M.I.T. LABORATORY FOR COMPUTER SCIENCE February 21, 1978

Computer Systems Research Division Request for Comments No. 168

DISTRIBUTED SYSTEMS: MODELING AND PERFORMANCE EVALUATION
by Liba Svobodova

In the recent past I have been asked several times about the research
possibilities in the area of modeling and performance evaluation of
distributed systems, and in particular, of distributed data bases. Thus, I
thought it might be worthwhile to have an answer to this question summar ized
in the form of a working paper for the benefit of other interested parties.

The work on modeling and performance evaluation in distributed systems
can be divided into several categories. I will exclude some of these
categories right from the beginning. One such category is performance
evaluation of low level protocols, for example, evaluation of the ethernet or
the ringnet, or even protocols such as TCP and the question of routing and
capacity selection in store-and-forward networks. The second area is so
called load sharing where jobs that arrive at a specific computer system may
be forwarded to another node because the receiving node is temporarily
overloaded. In fact, I will concentrate primarily on the problem of
distributed data bases.

From the performance evaluation point of view, probably the oldest and
the most explored area of distributed systems is the problem of file

allocation [AKOK77, CASE72, CHU69, LEVI75). The models used in this area can

This note is an informal working paper of the M.I.T. Laboratory for Computer
Science, Computer Systems Research Division. It should not be reproduced
without the authors’s permission, and it should not be cited in other
publications.




be classified as optimization models where the problem is to minimize cost or
response time, given the cost of storage at individual nodes, the cost of
communication and the pattern of accessing individual files. The newer models
takes into consideration duplication of individual files. However, these
models in general are not concerned with the problem of update where more than
one copy of a file exists. As we know from the research dealing with the
problem of a multiple-copy update in distributed systems, the update
algorithms can be rather complex and may cause a significant overhead. The
models for optimal allocation of files should take this into consideration.
However, even without this consideration, such optimization models are quite
complicated and often unsolvable for a general situation. An interesting
contribution in this area is a set of memos by Allen Luniewski [LUNI77,
LUNI78] that explored the advantages of a broadcast network. A broadcast
network not just makes tue solution simpler, but the solution can change <
dynamically, that is, the network can decide dynamically as to which files
should be replicated and where they should be located. However, the
multiple-copy update is modeled only in a very simple manner.

As already alluded, the problem of multiple copies in a distributed
system needs thorough performance analysis. Some of the interesting
algorithms turn out to be quite impractical when the performance is
considered, especially when a realistic view of the real world is taken where
individual nodes or individual links may fail. Very little work has been done
in this area. Individual authors of different algorithms for consistent
update of multiple copies in a distributed system specify performance of their
algorithms in terms of the number of messages that have to be exchanged.
However, the number of messages may be a very misleading measure if the amount

of processing that has to be done in individual nodes and the amount of -’



7~ waiting for the information needed to make a decision is significant.

Probably the most comprehensive analysis of this problem has been done by
Hector Garcia-Molina [GARC78A]. 1In this particular piece of research, Garcia
simulated a centralized update algorithm and compared it with Thomas’
algorithm which is completely distributed. It turned out that the centralized
algorithm was always better than the distributed algorithm in the situation
without failures. The centralized algorithm can be made robust by using a
modified two-phase commit protocol that uses a majority vote in deciding
whether an operation should be committed [GARC78B]. Since failures in a
distributed system should be rare, it is important that the chosen algorithm
performs as efficiently as possible in a nonfailure situation; when a failure
does occur, the algorithm has to be robust enough to recovery from it, but the
time may not be as critical as for normal operation. However, the degree of
robustness afforded by different schemes is even harder to assess than their
normal performance.

Probably the most important area is the one that deals with the problem
of partitioning of computations énd data bases in a distributed system.
Algorithms have been proposed for dealing with a distributed update, that is,
an update where different pieces of information that have to be changed as
part of an atomic operation reside at different nodes in a computer network.
Of course, if the number of nodes that have to be involved in an atomic update
is large, the cost of such an update will be significantly higher than if the
udpate can concentrate on one or just a small collection of nodes. On the
other hand, distribution of data and computing power can greatly reduce
response time for strictly local operations. Also, paritioning is an
important means of confining errors, and achieving the goal of partial

operability, where the system is capable of carrying on at least a subset of



the normally provided services in spite of various failures within the system
[MONT78]). Thus, this is one example where proper partitioning will play an
fmportant role, but where the tradeoffs are far from obvious., Another example
of a partitioning problem is the problem of the so called distributed query.
It may be necessary to compare, record by record, two or more files that
reside in different nodes. In such a situation it may be important in what
order the query is processed, because the amount of information that will have
to be transferred between nodes may vary significantly. Some work in this
area has been done at CCA in connection with SDD-1 [REEV78, WONG77], by the
INGRESS people (UC Berkeley) and by the System R people (IBM San Jose Research
Laboratory).

The basic problem with distributed processing is that it may be
impossible to have, at any time, a complete information about the global state
of the system. Thus, individual nodes may need to process whatever requests <
they get with only an estimate of what the rest of the system is doing. A
manifestation of this problem can be found on many different levels, starting
with the "two generals" problem in the lowest communication protocols. In
addition to this problem of reaching a mutual agreement when the only possible
communication is over unreliable channels, or, better, even if failures are
not a problem, the cost of maintaining complete and always the most current
information about the global state of some application may be prohibitive. 1In
many cases, it may be possible (and perhaps necessary) to take advantage of
the semantics of the particular application, that is, to design algorithms, at
the application level, that never require a consistent snapshot of the global
state of the application. Victor Lesser at the University of Massachusetts
has been working on this problem in the context of AI-like problem solving

systems [LESS77]. But these new algorithms designed to deal with the problem -’



of uncertainty about the global state of the system need to be evaluated and
also compared with completely centralized algorithms for situations where
centralized processing is a viable solution.

One of the most interesting and also the most difficult aspects of
modeling and performance evaluation efforts is the evaluation of efficiency vs
reliability trade-offs. A gross example of such a trade-off is how many
copies of individual files should be supported, and more subtle problems are
what algorithm should be used for updating these copies. I discussed the
difference between a centralized, that is, master-backup copy arrangement,and
a completely distributed algorithm where any copy can be updated in the DSG
progress report [DSG78]. However, the problem is more subtle. It spans the
communication protocols starting from the very low ones up to the time-out
conventions that can be specified by the designer of an application. Although
some modeling can be helpful in such a total system evaluation effort,
experimentation with a prototype system is undoﬁbtedly the required path.

To summarize, understanding the performance possibilities and tradeoffs
of distributed systems is very important, but I don’t believe that queuing
theory will be very helpful. Because of the complexity of the tradeoffs
involved, the first and a very important step is to get a clearer
understanding of the requirements. Once the requirements are specified, the

optimal solution probably is not the one that gives the best performance, but

the simplest solution that satisfies the requirements.



REFERENCES:

AKOK77

CASE72

CHU69

DSG78

GARC78A

GARC73B

LESS77

LEVL75

LUNI77

LUNI78

MONT78

REEV78

Akoka, J., Chen, P., "Optimization of Distributed Database Systems and
Computer Networks," M.I.T. Sloan School of Management, WP916-77, March
1977.

Casey, R.G., "Allocation of Copies of a File in an Information
Network," Proc. of AFIPS SJCC 1972, pp. 617-625.

Chu, W.W., "Optimal File Allocation in a Multicomputer Information
Center,”" IEEE Transactions on Computers, Vol. C-18, No. 10, October
1969, pp. 885-889.

Clark, D.D., et al., "Semantics of Distributed Computing: Progress
Report of the Distributed Systems Group," M.I.T., Laboratory for
Computer Science, September 20, 1978.

Garcia-Molina, H., "Performance Comparison of Update Algorithms for
Distributed Databases,”" Stanford University, Digital Systems
Laboratory, Technical Note No. 143, June 1978.

Garcia Molina, H., "Performance Comparison of Update Algorithms for
Distributed Databases: Crash Recovery in the Centralized Locking
Algorithm," Stanford University, Digital Systems Laboratory, Progress
Report No. 7, November 1978.

Lesser, V.R., "The Application of Artificial Intelligence Techniques
To Cooperative Distributed Processing," National Science Foundation
Proposal, 1977.

Levin, K.D., Morgan, H.L., "Optimizing Distributed Databases: A
Framework for Research,'" Proc. of AFIPS NCC, 1975, pp. 473-478.

Luniewski, A.W., "File Allocation in a Distributed System," M.IL.T.
Laboratory for Computer Science, Computer Systems Research Division,
Request for Comments No. 152, December 19, 1977.

Luniewski, A.W., "Some Results on File Allocation in a Local Network,"
M.I.T. Laboratory for Computer Science, Computer Systems Research
Division, Request for Comments No. 162, March 22, 1978.

Montgomery, W.A., "Robust Concurrency Control for a Distributed
Information System," M.I.T. Department of Electrical Engineering and
Computer Science, PhD Thesis, November 1978.

Reeve, C.L., Wong, E., Rothnie J.B., "Query Optimization Algorithm for
SDD-1: A System for Distributed Databases," Computer Corporation of
America, January 1978.

it
=



-
e

WONG77

Wong, E., "Retrieving Dispersed Data from SDD-l1: A System for
Distributed Database," Proc. of Second Berkeley Workshop on

Distributed Data Management and Computer Networks, Berkeley,
California, May 1977, pp. 7?





