M.LT. Laboratory for Computer Science March 28, 1979

Computer Systems Research Division Request for Comments No. 169

The Architecture of an Object Based Personal Computer

Allen W. Luniewski

Attached is a copy of my recently accepted doctoral thesis proposal.

This note is an informal working paper of the M.1.T. Laboratory for Computer Science, Computer
Systems Research Division. It should not be reproduced without the author’s permission, and it
should not be cited in other publications.







Massachusetts Institute of Technology
Cambridge, Massachusetts
Proposal for Thesis Research in Partial Fulfillment
of the Requirements for the Degree of
Doctor of Philosophy

Title: The Architecture of an Object Based Personal Computer

Submitted by: Allen W. Luniewski Signature of Author
350 Engamore Lane, #205
Norwood, Massachusetts
02062

Date of Submission: March 26, 1979

Brief Statement of the Problem

This thesis will explore the problem of designing the architecture of a personal computer
that directly supports the notions of data abstraction and control abstraction, the key notions of
structured programming. Both kinds of abstraction allow the programmer to formulate solutions to
problems in terms of higher level entities, the abstractions, and then later implement these high
level entities in terms of lower level entities. This method of problem solution encourages the
production of correct solutions and the architecture, by encouraging the use of abstractions, thus
helps the programmer produce correct solutions to problems. The goal of the architecture is to
separate the implementation issues of structured programming languages from the higher level
language issues. The thesis will show that high level languages can be easily compiled onto the
architecture. The thesis will also show that efficient implementations of the architecture, without
~concern for the higher level language issues, exist for personal computers. The environment of a
personal computer has been chosen since the present trends of hardware technology indicate a
future trend towards distributed computing and personal computing. The thesis will take

advantage of the "personal” nature of personal computers by either avoiding, or by solving in a
| simple manner, many of the problems that are difficult to solve in the context of a shared general
purpose computer.







In recent years there has been a tremendous interest in the area of structured programming.
This interest has taken many forms including the development of languages that support and
encourage the structured programming methodology. These languages have been implemented on
classical von Neumann computers. I propose to specify the architecture of a new, personal computer
- one that will make the implementation of these structured programming languages easy. The
architecture will encourage and support the use of abstractions, the key notion of structured
programming. It will put the user in an object oriented world; a world in which everything is an
entity provided by some data abstraction, an object, and will not let the user out of that world. It

will be the architecture of a personal computer in order to explore the impact that the personal

computing environment has on such an architecture.

The next two sections will introduce the notions of structured programming and personal

computing. This will be followed by a description of the proposed research problem and a

proposed solution to that problem.

Introduction - Structured Programming

The desire to produce correct, easily maintained programs has been around since the first
days of computers. In recent years computer scientists have investigated ways to make this desire a

reality. This has resulted in the programming methodology known as structured programming.

Although sometimes referred to as "go-to less" programming(7], structured programming is
better regarded as a methodology or philosophy of programming whose general theme is
"abstraction”. The basic idea is to have the programmer think in terms of higher level entities in
order to formulate the solution to a problem instead of thinking only in terms of very low level
entities such as bits and integers. Later these high level entities are implemented in terms of lower
level entities and these in terms of still lower level entities until, finally, a working program in terms

of the lowest level primitives of the language is written. This process has variously been referred to




-2- March 26, 1979

- as top-down design or stepwise refinement[4,6,19). These higher level entities are the abstractions of
Struétured programming. Abstractions come in two basic forms - control abstractions and data

- abstractions.

| Control abstractions are intended to abstract away from the means of control of flow
" provided in most computers, the goto statement, and provide the user with other means of
specifying the flow of control in his program. Some control abstractions have been provided in all
higher level languages including even Fortran. The notion of procedural abstraction, one of the
| most COmhorg forms of control abstraction, is provided by Fortran in the form of subroutines and
functions. These allow the programmer to make use of common, parameterized pieces of code that,
in principle at least, satisfied some input-output specification. The pregrammer may then use that
procedure knowing oniy. its specification (eg. the abstraction that it implements) and not its
implementatioﬁ. The do construct of Fortran is a useful abstraction that allows the programmer to
specify the repetitive execution of a sequence of statements while stepping an integer variable with
each execution of the body of the loop. It is an abstraction in two ways. First, it embodies a
common pattern of code:
<initialize>
loop: <body>

<increment>
if <test> then go to loop

in one language-provided construct. Thus, in this sense, it is an abstraction of a common usage
pattern of more primitive constructs. It also abstracts the notion of a parameterized body of code
tha't‘is executed for sequential values of its parameter. This is an especiilly powerful notion when
used in connection with arrays. It is, however, the only control abstraction provided for use within
program units, all other control amounts to providing a (conditional) transfer instruction.
Subsequent languages have improved upon this situation by adding additional control abstractions
for use within a program unit. Features such as while loops, case statements and fancier looping

constructs were added to make the programmer’s task easier. Recent languages such as CLU[12)



V"

-3- March 26, 1979

and Alphard[20] have provided control abstractions that are closely associated with data
abstractions. These data abstractions are in the form of looping constructs that permit repetitive,
execution of a body of code while assigning new values to a variable of abstract type on each such
execution. Thus the presence of control abstractions in languages is well established and

fundamental to current programming techniques.

Data abstractions are the other kind of abstraciion. They allow the programrﬁer to
formulate solutions to problems in terms of high level entities, data objects, provided by data
abstractions, without worrying, initially at least, about the details of their representation or how
operations on those entities are implemented. Data abstractions have been provided in even the
earliest languages such as Fortran. Whereas the underlying hardware in reality provides only bit

strings, Fortran provides the notion of typed cells in memory.l The user may have integer, real and

. boolean variables and can perform the appropriate operations upon those variables. He does not
.ha_ve"to worry about the details of the implementation of those types. Later languages added new

" types such as character strings, procedure variables and pointers. In addition Fortran allows the

user to group data of the same type into aggregates called arrays. Such aggregates allow the

- grouping of related data in a way that allows easy, indexed access to any piece of that data.

Languages such as Cobol, Algol-W and PLI introduced the notion of structures (also called

records) These allow the programmer to collect related data into one place and name and use the

whole collectlon of data as one entity. For instance, the payroll information for an employee might
be one record in a program instead of a collection of variables that just happen to all be part of
one logical entity - the employee’s payroll information. Still later, languages such as Simula[2],

CLU and Alphard introduced the notion of user defined data abstractions. Whereas in previous

l. The fact that the type mechanism is easily circumvented is not relevant at this point.




-4- March 26, 1979

languages the only data abstractions (or types) provided were those that the language designer
deeme.d necessary, these latter languages allow the user to build his own data abstractions. Thus a
user who is writing a payroll program may have a data abstraction that is a “company-payroll” that
contains entities "payroll-record" instead of thinking in terms of data files and integer and character
variables. Clu and Alphard differ from Simula in that they enforce the implicit specifications of
the data abstractions; that is, they permit the user of a data abstraction to use the entities provided
by that abstraction, the objects, only in the ways defined by that abstraction. Thus we see that the

notion of data abstraction is also deeply rooted in the history of programming languages and has

evolved through the years.

Introduction - Personal Computing

The areas of distributed computing and personal computers are also relevant to this
proposed thesis. In recent years, as the price of hardware has continued to decline, there has been a,
great increase in interest in these areas. The basic idea is to place a large amount of computing
power into a relatively inexpensive computer. This leads to visions of a computer in every office
or, perhaps, a computer on everyone’s'desk. These computers would serve local needs but would
also need to communicate with each other. Such communication would be needed to pz.lss
information from one computer to another in order to mimic the channels of communication present
in the non-computer world. The need for centralized computers would be limited to special
applications such as a centralized file machine or a machine with special capabilities such as an
extremely fast "number crunching” processor. In short, for many applications the era of the shared
general purpose computer seems to be over; the shared general purpose computer is about to be
replaced by collections of personal computers connected by a communication network of some sort

with a small collection of special purpose computers to serve these personal computers in special



-5- March 26, 1979

cases.

For. the purposes of this proposed thesis the most important attribute of personal computers
is their simplicity.- This simplicity is a result of two factors. First, personal computers must be
s.ir'nple in order to keep. their coéf down - c;nly relatively inexpehsive computers are candidates for
personal computers. Second, péfsonal computers seem to be intrinsically simpler than the more
traditional general purpose computer because certain functions of general purpose computers, in
particular protection, resource allocation and accountability, are relatively less important in a

personal computer since the owner of a personal computer is generally its only user.

Distributed processing itself is rel.atively unimportant to this thesis. The major issues in
distributed processing center around when and how computers interact with each other. Such
issues are at a much higher level than the architecture to be designed in this proposed thesis and so
are relevant only in that the architecture to be proposed in this thesis should not impose a

limitation on the ways in which these issues can be addressed.

Proposed Research

To summarize the previous two sections, three notions are crucial to the proposed research.
Data abstractions allow the user to create objects for which only the specification need be known
and not the implementation of the object. Control abstractions allow the user to abstract certain
stylized patterns of specifying the flow of control in programs. These two notions are the pillars of
the area of structured programming. Finally the trend towards personal and distributed computing

must be reckoned with in proposing any new computer architecture.




-6 - March 26, 1979

The proposed research combines these three notions: its goal is to design the architecture of
a new computer - a personal computer that directly supports the notions of data abstractions and
control abstractions. The design will be at the instruction set processor level; that is, it will specify

the interface that an assembly language programmer would see.

The architecture to be specified in this thesis can be interpreted in two general ways. First
it can be taken as the architecture of a new computer. That is, it is assumed that at some point in
time the ideas of this thesis will appear as a computer - a piece of hardware. The other way of
* looking at this thesis is as specifying an intermediate language into which languages such as CLU
and Alphard can be compiled. This point of view leads to treating the architecture as a means of
‘ writ.ing a ma.chine‘indepe‘ndent compiler for these languages. A third, and unifying, way of looking
at the architecture of this thesis is that the architecture is a way of separating the implementation
[issues of ‘high level languages such as CLU and Alphard from the higher level language design

issues.

The implementation of a high level language, when done in terms of this architecture, frees
the language designer aﬁd compiief writer from having to worry about many of the issues normally
associated with sucﬁ tasks, such as stoi*age management, procedure calls and the implementation of
the basic types, since the proposed architecture will be a "nice” environment onto which to compile
the high level languages. Most of the implementation issues should be hidden by the architectural

1

interface.” Thus the architecture serves as an implementation independent intermediate language

for high level language compilers. |

L Not all implementation issues for a particular language, though, are likely to be handled in an
architecture unless the architecture is specifically designed for that language.



-7- March 26, 1979

The implementer of the architecture is presented with a well defined, bounded problem
since the architecture is not open ended. The implementer can choose data representations without
regard to the needs of the high level languages but only with regard to the peculiarities of the
particular machine or hardware base being used. Thus the architecture is suitable for

implementation by interpreting it in software or by actually building a new piece of hardware.

The major result of this thesis will be the demonstration that an architecture exists that
separates implementation issues from high level language design issues. The next section of this
proposal will outline some concrete design goals for the architecture. These goals have been chosen
for twﬁ general reasons. First they specify an architecture that addresses the issues of the previous
section - structured programming and persbnal computers. Secondly the goals have the effect of

specifying an architecture that achieves the separation mentioned in the previous paragraphs.

Design Goals

The architecture to be designed must be suitable for a personal computer due to current
trends towards the use of personal computers and not large, centralized computers. This limits the
complexity allowed in the architecture since an overly complex architecture will not be
‘implementable at reasonable cost and thus would be unsuitable as a personal computer for
écon’omic (but not technicdl) reasons. Therefore this thesis will make an effort to show that the
" features of the architecture are implementable in a fairly simple manner! and thus suitable for a

personal computer. This means that the resulting implementation must be efficient. Storage

I. This does not mean that a cost-benefit analysis will be performed on each feature of the
~architecture. Rather, subjective arguments will be presented that the architecture meets this goal.



-8- March 26, 1979

overhead must be low; the storage used by the implementation“2 must not be an excessive fraction of
memory capacity. The CPU throughput must be reasonable. This means that only a relatively few
cycles of the low level, implementing hardware should be needed to execute an instruction of the
proposed architecture. To put it differently, the cost, in economic terms, of a computation using this
architecture should not significantly differ from the cost of the same computation on more

traditional architectures.

It must be a "structured programming” architecture. That is, it must support and encourage
the use of the primary notions of structured programming - abstractions, both Flata and control
abstractions. Such encouragement is important because it encourages those programming
techniques and practices that lead to correct programs - one of the prime goals of the pfogramming

task.

As part of supporting structured programming the architecture must support data
abstractions - those provided by the architecture as well as user defined data abstractions. There
must be no distinction, to the user of data abstractions, between the use of buik-in data abstractions
and the use of user defined data abstractions; all provide objects of some abstract type with a
specific set of operations on those objects. Such distinctions, if permitted, may lead to giving second

class status to user defined data abstractions and would certainly reduce program generality since a

program that accepts objects of unknown type would have to act differently based upon whether,

the object was of a builtin or user defined type.

2. An implementation may use storage for code of the implementation (especially in the case of an
interpretive implementation) or for bookkeeping purposes (e.g. to remember the type of an object).



-9- March 26, 1979

The data abstractions provided by the hardware must be strongly typed. That is, the
. operations allowed on an object created by a builtin data abstraction are restricted to those supplied
by that abstraction. Moreover, that data abstraction may only operate on objects that it created.
Thls is an .important design goal for at least two reasons. First, this is the definition of data
abstractions; it expresses all of the aftributes that make something a data abstraction - anything less
makes a sham of the notion of typed, architecture supplied objects. Second, it hides the
imﬁlémeniation of the basic types. With this requirement the implementer of the architecture is free
to choose a.ny set of implementations for the basic types that he wants without regard for how the
implementation of one type interacts with another typeb at the architectural level. Such
éthiderations might beAnecessary'lifv strong fyping were not imposed and might make the designer’s

task more difficult.

The architecture must also allow the user to create his own data abstractions. Failure to
allow user defined data abstractions can only stifle the use of data abstractions, whose use is
generally accepted as important to good programming technique, by making their use difficult.
The architectdre must make no artificial constraints on the form of user defined data abstractions.
That is, the architecture must not dictate right from wrong. Rather, it must gently point the way
towards a good programming style1 while at the same time giving the programmer the rope to
hang Jhimself if he so desires. If a designer is to impose restrictions of this sort, he must be very
confident that the banned usage patterns are not useful. In a discipline as young as computer

science, where the set of applications is constantly expanding, such confidence is at best ill

founded.2

1. At least a style that this author feels is "good”.
2. This is not to say that the imposition of restrictions for experimental purposes, to see if the
world does fall apart, is inappropriate.



-10 - March 26, 1979

The architecture must support control abstractions as part of meeting the goals of structured
programming. This means more than just providing a procedure call mechanism - procedures are.
just one example of control abstractions. One way of meeting this goal is to provide a large class of
control abstractions and then hope that they are the right set. I, however, propose to design the
architecture so that the user can build his own control abstractions, control abstractions of arbitrary
form. Of course, some control abstractions will be pfovided by the Qrchitecture itself. Once again,
the architecture must not dictate right from wrong, rather it should only point the way towards
good programming styles. Thus the mechanism that allows control abstractions to be constructed
should encourage "good” or “structured” control abstractions. This implies that this goal should
probably not be met by the simple addition of conditional transfer instructions to the architecture.

In fact the presence of a conditional transfer instruction will have to be carefully motivated if it is

. to appear at all since such an instruction tends to encourage "bad” programming styles[7).

The architecture should address issues normally associated with operating systems. The
major reason for including such issues in the architecture is that the architecture itself can serve as
an operating system; there will be little, if any, need to impose a layer of software between the
programmer ahd the architecture. Mbreover, if such a layer is ever needed this architecture should
tend to make it small and relatively simple. When viewed as the intermediate language for
"com.pi‘lers,' an architecture with this feature will hide operating system peculiarities from the
compiler. Tﬁe important operating system issues that need to be included in the architecture seem
to be protection, processes, the permanent (long term) storage of objects and the allocation of space

and CPU resources.



-11- March 26, 1979

« The architecture must be comprehensive and coherent. It must be a real system and not a
toy system. Even though this architecture may be hidden from users by compilers, care must be
taken to avoid creating an architecture lacking the expressive power needed to easily implement
typical applications. The features must also form some coherent background - they must not look
like a hodge-podge of features that were chosen just because each of them solves some particular
problem that is felt to be important. These, again, are intangible goals and their satisfaction will be

argued subjectively in the thesis.

Although the goal of efficiency has been alluded to previously, it should be stated as an
explicit goal. It must be possible to implement the architecture in a reasonable manner. The
amount of extra storage used by the implementation to keep track of the objects in the system must
not be excessive. The instruction execution speed at the architectural level must be adequate for -
the user to perform his computations. This means that if the architectﬁre is implemented in
software (or microcode) then the computation needed to perform one instruction of the architecture.
must not be excessive. Similarly if the architecture is implemented in hardware (e.g. via digital
logic %md not via some software) the amount and cost of the hardware needed to implement the
architecture must not be excessive. In considering these efficiency issues it must always be kept in

mind that the architecture is doing much more than is done at an architectural level of typical

computers.

Finally, in undertaking a design effort such as this it is important to decide on either a
broad based investigation or an investigation that centers on some small set of issues. The
proposed thesis will be a broad based one. This is really forced by the previous goal of having a
’comprehensive architecture. In particular, if some really difficult problem in designing the

B architecture should come up it will not be unreasonable to choose some solution, incomplete or not



-12 - March 26, 1979

éompletely satisfactory perhaps, and simply point out the limitations of the proposed solution and

go on.

Pl;oposed Solution

Some work has already been done in an attempt to design the architecture and meet the
goals of the previous section. This preliminary solution was presented in another paper(i3). This
section will outline some of the important aspects of the preliminary solwtion as it will form the

basis for the solution presented in the thesis.

The most basic notion is that everything in the architecture is an object - there is no
escaping the object oriented view of the world. Moreover, it is a strongly typed object oriented
view in that only the type mamagerl for a type may manipulate objects of that type. This

mechanism may not be circumvented in any way.2

Everything in the machine is an object including the most basic objects provided by the
architecture. In particular, integers, booleans and characters are objects and are provided by the
architecture. This points out the fact that the architecture must sup;);art very small objects.
Efficient support for such small objects is an important problem that must be addressed in the
thesis. In particular, issues such as space fragmentation (potentially both internal and external), low
CPU overhead for object creation and low overhead (both in space ard m:) for space reclamation

must be addressed.

#i

1. A type manager is the piece of code implementing a data abstraction. In CLU it is called a
cluster while in Alphard it is called a form.
2. Unless of course the data abstraction itself provides a means to do so.



Loy

-13- . March 26, 1979

Associated with every object is its type. The type of an object is the name of the type
manager that provided the object (eg. the type manager that created the object) Whenever an
operation is to be performed on an object, the type manager for that object is called to perform the
operation. Since everything in the system is an object, it follows that the only instruction needed in

the architecture is a cali-type-manager instruction. This works in all cases since everything,

ihcluding procedures, type managers and collections of code are objects and can only be operated on

by the appropriate type manager.

Another notion is that the basic naming mechanism of the processor is a capability one.

That is, objects are named by unforgeable names called capabilities. The only way to refer to an

object is if the user has been given a capability for that object. Capabilities do not contain access

specifications in them, rather a capability gives full access to the object it refers tol Access

restriction is achieved in another manner. Similarly, capabilities do not contain type codes - every

object is marked with its type.

It is necessary for objecté to name other objects. For every object, except procedures that are
being executed, an object refers to another object by containing a capability for that second object.
Thus one object refers to another object by naming it and not by physically containing it. This

allows an object to be shared among many other objects.

For executing procedures the mechanism is different since they have a clear need for a
dynamic naming environment.? Associated with every executing procedure is an environment in
which the names used by the procedure are interpreted. This dynamic environment is needed, at

the least, for parameters and also is useful for containing the names of the objects used by the

l. However, this object may be an indirect object that restricts access to the eventual object
2. Such a need is not as clear for data objects.



-14 - March 26, 1979

particular invocation of the procedure. The environment of an executing procedure is divided into

two parts - the local name space and the global name space.

To refer to objects, a procedure uses a name in its code and specifies that the name is to be
interpreted relative to either the global name space or to the local name space. The name is an
index into the specified name space. The indexed entry in the name space contains a capability for
the object to be referenced. Thus to refer to the object X in figure 1, the currently executing
procedure would use the name <local-name-space, 2> while to refer to the object Y the procedure.
would use the name <global-name-space, 3>. The association between an executing procedure and

local and global name spaces is implicit from the act of calling a procedure and need not be further

specified by the architecture.

—

3
Currently Ins
Executing ns
Procedure g

—

\4

[\)

3

B

| "Figu.re L 'Exémple of a procedure referencing objects.



-15 - March 26, 1979

The local name space contains the names of (capabilities for) the objects local to this
procedure activation - the parameters to this procedure activation, the names of objects that this
particular procedure needs to know about (e.g. subroutines that it needs to call or static data that it

needs to reference) as well as the the names of the objects created by this procedure activation.

The global name space is the global environment for a collection of procedure activations.
It Aeﬁnes the virtual machine that the programs are to run in. It contains the names of global type
managers (eg. the names of the integer and boolean type managers) and the names of globally
known objects (e.g. the name of the boolean objects true and false). It will also contain the names of
whatever objects the user feels need to be globally known (eg. the name of the PLI runtime library).
The intent is that the global name space stays the same for a sequence of procedure calls while a

new local name space is created for each procedure activation.

This brings up the question of how to initialize the local name space of a newly called
procedure. Associated with every procedure is a template local name space that is specified at the
time the procedure is created. At procedure call time a new name space is created, the contents of
the template name space are copied into the newly created name space and then the names of the
parameters are copied into conventional places in the newly created name space. At this point the
procedure begins execution in the environment provided by the current global name space and the

newly created local name space.

A unique feature of the architecture is that type extension and access specification are
provided by the same basic mechanism. The details of this mechanism are inappropriate for this
document, however the basic idea can be presented. In both access specification and type extensi;:m
the idea is to give the referencing object a capability that only allows it to see a particular view of

the referenced object. In the case of type extension the object sees an object of the extended type



*

-16 - March 26, 1979

and .cannot see "inside” of the object to its representation. In the case of access specification the
reférencing object sees an object on which some operations are nigt possible. For instance, if a
bibl_iography is to be given to another object to refer to, that second object should only see the
' Bi'bliography and the operations associated. with bibliographies and not the fact that the
bibliography is actually a collection of characters arranged in @ particular way or some ather more
_esoteric data structure. If this same bibliography is to be given o a program and that program is
only‘to be allowed to look up references in the bibliography and not aliowed to insert new
references in the bibliography, then that program does not see a full fledged bibliography. Rather,
it sees a bibliography on whicﬁ the "add-ref" operation is not permitted. In both cases the object
using the bibliography sees a different view of some underlying object. Thus the common
mechanism provided by the architecture is an cbject-viewer mechanistn. it permits the creator of
the object-viewer to specify the view of the object that is "behing” tie nbject-viewsr (or window)

that those looking through the object-viewer are to see.

The proposed architecture starts to meet the goals outlined in the previous section. It
provides a coherent object oriented view of the world, The propased thesis will continue the design
‘of the architecture along the lines begun in the wark just described in a continuing effort to meet

the goals outlined earlier in this proposal.

®

Uniqueness of the Approach and Related work

This work has its background in three areas - siructured programming, capability based
machines and perscnal computers. In this section I will review some of the relevant literature and

point out the ways in which the proposed research differs from work done by others.



-17- March 26, 1979

The area of structured programming is a rich one. For our purposes it is only necessary td
note that the fundamental ideas in structured programming are those of abstraction and top-down

design.

Wirth[19] is the first writer to have formalized the notion of top-down design. Others
[4,6,8] have discussed the need and form of structured programming. One of the aspects of this
debate has been the undesirability of the go-to statement and the desirability of more structured
control forms such as case statements, conditional loops and iterators. The proposed research is
unique in that it attempts to provide a framework in which it is possible to develop all such control
structures from a small collection of primitives in a manner that is consistent with the notions of

top-down design and structured programming.

Another aspect of structured programming is the notion of data abstraction. Data
. abstractions have been around since the earliest programming languages. Simula, with its class
me;hanism, was the first language to allow the user to build his own data abstractions. It was
- Qgﬁ'cient in that the language provided no mechanism by which the user could build strongly typed
data abstractions - the abstraction rﬁechanism could always be circumvented. CLU, Alphard and
Ehclid[ll) are three recent programming languages that support strongly Eyped data abstractions. I
'hav‘e' little to add to the notion of data abstraction as provided by these three languages. The
architecturé will be unique in that it will directly support the notion of data abstractions - both

builtin and user defined.

The proposed research is similar to these language design efforts in that an environment to
support structured programming is to be developed. It differs in that the architecture of a
computer is to be developed. This means that issues such as protection and the permanent storage

of objects, that can be ignored in language designs for the most part, must be addressed.



-18- March 26, 1979

- Furthermore it is essential that the set of uses of the architecture be as open ended as possible.
This means that the architecture to be developed must provide a more extensible environment than
languages such as the ones cited above. In particular, no aspect of the architecture must prevent
the user of the architecture from building programs that contain features not anticipated by the
architecture. The architecture must not attempt to dictate a programming style, only encourage one.

This is an important and non-trivial difference between the design of a machine architecture and

the design of a language.

Ar;other area that this research is related to is the area of capability based machines since
the proposed architecture is a capability based one. Capabilities were originally proposed in [5]
and further elaborated in [9). The proposed architecture uses capabilities that serve only as unique
names objects and so in that respect differs from other efforts in this area such as Hydra[21],
CAP18]) and CAL-TSS[10), all of which associated type and p}otection with capabilities. In all of
these systems, the most basic object provided was a data segment composed of uninterpreted bits
(essentially). Thus capabilities could name nothing smaller than a segment. This means that data
types such as integers, real numbers and character strings, while supported by the architecture, were
not treated as objects by the hardware - the goodwill of the programmer and compiler enforced
constraints were all that protected them‘ as data abstractions. The proposed research is also unique
in that the notion of object is carried down to the bottom level of the system - everything is an
object. By carrying the notion of object to the very bottom of the system, the small-object problem
is made even more important and difficult to solve. The proliferation of small objects that the
system must keep track of is immense. Lisp systems, see [1,14,17) for instance, have examined the
issue of reclaiming storage when many small objects are present. Bishop[3] has proposed a
méchanism to ease the problem of garbage collecting large amounts of storage containing many

E objects. Permanent storage of objects has not, however, been a major issue. The whole problem of

-



-19 - March 26, 1979

cataloging and keeping track of many small referencable objects is important, yet it has not been
directly addressed in the literature. A preliminary solution to this aspect of the small object
problem, based upon the ideas present in Bishop's thesis in this area, in the context of a computer

system rather than in the context of a language, will be one of the results of this thesis.

There has been some work done in the area of language directed design of computer
architectures. McKeeman[l5] has argued rather forcibly for the need for computer architectures
based upon language considerations. McMahan(i6] in his PhD thesis has designed the architecture
of a machine that is based heavily upon the ideas of Algol-68. This thesis differs from the
previous work in two ways. First it has its language oriented roots in broad language design
principles (eg. lstructured programming) and not a specific language. It also differs in that the
architecture té be designed in this proposed thesis addresses many issues normally associated with

operating systems.

The proposed research will design a personal computer as opposed to a general purpose,
shared computer. Current personal computer efforts have concentrated on providing the user with
a classical von-Neumann computer at a reasonable cost. This research is unique in that an
object-based personal computer is to be developed. Since it is a personal computer, many problems
of building shared computers are avoided. Protection is a much less important issue in a personal
computer since it is only necessary to provide facilities that protect the user from himself and not
from other users. This should result in a much simpler protection mechanism for most uses while
in those rare cases in which the user needs a more sophisticated protection mechanism a more
expensive mechanism is available. The other important issue that can be avoided to a certain
extent in a personal computer is resource allocation. Again, in a personal computer the goal is to

protect the user from himself and not from other users. This should allow some resource allocation,



- 20 - March 26, 1979

to be built into the architecture. In particular, a process mechanism can be provided since
allocation of processor resources in a fair manner is not overly important! The allocation of
storage is also not overly important as the only goals are to provide a facility so that the user can
protect Himself from é runaway program - a program must not be allowed to use excessive amount
~of storage. In both of these last two issues efficiency of CPU usage is an issue. The user is not
ini_terested in a mechanism that results in inordinate CPU overhead. The thesis must address the
. issue of providing a sufficient mechanism at reasonable cost. The combination of these

observations in a personal computer is unique and should produce an interesting design.

In summary this research has its origins in the areas of structured programming and
personal computing. It is unique in the combination of these two areas into one research project.
.The need to provide a very extensible architecture is also unique. The approaches to be taken in

providing protection and resource allocation control are also unique.

Thesis Plan

The thesis will consist of three distinct parts. The first part of the thesis will consist of a
discussion of the actual architecture. This will comprise the major portion of the actual document
since the description of an architecture is fairly difficult and a thorough understanding of the
architecture is essential if the remainder of the thesis is to be understood. This area of the research
is basically complete. Remaining issues center around I/O, control issues (including exception

handling) and storage management.

1. This is not to say that the process mechanism should be so restrictive that the user is unable to
perform scheduling of processes if he should need to.



-21- March 26, 1979

The next two parts of the thesis will show that the architecture actually does separate
~ implementation issues from higher level, language issues. The first aspect of this is showing that
languages such as Clu and Alphard, that encourage the structured programming philosophy, can
easily be implemented using this architecture. It is believed that this can be demonstrated with a

few sample programs that exercise many of the language features. '

Finally the thesis will show that the architecture is implementable. This part of the thesis’
should propose an implementation suitable for a personal computer. In particular a reasonable
implementation of the basic types must be proposed, an efficient (both space and time-wise) space
allocaéion procedure developed and an effective space reclamation procedure (eg. garbage

collection) proposed.

Although little research has been done in these last two areas, the architecture has been
developed with a particular implementation in mind. Thus the completion of these areas should

not be difficult.

The major rémaining work of this thesis should be completed by April 1979. The
-remainder of spring 1979 and the 1979 summer term will be required to write up the results of this
t-héSis. As no implementation of the ideas in this thesis are contemplated as part of the thesis, no
. major amounts of computer resources are anticipated although small amounts may be needed for

experiments concerning some of the ideas in the thesis.



[
| (2}
[3]
[4]
)
(6]
)
&)
(o]

(10]

-

-22- March 26, 1979

References

Baker, H.G. Jr,, "List Processing in Real Time on a Serial Computer”, Communications of the
ACM 21, 4 (April 1978), pp. 280-204,

Birtwistle, G.M., Simula Begin, Auerbach Publishers Inc, Philadelphia, Pa., 1973,

Bishop, P.B, "Computer Systems with a Very Large Address Space and Garbage
Collection,” M.LT. Laboratory for Computer Science report TR-178, May 1977.

Dahl, O], Dijkstra, EW. and Hoare, C.A.R., Structured Programming, Academic Press, Inc.,
New York, New York, 1973,

Dennis, J.B. and Van Hbrn, E.G., "Programming semantics for multiprogrammed
computations,” Communications of the ACM 9, 3 (March 1966), pp. 143-155.

Dijkstra, EW., "A Constructive Approach to the Problem of Program Coirectness". BIT, 8
(1968), pp. 174-186.

Dijkstra, EW., "Go To Statement Considered Harmful", Communications of the ACM 11, 3
(March 1968), pp. 147-148.

Dijkstra, EW., “The Humble Programmer", Communications of the ACM 15, 10 (October
1972), pp.859-866. .

Fabry, RS, "Capability-based addressing,” Communications of the ACM 17, 7 (July 1974), pp.
403-412. '

Lampson, B. and Sturgis, H., "Reflections on an Operating System Design", Communications
of the ACM 19,5 (May 1976), pp. 25i-265.



o
u)

12

(14]

(15)

(i6]

(7]

(18]

o)

(20]

[21]

-23- March 26, 1979

Lampson, B, et. al, "Report on the Programming Language Euclid”, SIGPLAN Notices 12,
2 (February 1977).

- Liskov; BH,, et al, "The CLU Reference Manual," CSG Memo « 161, M.LT. Laboratory for

Computer Science, July, 1978.

Luniewski, Allen W., "AESOP: An Architecture for an Object Based Machine,” MIT

- laboratory for Computer Science, Computer Systems Research Division, Request for

Comments Nr. 165, July 22, 1978.

McCarthy, J., "Recursive Functions of Symbolic Expressions and Their Computation by
Machine", Communications of the ACM 3, 4 (April 1960), pp.184-195.

McKeeman,'W.M., “Language Directed Computer Design", AFIPS Conference Proceedings,
1967 Fall Joint Computer Conference, pp. 413-417.

McMahan, Larry N, "Language Directed Computer Architecture”, PhD Thesis, Rice
University Department of Electrical Engineering, 1975.

Steele, G.L. Jr, "M ultiproceSsing Compactifying Garbage Collection", Communications of the
ACM 18, 9 (September 1975), pp. 495-508.

Walker, R.D.H, "The Structure of a Well Protected Computer,” Ph.D. Dissertation,
University of Cambridge, England, December, 1973,

Wirth, N., "Program Development by Stepwise Refinement”, Communications of the ACM 14,
4 (April 1971), pp. 221-227.

Wulf, W.A, "ALPHARD: Towards a language to support structured programming,”
Carnegie-Mellon University Dept. of Computer Science, April 1974.

Wulf, W, et. al, "HYDRA: The Kernel of a Multiprocessor Operating System”,
Communications of the ACM 17, 6 (June 1974), pp. 337-345.





