disk storage are atomic. These are
implemented by the underlying operating systém.
2) In order to make logical actions on database entities
atomic, use
* a gerial schedule as a consistent scheduling scheme
* a backout/commit cache not only as a process-oriented
recovery scheme but also as an object-oriented recovery
scheme for non-recoverable disk storage
Also in order to provide recoverable entities for
transactions, use multiple uncommitted versions as an
object~oriented recovery scheme.
3) In order to make transactions atomic, use
* a schedule based on timestamps as a consistent
scheduling scheme
* a backout/commit cache as a process-oriented recovery

scheme.

4. DETAILED SCHEMES

This section maidly discusses a consistent schedule of
transactions that uses a timestamp mechanism and multiple
uncommitted versions of database entities since other schemes ---
a serial schedule of logical actions on each entity and a
backout/commit cache --- are rather straightforward. The details

of the whole schemes are given in Appendix A and B.
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Assumptions

This paper considers a distributed database system that
consists of a set of nodes interconnected via communication
lines. Each node consists of a set of subsystems : data
management subsystems and transaction management subsystems. A
transaction management subsystem consists of transaction
management processes that processes transactions , one at a time,
by communicating with data management subsystems. A data
management subsystem maintains portions of the database(i.e. a
set of entities) and controls accesses to them. It consists of
monitors [13][12] (1) that define entities and data management
processes which access entities by invoking monitor procedures at

the request of transaction management processes.

A transaction management process retrieves(updates) the
conteant of an entity by sending a read(write) message to the data
management subsystem that maintains the entity. The message 1is
received by one of idle data management processes of the
subsystem. Then this process accesses the entity by ianvoking a
monitor procedure. For convenience, this paper classifies read
messages into readr messages (i.e. read-only messages) and readu
messages(i.e. read messages that are followed by write messages).
Access to the database via a readr message is called read-only

access, and access via a pair of a readu message and a write

(L)
The term " monitor " can be used instead of " manager of entity "
since logical actions on an entity are serially executed.
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message 1s called update access. A set of entities to be updated
by a transaction is called its update set , and a set of entitles
to be read is called its read set. For the sake of simplicity,
this paper assumes that :
(a) the update set of a given transaction T 18 a subset of
its read set
(b) T performs (either read-only or update) access to each

entity at most once.

Timestamps

Each node has a clock used for generating globally unique
timestamps. As was suggested by Thomas [27] , it 1is possible to
guarantee that every timestamp is globally unique by appending
the transaction management subsystem number as the low order bits
of each timestamp. The scheduling algorithm proposed here in
itself requires only the uniqueness of each timestamp. However,
in order to decrease possibilities that sequence anomalies occur
and to ensure each transaction an appropriate response time , it
is desirable that clocks running in different nodes are
reasonably synchronized. Lamport’s method of synchronizing clocks

in a distributed system [16] seems to be sufficient.

Each transaction is assigned a unique timestamp before
accessing a set of entities. Each action (therefore each access
) is assigned the same timestamp as was assigned to the
transaction which performs the action. In addition, the timestamp
assigned to each transaction 1s maintained iﬁ the versions of the

entities it accessed as version numbers.
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Non-deterministic Schedule of Transactions

One of the key points of the concurrency control of
transactions proposed here is that each monitor schedules
accesses in the order of timestamps assigned to them. Therefore
the problem is how to ensure this ordering. There are three
alternatives: a deterministic approach, a semi-deterministic

approach and a non-deterministic approach.

(1) Deterministic approach

In a deterministic approach, a monitor defers scheduling
of an access to the éntity it defines until it confirms that
there exist no outstanding accesses to this entity that are
assigned smaller timestamps. One of the drawbacks of a
deterministic approach is that such a confirmation procedure
takes a fairly long time (1) , and is reduced to a pure
overhead when requests for accesses arrive at each monitor in
the timestamp order. SDD-1, adopting a deterministic
approach, tries to remedy such a drawback by inventing null
writes and limiting the number of transaction management
subsystems that have to be polled [3]. This limitation of

polling range is based on the information acquired from the

pre—-analysis of transactions.

(1)
If one takes into consideration possible failures of nodes or
communication lines, this time may become unbounded.



(2)

(3)

24
Semi-deterministic approach

In a semi-deterministic approach, a monitor schedules
each access immediately as far as it is assigned a greater
timestamp than all accesses to the same entity that were
already performed. On the other hand, if there exist some
accesses that are assigned greater timestamps and already
committed , this outdated access is rejected. This approach
was proposed by Reed[25]. However, it is also inappropriate
in the environment where multiple uncommitted versions are
permitged to exist since if requests for accesses by two
different transactions are received in the reverse order at
two different nodes, then both transactiéns are eventually

rejected.
Non-deterministic approach

In a non-deterministic approach, a monitor schedules
each access immediately as far as it is assigned a greater
timestamp than all accesses to the same entity that were
already performed. If there exist some accesses that are
assigned greater timeétamps and already performed but not yet
committed, then transactions that performed these accesses
are backed out , and after that the temporally outdated
access is performed. On the other hand, if there exist some
accesses that are assigned greater timesfamps and already

committed, then the outdated access is rejected.
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This paper proposed a non-deterministic afproach because of
its simplicity and its low overhead in normal situations. (1)
In addition, the introduction of the concept of multiple
uncommitted versions makes a non-deterministic approach more
attractive because:

1) the backout algorithm is very simple and clean, and

2) if an outdated access is read-only, no transaction has to

be backed out.

These points will be fully discussed in a later section.

Management of Uncommitted Versions

Whenever each transaction tries to access a given entity, a
new version of that entity is created and the access is performed
to this version. (2) Each version is preserved until its

immediately successor is committed.

It is assumed that each entity is represented in the storage
in the way shown in Figure l. An entry of a map is associated
with each entity and contains the address of the descriptor of
the entity. Each descriptor entry consists of the following

fields: v#, acc, s, addr. The v# field contains the version

(1)

"normal” means that sequence anomaly does not occur frequently
and access trafic to each entity moderately low so that each
entity has at most a few version.

(2)

Note that a new version is not necessarily created at every
action. Also note that a new version is ( at least virtually )
created even at a read-only access in order to prevent dirty
read.
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number, which is equall to the timestamp of the transaction that
created this version ( by an access request ). The acc field
indicates whether the access was read-only or update. The s field
indicates the current state of this version which takes one of
the following values:
1) dirty; already read , but not yet written ( meaningless in
the case of read-only access )
2) dependent; already accessed, but not yet prepared for
commitment
3) prepared; prepared for commitment
4) committed; already committed
5) discarded; already discarded because of failures, sequence
anomalies etc.
The addr field contains the address of the storage cell which
contains this version. (1) Entries of a descriptor are sorted in

the timestamp order.

A transaction can access each entity before preceding
transactions that accessed the same entity commit their accesses.
The only constraint on concurrency is that accesses to the same

entity must be serialized in the timestamp order.

When a readu action is invoked, the monitor examines whether
this action is the latest one or not by comparing the timestamp

ts assigned to it with the version number of the current version

(1)
If the acc field is "read-only", this version shares the storage
cell with the previous version.
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of the entity. If it is not the latest one, the monitor discards
the versions whose version numbers are greater than ts. (1)

After that, it creates a new current version whose version
number(v#), state(s), and access mode(acc) are "ts", "dirty",
and "update" . Then it returns the content of the immediate
predecessor. If it is the latest one » the monitor examines the
state of the current version first. If the state is "direy" ,
creation of a new version is deferred until it becomes
"dependent". (2) Otherwise, the monitor creates a new version
and returns the content of the predecessor. Processing of a readr
is similar to that of readu except that:

1) even if the action is not the latest one , it 1is not
necessary to discard the versions which have greater
version numbers. Instead, it is sufficient to insert a
newly created, but outdated version immediately before
these versions.

2) the state and the access mode are set to "dependent" and

"read-only" respectively.

When a write action is invoked, the monitor acquires a free
storage cell for a new version and writes the content of the

buffer into it, and change the state to "dependent" 1if the

(1)
Of course, 1f it is older than already committed actions, then it
is rejected..

(2)

It is possible to create a new version and permit an access
ilmmediately even if the state of the current version is "dircy".
However this kind of concurrency proves fruitless since all but
one are eventually undone because of sequence anomalies.
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current state is not "discarded". Otherwise, it deletes the
current invalid version and returns as such. If other data
tlanagement processes are waiting for its completion, then the
monitor wakes up the oldest one. Each version is deleted when it

and a newer version are committed.

Commitment of Transactions

The central principle of the commit protocol proposed in

this paper is that no transaction can commit its accesses until

the states of all previous versions of these entities become "

committed " . The commit protocol proposed here is basically a
two-phase commit protocol, but it is considerably different from
others[10][17][25] because it must co-operate with the coancept of

multiple uncommitted versions.

In the first phase , a transaction management process sends
prepare messages to data management subsystems to confirm that
versions it accessed are eligible to be committed. When the

monitor receives the request, it :

1) changes the state of the designated version to " prepared

" and returns as such if the immediately previous version
i3 already committed

2) defers the data management process until the state of the

" committed "

immediately previous version is changed to
or "discarded" if it is not yet committed
3) returns as "discarded" and delete the version if it is

"discarded".
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If all return messages are ''prepared", then the second phase
begines. Otherwise it aborts the transaction.
In the second phase , commitment must be completed no matter
what happens. The transaction management process sends commit
messages to data management subsystems to complete commitment.
This is done by executing the set of actions saved in the coumit
cache. When the monitor receives the request, it :
1) changes the state of the designated version to
"committed",

2) deletes the older committed version,

3) if a data management process is waiting for this version
being committed, wakes it up

Sending a commit message is repeated until it is
successfully processed. When the transaction management process
confirms that all commit messages were successfully processed,

the whole commitment process is completed.

Cascading of Backout

Backout of a transaction occurs either when it is aborted
because of failures or when it is involved in a sequence anomaly.
(1) It is also backed out when transactions on which it depends
are backed out. Note that deleting a read-only version from the
chain of the versions does not affect the other transactions. The
outline of the cascading algorithm is as follows.

Suppose a transaction that is backed out to be T.

(1)

See Non-deterministic Schedule of Tranmsactions in this section.
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1) The transaction management process executing T sends undo
messages to all data management subsystems that maintain
valid ( i.e. not discarded ) versions it accessed.This 1is
done by executing the set of actions saved 1in the backout
cache.

2) Each monitor deletes the version accessed by T . If it is
an update version, it changes the states of all newer
versions ( if any ) to "discarded".

3) When a write or a prepare action is later invoked on one
of these discarded versions, the monitor deletes it and
returns as "discarded".

4) Each transaction management process that received a return
message " discarded " must also be backed out by following

the above procedures 1) 2) and 3).
5. CONCLUSION

The main goal of this paper is to develop a set of schemes
that realize highly concurrent as well as reliable ( especially
in terms of crash resistance ) execution of transactions in a
distributed database system. This goal was achieved by a
combination of several new schemes, i.e. a consistent schedule of
transactions based on timestamps, multiple uncommitted versions
and a backout/commit cache. The consistent schedule based on
timestamps relaxes the two-phase lock constraint (7] imposed on
most database systems. And the multiple uncommitted versions
coupled with the backout/commit cache relax the more serious

constraint that " no transaction can access any entity until all
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previous transactions‘that accessed the entity are completed ",
which is also imposed on all known database systems. A memory
overhead induced by these new schemes may be sufficiently low
since, at any point of time, each of a vast majority of entities
i1s expected to have only one version. A processing overhead may
also be acceptable since, in a normal situation where sequence
anomaly does not occur frequently, the overhead is almost

comparable to one induced by careful replacement.

The secondary goal is to explore a method of building a
distributed database system that achieve the above goal as a
multi-level system. This paper indicated the necessity of using
different schemes for concurrency control and recovery at
different levels. In addition, this idea was actually applied to

the implementation of the distributed updating algorithm.
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Appendix.A Language Constructs

Since no language developed so far has constructs that
sufficiently support distributed computation and recovery,
it was necessary to devise them. A Concurrent Pascal([20]
was adopted as a base language, with three kinds of new

constructs added.
(1) Exception handling

Constructs similar to those that were proposed by Liskov et
al[l18] were added for exception handling. Procedures,

processes, monitors and classes have headings that contain
the information about the ways in which they may terminate.

For example, procedure p has the following heading.
procedure p(args) signals(conditions);

The syntax of the signal construct used to raise an exception

is:
signal condition(args);

An exception handler is placed by means of except construct

as follows.

statement except
when condition_l(args): statement_l;

when condition_2(args): statement_2;




(2)
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end;

In addition, a reserved condition name others is used to

handle " all remaining exceptions ".

Recovery

Several language constructs are added to support
recovery. The recovery scheme using a backout/commit cache
was bullt into the language because it is believed to be a
considerably general scheme. The cache construct is used to

save the action into the designated cache. The syntax is:
cache action(args) into cache_name;

where cache-name must be either commit-cache or

backout-cache. The case action construct is used to execute

the actions cached in the backout/commit cache. The syntax is

case action in cache-name of

action_l(args): do statement l;

action 2(args): do statement_2;

end;

(3) Message passing



39

The new language constructs that handle message passing
between processes ( over a network ) are similar to those of

Liskov[30] or Feldman([3l]. The syntax of the send construct

is:

send action(args) to recipient timeout limit
response _l: do statement_l;

response_2: do statement_2;

timeout: do statement_n

end;

The case action construct and the reply construct are used to

receive a message and to send a reply message, respectively,

whose syntax is:

case action in message of

action_l (args): do statement_l;

action_2(args): do statement_2;

end;
and
reply response(args) to recipient;

The recipient designated in send or reply is usually a

process name, but it can be a name of a process set, in which
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case the message 1s received by any member of the set.

Appendix.B Detailed Algorithms

Detailed algorithms for concurrent and reliable updates of a
distributed database are presented here. Several assumptions are
made in order to make our algorithms simple. First, the disk
storage management issues were ommitted. Second,it is assumed
that all descriptors are of the same fixed size, although this
results in low space efficiency. Third, it is assumed that each

node provides virtual memory facilities.

Fig.B-1 and Fig.B-2 show the detailed algorithms of the data
management subsystem and the transaction management subsystem,

respectively.
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Fig. B-1 Data Management Subsystem

type directory = array([l..file_length] of descriptor_address;
type descriptor_address = integer;

type descriptor = record
length : integer;
list : array[l..max] of version _descriptor
end;

type version_descriptor = record
vi# : integer;
acc : (read_only, update);
s : (dirty, dependent, prepared,
discarded, committed)
addr : integer
end;

type ordered_queue = class(max_length : integer)

signals(failure);

% queue elements are sorted in the order of version numbers %

function entry arrival(version number : integer)
returns(integer) signals(failure);

% returns the index of the next queue element in which arrival can take
place %

function entry departure returns(integer) signals(failure);

% returns the index of the next queue element from which departure can
take place %

function entry empty returns(boolean) signals(failure);

% defines whether the queue is empty %

begin
% initialization %

end;
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type independent_queue = class(max_length : integer)
signals(failure);

% defines a set of independent single queues %

function entry arrival(version_pumber ¢ integer)
returns(integer) signals(failure);

% returns the index of a free queue element, in which arrival takes place
%

function entry departure(version_pumber ¢ integer)
returns(integer) signals(failure);

%4 returns the index of the queue element which has the version_number ,
and from which departure takes place ¥

function entry empty(version_number : integer)
returns(boolean) signals(failure);

% defines whether the queue element which has the version _number exists %
begin

% initialization %
end; \

type process_queue = array[l..max] of queue;
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type r_disk = monitor(unit : disk) signals(failure);
% defines a recoverable disk from a non-recoverable disk type
object (that is provided by the underlying operating system)
by use of backout/commit cache ¥%

procedure entry create&set(var addr : integer; block : univ page

signals(failure);

begin

cache unit.delete(addr) into backout-cache;
unit.create&set(addr, block);

end
except when others : signal failure;

procedure entry write(addr : integer; block : univ page)
signals(failure);

begin

unit.read(addr, oldblock);
cache unit.write(addr, oldblock) into backout-cache;
unit.write(addr,block);

end
except when others : signal failure end;

procedure entry read(addr : integer; var clock : univ page)

signals(failure);

procedure entry delete(addr : integer)

signals(failure);

begin
% initialization %
end;
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type entity = monitor(index : integer) signals(failure);

var map : directory;'des : descriptor; new : version descriptor;
ordered : ordered queue; independent : independent_queue;
access_queue, commit_queue : process_queue; r_unit : r_disk;

function older(v_no : integer) returns(integer)signals(failure);

% returns the descriptor index whose version number is closest to and older
than v_no, or returns "0" if not found%

function equal(v_no : integer) returns(integer) signals(failure);

% returns the descriptor index whose version number is equal to v_no, or
returns "0" is not found%

function newer(v_no : integer) returns(integer) signals(failure);

% returns the descriptor index whose version number is closest to and newer
than v_no, or returns "0" if not found%

function current returns(integer) signals(failure);

% returns the current descriptor index %

procedure insert(i : integer; new_entry : version_descriptor)
signals(failure);
% inserts the new _entry between the (i-1)th entry and the (i)th entry of the
descriptor %

procedure delete(i : integer) signals(failure);
% delete the (i)th entry from the descriptor %
procedure commit action;

4 commits the logical action on the database entity,
i.e. executes the actions cached in the commit cache¥%

var end of cache : boolean; ...

begin

while not end of cache do
begin

case action in commit-cache of
continue(q : queue : do continue(q);
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end
except when others : commit_action end;

procedure backout action;

% backs out the logical action on the database entity,
i.e. executes the actions cached in the backout cache?

begin

while not end_of cache do
egin

Lk

case action in backout-cache of
x.create&sgf(ggg y ¢ integer; z : univ page): do
X.create&set(y, 2z);
x.write(y : integer; z : univ page): do
x.write(y, 2z);

end;

end;

end
except when others : backout_action end;

procedure discard(v_no : integer) signals(failure);

% discards all versions whose version numbers are greater than
or equal to v_no %

var i ¢ integer;

begin
iz= 13
repeat
if des.list[i]).s<>discarded then

begin
with des.list[i] do
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begin
if acc=update then r _unit.delete(addr);
1f (s-dirty)and(not ordered. empty) then
cache
continue(access_queue[ordered.departure])
into commit-cache
else if not independent.empty(v#) then
" cache
continue(commit_queue [independent.departure(v#)])
into commit-cache;
s := discarded
end
end;
it=1i+1;
until (des.list[i].v#<v_po)ggg(des.1ist[i].s<>discarded);
r unit.write(map[index] ,des)
end
except when others : signal failure end;

procedure entry readu(timestamp : integer; var block : univ page)
signals(obsolete, congestion, failure);
% reads the value of the immediately preceding version of the designated
entity and creates a new version used for an update access %

var 1l,m : integer;
begin if des.length=max then signal congestion;
1:= older(timestamp),
m := newer(timestamp);
if (1=0) or ((m<>0)and(des.list[m].s = prepared))
then signal obsolete;
if des.list[1l] .s=dirty then
——begin
delay(access_queue[ordered.arrival (timestamp)]);
1 := older(timestamp)

end;
if 1<>current then discard(1l); *]1
with new do
begin

v# := timestamp;

acc := update; *2

s := dirty; *3

addr := des.list[1l].addr

end;

insert(l, new);

r unit.read(des.list[1].addr, block);

r unit.write(map[index) ,des);

*4

commit_action
end
EQEeEt when others : begin backout-action; signal failure end
end;
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procedure entry readr(timestamp : integer; var block : univ page)
signals(obsolete, congestion, failure);
% used for a read_only access.

Same as readu except that;

*] «==> null

*2 --=> acc := read_only;

*3 «-~> g := dependent;

*4 ---> if (l=current)and(not ordered.empty) then
cache '
continue (access_queue[ordered.departure])

into commit-cache; %

procedure entry write(timestamp : integer; block : univ page)
signals(discarded, failure);

% updates the version created by the associated readu action %

<

ar k : integer;

begin

k := equal(timestamp);
if des.list[k].s=discarded then
begin
delete(k);

r unit.write(map[index], des);
signal discarded;
commit_action
end;
r unit.creat&set(des.list[k].addr, block);
des.list[k].s := dependent;
r_unit.write(map[index] ,des);
if not ordered.empty then
cache
continue(access_queue[ordered.departure])
into commit-cache;
commit_action
end

except when others : begin backout-action; signal failure end
end;

procedure entry prepare(timestamp : integer)
signals(discarded, failure);

% confirms that the designated version is eligible to be committed %

var k, 1 := integer;
begin
k := equal(timestamp);
1l := older(timestamp);
while (des.list[l].s<>committed)ggg(des.list[k].s<>discarded)
do

begin

F
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delay(commit_gueue[independent.arrival(timestamp)]);

k := equal(timestamp);
1 := older(timestamp)
end;
if des.list[k].s=discarded then
begin

delete(k);
r_unit.write(map[index], des);
signal discarded;
commit action

end

else
begin
des.list[k].s := prepared;
r unit.write(map[index], des)

end;
end
except when others : begin backout_action; signal failure end
end;

procedure entry commit(timestamp : integer) signals(failure);

% discards the previous version and makes the immediately subsequent
version (if any) eligible for commitment %

var k, 1, m, nts : integer;
begin
k := equal (timestamp);
1 := older(timestamp);
if 1 = 0 then commit_action;
des.list[k].s := committed;
if des.list[k}.acc=update then r_unit.delete(des.list[1] .addr);
delete(l);
r unit.write(map[index], des);
if k<>current then
begin
m := newer(timestamp);
nts := des,list[m].v#;
if not independent.empty(nts) then
cache
continue(commit_queue[independent.departure(nts)])
into commit-cache
end;
commit action

end

except when others : begin backout action; signal failure end
__5_2_4____ begiln = Signal end
end;

procedure entry undo(timestamp : integer) signals(discarded, failure);
% discards the designated version and all subsequent versions that depend on
this version %
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var k, 1, m, nts : integer;

= older(timestamp);

= equal(timestamp);

f k =0 then commit_action;
des.list[k].s=discarded then
begin

delete(k);
unit.write(map{index] ,des);
signal discarded;

commit _action

end;

if des.list[k].acc=update then

begin
if k<>current then
——begin

discard(k);
r_unit.delete(des.list[k].addr)
end
else
begin
if des.list[k].s=dirty then
begin
if not ordered.empty then
cache
continue(access_queue[ordered.departure])
into commit-cache
end
else r_unit.delete(des.list[k].addr)
end
end

else

begin
if k<>current then
begin
m := newer(timestamp);
nts := des.list[m].v#;
if (des.list[l].s=committed)and(not independent.empty(nts)) then
cache
continue(commit_queue[independent.departure(nts)])
into commit=cache
end
end;
delete(k);
r unit.write(map[index], des);
commit_action
end

except when others : begin backout_action; signal failure end
end;
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% initialization of monitor %

begin
des.length := 1;
with des.list[1] do

begin
v = 0;
acc := update;
s := committed;
r_unit.create&set(addr,nill)
end;

r_unit.create&set(map([index], des);
commit_action
end

except when others ; begin backout_action; signal failure end
end;
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type data_management_process = process;

var block : univ page; . . . ;
begin
cycle
case action in message of
readu(x : entity; timestamp : integer) : do
begin
x.readu(timestamp, block)
except
when obsolete : reply obsolete;
when congestion : reply congestion;
when failure : reply failure
end;
reply normal (block)
end
readr(x : entity; timestamp : integer)
begin

: do

end

end;

end;
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Fig.B-2 Transaction Management Subsystem

type t:ransaction__management__process = process;

var item : entity; inbuffer, outbuffer : univ page;
data_manager : set of data_management_process;
ts, liml, 1lim2, 1im3, lim4 :integer; . . « ;

procedure commit_transaction;

% commits the transaction, i.e. executes the actions cached in
the commit cache %

var end_of_cache : boolean; ...

begin

while not end_of_cache do
begin
case action in commit-cache
send commit(x : integer)
send commit(x) to y;

IS 1S
<
[~
o

end
except when others: commit_transaction end;

procedure backout_transaction;

% backs out the transaction, i.e. executes the actions cached in
the backout cache %

var end_of_cache : boolean; ...

begin

while not end_of_cache do
begin
case action in backout-cache of
send undo(x : integer) to y : do
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send undo(x) to y;

[1]
[=]

E

]
=
o,

E

end
except when others: backout_transaction end;

begin
cycle

ts != new timestamp;
cache
send undo(ts) to data_manager
into backout-cache;
cache
send commit(ts) to data_manager
into commit-cache;
send readu(item, ts) to data_manager timeout 1iml
normal (imput: univ page): do null;
obsolete: do begin
backout_transaction;
restart_transaction
end;
congestion: do begin
walt_for_a while;
retry_sending
end;
failure, timeout: do backout_transaction;

send write(item, ts, output) to data_manager timeout 1lim2
send prepare(item, ts) to data manager timeout 1im3
commit_transaction
end
end;





