v

M.I.T. LABORATORY FOR COMPUTER SCIENCE April 13, 1

Computer Systems Research Division Request for Comments No.

RELIABILITY ISSUES IN DISTRIBUTED INFORMATION PROCESSING SYSTEMS

by Liba Svobodova

This paper was accepted for presentation at the FICS~9 (IEEE Fault

Tolerant Computing Symposium) to be held in Madison, Wisconsin in June 1979.

979

170

This note is an informal working paper of the M.I.T. Laboratory for Computer
Science, Computer Systems Research Division. It should not be reproduced

without the author’s permission and it should not be cited in other
publications.

The goal of this research is to investigate the matter of reliability in
a class of distribgted information processing systems composed of highly
autonomous nodes connected by a communication network with unpredictable
delays. Two classes of issues are discussed: error detection and reporting
in internode communication and replication of resources to enhance
availability. Attention is paid to the problem of performance degradation
that results directly from the application of the mechanisms needed to ensure

reliable operation.

1. Introduction

Reliability is and will be one of the major issues in information
processing systems. This claim is based on two observations. First, the
quantity of information entrusted to a computer system is ever increasing.
Second, the complexity of the operations performed by a computer is also
increasing. More and more organizations and systems are dependent on computer
maintained information and a failure of these computer systems can often be
critical. Thus high reliability is not just a requirement for real-time
systems controlling space vehicles or industrial process failures of which
would endanger human lives.

Reliability of an information processing system is not merely a question
of the hardware components. Software errors, synchronization failures, and
errors of the human users must be anticipated and handled gracefully. The
only way to design a reliable system is to make it "fault-tolerant", or,
robust in face of a large variety of internal failures and misuse.

Distributed systems are often,claimed to be inherently more reliable than
systems based on a large central processor. That is, given that a distributed

system is properly designed, it offers better reliability. This claim is

ﬁ

based on several factors. First, distributed systems by their very nature
provide opportunities for redundancy. Second, error propagation is restricted
by physical separation of processes and resources. And finally, individual
nodes in the distributed system may be less complex than a large central
processor and, as a result, ought to have lower probability of failures.
Basically, distributed systems have a potential for being more reliable than
systems based on a large central processor. However, this potential needs to
be exploited through proper design.

This paper studies the effect of reliability requirements on the design
of distributed information processing systems. In the discussion that
follows, the term "reliability" has a very informal meaning; it can be
described as the degree to which the system satisfies the expectation that at
any point in time the services and resources supported by the system perform
their function correctly and are available to the user.* It 18 difficult to
define quantitative measures of reliability, especially when the reliability
concerns encompass the integrity and completeness of stored information.
Thus, no attempt is made to specify a measure of reliability; rather,
reliability is treated here as a complex problem that penetrates all aspects

and levels of a system design.

2. Distributed Information Processing Systems

In the areas of real time control, distributed systems have long been

viewed as an architecture that enhances reliability. The fault~tolerant

* Randell [17] defines reliability as a measure of success with which the
system conforms to the specification of its behavior. However, the behavior
of a system includes the system’s failures! The system specification ought to
include the specifications of the situations when the system fails to provide
the defined service. Thus, the definition of reliability ought to be restated
to say that it is a measure of success with which the system performs its
intended (normal, useful) function, as described in the specification.

systems have been bullt of processing modules with well defined interfaces,
where either the individual modules would be designed to perform a specific
function [2] or could be engaged to execute any program (or a set of programs)
as the need arises. In the latter category, the assignment of tasks to
modules could be fixed for a specific configuration and modified when the
system has to be reconfigured as a consequence of a failure of one of the
modules or connecting buses [4, 25) or dynamic, where the modules would be
assigned tasks from a central queue, that is, the modules could be treated as
a general pool of processing resources [3, 15]. This paper, however, deals
with a significantly different class of distributed systems, systems where
individual processing modules can be computers that have not only their
private memory, but also their own secondary storage devices and input and
output devices. The relative location of these computer systems, called here
nodes, can vary from being collocated in the same room to beiﬁg several
thousands of miles apart. The nodes are connected by a communication network
that may range from a single multiplexed bus in a local area network [5] to a
complex store~and-forward long haul network such as the ARPANET [19]. Most
importantly, the individual nodes are highly autonomous, to the point that
they may, at the discretion of their owners, discontinue services, restrict
access to their local resources, or even completely disconnect themselves from
the network to do local maintenance or process some sensitive work. These
events may happen when the other nodes in a distributed system least expect
them; in fact, they are very similar to a failure; the requesting node will
have to be able to deal with the possibly harmful effects arising from the
nodes’ autonomy in much the same way as it has to deal with the physical

failures in the network.

¥

The applications running on such distributed systems can be pictured as a
network of intelligent entities, called here agents, communicating by sending
messages that contain commands, data, and responses meaningful at this level
(Figure 1).* An agent is a program that performs a certain task or tasks that
may require cooperation of other agents. Resources, both those defined by the
application and those provided by the system, will be modeled as being
represented by agents. Resources include hardware devices, software tools,
and information. The agents representing resources can be viewed as resource
guardians.** Only the guardian has a direct access to the resource it guards.
Other agents may use various resources only by sending messages to appropriate
guardians requesting specific operations to be performed. The result is an
abstract network, or, rather, several levels of such a network,**% Figure 2
shows two levels of the abstract network and the underlying physical network;
the two levels are the aﬁplication defined agents and the communication agents

that control the physical delivery of messages among the nodes.

* This model has been developed by the Distributed Systems Group at the M.I.T.
Loratory for Computer Science. This group has been working on a design of a
programming system for development, maintenance and control of distributed
applications. The programming system will combine language and facilities

traditionally considered to belong to the operating system [21]. The
programming language will provide abstraction mechanisms, specifically, it

will support data abstractions as it has been done in some experimental
languages (CLU [12], Alphard [25]).

** A guardian is similar to a monitor [10]; however, in addition to providing
synchronization, a guardian agent can be used to provide protection against
unauthorized use and supervise recovery of the resource from faults and
misuse.

*** It is assumed that individual resources do not move dynamically from-node
to node, depending on the degree of demand. Rather, when a specific node is
chosen to be the (new) home of a particular resource, an installation of the
resource has to be explicitely requested using commands provided by the
programming system. This assumption is based on the belief that such
placement decisions will often be based on non-technical factors external to
the system [21]). This assumption also simplifies the reliability mechanisms
that need to be provided in a distributed system.

The discussion of mechanisms pertaining to reliability refers to two
levels, the application level and the system level. System level is all the
mechanisms needed to support the view presented to the application programmer
(that is, the hardware and software run-time support). The level built on the
top of this level using the tools available to the application programmer is
referred to as the application level. To achieve reliable operations from the
application point of view, both the system and the application software have
to be properly designed. For each type of error, it is necessary to decide
where it can be detected and how it should be handled. Some errors are
application dependent and therefore, their detection and handling has to be
delegated to the application level. Some classes of errors, detected within
the system level can be masked, but others have to be forwarded to the
application level. Basically, in the class of system errors, there is a gray
area where a decision has to be made as to whether the system will mask the
errors, or whether the errors will be delegated to the application level. It
may also be possible that an attempt to mask an error fails; thus a decision
has to be made as to how long the system should keep trying to correct the
error, before passing a notification to the application level. The system
must provide means for detecting and correcting or reporting errors arising
from the operation of the hardware and the software that supports the
application programs. However, the system also has to provide suitable
primitives for the application programmer to facilitate handling of the
application specific errors and communication of the system detected errors to
the application programs. It should be pointed out, however, that the more

complex reliability mechanisms are built into a system to support the kind of

or the level of reliability required, the higher the probability that these
mechanisms, and consequently the entire system, will fail. Therefore,

simplicity is considered to be a virtue.

3. Availability and Correctness

Reliability has two aspects that, unfortunately, cannot always be

separated. One aspect is the availability of the resources (including

programs and data) needed to perform a specific task. The other is the
correctness of the available resources; a very important special case is the
integrity of the stored information. Availability has several connotations.
First, it is used to indicate whether a resource is useable, that is, if the
respective agent will execute the operation requested once the request is
brought to its attention (e.g. gets to the head of the queue). Second,
availability may also be used to indicate whether a resource can be used
immediately, or whether there is a contention for the resource (the resource
may be used by somebody else and there may be a queue of requests that precede
the particular request of interest). Third, and this aspect plays an
important role in a distributed system, it may indicate whether a resource is
accessible. A resource may be useable and unused, but the path to it may be
broken. However, it is possible to translate all three aspects into the
problem of how long it is necessary to wait for a resource. A useable
resource may not be immediately available due to contention for the resource,
but also due to long communication delays; if the communication path is
broken, the communication delays may be unusually long, even infinite.
Similarly, 1if a resource is unuseable, the wait time for the resource to
become useable may be very long, possibly infinite. Since in a distributed

system it is not always possible to determine the cause of a long delay, the

system may have to respond to poor performance (due to overload) in the same
or similar way it responds to functional failures of the resources and
communication paths. Thus, in a way, poor performance turns into a failure!

To assure correct operation, the system and the application have to be
prepared to handle errors that originate in the lower levels, in particular,
hardware faults and possible residual bugs in the software that composes both
the system level and the application level. However, the system also has to
be prepared to deal with errors where the source is the user of a resource.
Since the user may be an agent running on another node, these external errors
may be caused by hardware failures or software failures in the user’s node,
but they also may be caused by the fact that the requesting agent either does
not know how to use the requested resource properly or is trying to misuse it
intentionally. Thus, to ensure correct operation of a resource, it is
necessary to ensure both that the operations on that resource are performed
correctly in face of possible failures of the node on which the resource
resides, and also, it is necessary to defend it from possible misuse from
other agents.

As said earlier, the agents can communicate only by sending messages. A
resource can be manipulated only by a single agent designed to be the guardian
of the resource. To protect a resource from misuse, it is necessary to ensure
that indeed no other agents can gain an access to the resource and that all
incoming messages are carefully scrutinized to determine whether the request
is reasonable. Within the agent, it is necessary to provide mechanisms that
vwill protect the resource from being damaged or lost (become inaccessible) due

to errors arising from the faults in the structures that implement the agent.

4. Communication Protocols

Let us return to the network in Figure 2. The communication agents
deliver messages that are just strings of bits. The application agents
exchange messages that represent requests to use a resource guarded by the
receiving agent (requests to perform specific operations on a resource) and
the corresponding replies. These messages may contain (logically) values of
abstract objects meaningful at that level.* The values of these abstract
objects have to be translated (encoded) into a string of bits for delivery to
another node and decoded to the proper abstract objects at the receiving node.

The translated messages may have to be partitioned into packets. The
messages are checksummed, so that transmission errors can be detected. 1In
general, it is very difficult to correct transmission errors at the receiving
node, since transmission errors are bursty (affect not just a single bit, but
several bits). Checksum facilitates detection of errors, where the number of
detectable simultaneous errors is determined by the size of the checksum
field. Correction is performed through retransmission. In general, once a
message has been translated into a string of bits, the communication protocols
should take care of the correct transmission. However, ;he primary
responsibility for checking that a message has been acted on, that is,
ensuring that the agent that sent the message will not wait indefinitely must
rest with the application. In addition, a message may contain a higher-level

error: either a message has not been constructed properly by the application

* An object is an entity that has a unique name and a state (value) that can
be modified by invoking operations defined on the object. The system provides
several basic types of objects (e.g. integers, characters, arrays). Other
types may be defined by choosing a set of lower level objects as a
representation and providing a set of programs that implement the operations
that the user of such an abstract object 1s allowed to invoke; these programs
provide the only access to the representation of the abstract object.

agent (wrong command or wrong data) or the translation from abstract data to
the bit representation has not been done correctly.

One of the most difficult problems in this type of distributed system is
that unless an explicit reply (or an acknowledgement) is recelived, it is
impossible to determine with certainty whether a message sent to an agent at a
different physical node has been received and processed by that agent. The
fact that no response is received from the target agent may have several
different causes:

a) the message did not get to the recipient node because of a bad
connection,

b) the message could not be delivered because the recipient node is down,

¢) the message has not been delivered to.the target agent because the node
failed,

d) the reply has not been generated because the agent failed,

e) the reply has not been generated because the node failed,

f) the reply has not yet been generated because of the contention for the
needed resources at the recipient node, or

g) the reply did not get back because of a bad connection.

Even if it were possible to determine the exact cause, for some of these
situations (namely, d and e) it is in general, impossible to determine how far
the processing of the request in the particular message has progressed.
Unfortunately, it is also impossible to always determine the cause of not
getting a response. Thus, the uncertainty about what happened to the request
is even greater.

The only defense against possibly waiting indefinitely for a response is
to use a timeout mechanism. The sender can specify a time interval after

which it gives up waiting for the response; the timeout mechanism will alert

10

the sender when such a time inter§al already elapsed. The possible reactions
of the sender to a timeout event can be divided into two categories: the
sender decides to give up the attempt to communicate with the particular
agent, or, the sender decides to resubmit the request. Because of the
uncertainty discussed above, it is possible that the first request will
eventually be processed. Thus, in the first case, the request may be
processed in spite of the sender’s decision not to continue and may conflict
with the subsequent actions taken by the sender after the timeout. In the
second case, the same request may be processed twice, possibly leading again
to an inconsistency. Thus, in situations where an inconsistency may arise
from such internode requests, it is necessary to use special (often complex)
protocols [9, 11, 14, 18, 22].%

Figure 3 shows a flow of error notifications for different types of
errors. In the program of a sending agent, it is necessary to provide
handlers for the errors of type A and I. In addition, errors internal to the
agent (arising from the agent’s implementation) must be handled. A possible
syntax for a send command might be:

send request(args) to X timeout time:

replyl(formals) do S1;

reply2(formals) do S2;

* This problem cannot entirely be dismissed if both communicating agents
reside on the same physical node, since each agent may be implemented as a
separate and independent process.

11

failure(formals) do Sfailure;
timeout do Stimeout;
end;
Execution of this statement results in sending a message consisting of a
request and some arguments to agent X. Errors of type A would be reported in

one of the "reply" statements. "Failure" covers various errors that are

detected by the system.

5. Availability of Resources: The Problem of Replicated Data Objects

The problem of the communication protocols discussed above is closely
related to the problem of availability of resources. As discussed earlier,
availability is a broad and confusing subject. Availability can be
interpreted as the delay experienced when accessing a particular resource.
Availability is constrained by two factors: 1) the efficiency of the system,
that is, the actual physical delay and queueing time in the abstract network,
and 2) failures in the abstract network.

From both of these aspects, availlability can be enhanced if several instances
(copies) of a resource are maintained at different physical nodes:

i. coping with failures: 1If some node fails, or if communication with some

node fails, it should be possible for agents at other nodes to continue
their work. That means that the resources provided by the failed (or
inaccessible) node have to be provided by some other node(s) in the
remaining operational network (each operational partition of the
network) .

ii. coping with bottlenecks: Even if the nodes and the communication network

of a distributed system never fail, a single instance of a resource may

12

not provide sufficient availability. A resource may become a bottleneck;

also, the communication delays, especially in a long-haul network, may be

substantial, and it thus may be desirable to have a local instance of the
resource (and, consequently, support multiple copies).

In the systems under consideration, the most important type of resource
is information contained in various (abstract) data objects. Maintaining
multiple copies of data objects that need to be frequently updated represents
a special problem, as discussed below.

It is usually desired that the fact that there exists more than one copy
of a specific resource is invisible to the user. That is, logically, there is
only a single instance of a specific resource. The representation, however,
consists of several copies at different physical nodes. Té present such a
view to the user, the copies must be kept identical. That is, for the case of
mutable objects, if the logical object is modified, all copies have to be
modified. This can be performed in several different ways. Figure 4 shows a
centralized scheme, where one of the copies is designated the master, and the
other copies are backup copies. All requests are always channeled to the
master copy, or, better, to the agent associated with the master copy. If the
master copy is modified, its agent supervises distribution of the changes to
the backup copies. When the master copy becomes unavailable, one of the
backup copies will become the new master. This type of scheme was described
by Alsberg [l]. This scheme, however, increases availability only from the
point of view of failures; the master copy is, of course, still a bottleneck.

. To take a full advantage of the multiple copies, it should be possible to use
any copy for both reads and updates. However, consider the situation depicted
in Figure 5 where two users request to change the same object. If the two

requests are performed simultaneously and independently, after the changes

13

made as a result of these requests have been distributed to the other copies,
some or all of the copies may end up with a wrong value. Thus, such
distributed updates have to be carefully scheduled (synchronized) (6, 20, 23].
However, synchronization in this type of environment represents & substantial
overhead [8]. In additionm, synchronization becomes very complicated due to
possible failures of the nodes and the communication network. Thus, the
attempt to enhance availability through multiple copies may be completely
negated by the delay encountered due to the synchronization problem.

The preceding discussion was presented here to demonstrate both how
reliability and performance are interdependent, and that it is important to
understand clearly the purpose of supporting multiple copies. To cope with
bottlenecks, it may not always be necessary to have completely identical
copies. That is, this problem can be handled by allowing multiple versions of
an object. A mechanism for maintaining multiple versions of objects in such a
way that a consistent version of a set of objects can always be obtained was
developed by Reed [18]. In additionm, Reed’s mechanism solves the problem of
updates and backout in a~distributed system in a most natural way. However,
to prevent loss of information, fhe mosﬁ current version ought to have at
7 least one backup copy. The scheme that combines multiple versions and backup
copies is sketched in Figure 6. The agent associated with the master copy is
responsible for performing all the modifications for concurrent requests.
Basically, each modification request creates a new version of the object.

Fach new version is distributed to the backup agents in a strictly sequential

manner.

14

-/

6. Use of Replication for Recovery

The preceding section discussed the problem of maintaining multiple
copies of mutable data objects. This section presents a scheme that usés
multiple copies of data objects to recover from node failures and user errors.

At each level,* the information processing system supports a set of
operations that from the point of their user ought to be atomic. An atomic
operation is indivisible in the following sense: 1) the result of an atomic
operation performed by one process is not affected by other, concurrent
processes, and 2) such an operation is either carried to its completion,
according to its specification, or, if it is aborted, it leaves the system in
the state it was prior to the invocation of that operation. In the underlying
implementation, such an operation may be composed of many different lower
levél operations (actions). Thus, to make an operation atomic, it is
necessary to ensure that the lower level operations not only are synchronized
properly, but that their effects do not become permanent until it is clear
that the entire operation in question will complete successfully. This can be
handled either by performing the permanent changes dictated by that operation
only upon its completion or by maintaining enough information about these
changes such that they can be undone if the operation cannot complete
normally. At the time the changes become visible outside of the operation
that caused them, the operation is committed.

Much high quality research has been done on the subject of atomic
operations (frequently called transactions or atomic actions) [7, 13],

especially in the context of distributed systems [9, 11, 14, 18, 22]. 1In the

* Thus far, we have talked about two levels: the application level and the
system level. However, each of these "levels" may be in reality a hierarchy
of several levels, each level presenting a well defined interface to the level
built immediately on the top of it.

15

schemes for distributed systems, so called two-phase commit protocol is used
to coordinate changes made at different physical nodes. This type of protocol
is based primarily on backward recovery: until it is agreed that an operation
can be run to completion, a failure or inaccessability of ome of the involved
nodes will eventually cause the operation to be terminated and its effects
undone. If copies of the needed resources requested from the failed or
inaccessible nodes are available elsewhere in the network, it may be possible
to restart the operation, using a different set of nodes. Now, in this
process, a substantial amount of work may be lost, depending on when the
failure that triggered the backward recovery has occurred. For complex and

expensive operations it seems desirable to have a forward recovery scheme that

allows the operation to continue by switching to another copy of a resource as
needed. Backward recovery, however, is still necessary, in particular to deal
with human errors, synchronization errors (two or more operations may end up
in a deadlock) and residual algorithmic faults (software bugs).*

The changes made to an object ultimately must be propagated to all
copies. However, since some of the copies may be temporarily unavailable, it
is not feasible to wait until all copies have the new value before an
operation is deemed to have completed. The n-resiliency protocol developed by
Alsberg [1] requires that only n copies must be updated before a successful
end of operation is assumed. The protocol ensures that the changes do
eventually propagate to the rest of the backup copies. Some problems,
however, may occur if the network becomes partitioned and the partitions are

to be merged later. To be able to cope with an arbitrary partitioning of the

* It is useless to switch to another copy of a software resource if the
failure was caused by an algorithmic fault. However, after a backward
recovery from such a fault, a different algorithm can be tried [16].

16

network, n ought to be more than half of the number of the existing copies,
that is, a majority of the copies must be updated to complete an operation on
a replicated object. If there are k copies in the system then n = [(k+1)/2].
Let us call this last scheme a majority commit protocol. Finally, it is
assumed that each copy of an object has its own agent; these agents are the
entities that implement the desired protocols.

For backward recovery, replication of mutable data objects could be used
in the following way:

Scheme A: i. Perform the set of actions on the master copy as requested.

ii. To commit the operation, use the majority commit protocol.

iii. To abort the operation, undo changes in the master copy by

reading in one of the backup copies.

"Scheme A is straightforward, however, it has several drawbacks. First, the
commit step may take an indefinitely long time if it is impossible to obtain a
majority of votes. Second, it precludes forward recovery, since the backup
copies do not have any information about the individual actions performed on
the master. Third, it precludes concurrent use of the object by two or more
operations since 1) the master copy in addition to containing the changes made
by an operation that is about to be completed would also contain changes made
by operations still in progress, and 2) if an operation needed to be backed
out, all changes (that is, also the changes made by other operations) made
since the last time backup copies were updated would be lost.

To deal with the first problem, it must be possible to abort the
operation if a majority of votes cannot be secured within a reasonable time
period. Thus, a two-phase commit protocol is needed here too. In the first
‘phase, changes are distributed to the backup agents. If a majority of the

agents confirm that they have received the new version (since the master agent

17

already knows the new version, only [k/2] backup agents need to respond), the
master agent sends a commit request to all backup agents and performs the
changes in the master copy. Concurrency is a much more complex problem:
different types of objects allow different degrees of concurrency. For
example, if the object in question is a file, and the individually lockable
entities are records, then if the sets of records used by two operations are
mutually exclusive, or if those records that appear in both operations are not
only read but not updated, the two operations can be performed concurrently.*
Assuming that concurrency is carefully controlled, Scheme B facilitates backup

and recovery of each operation individu

Scheme B: 1i. In the master copy agent, construct a list of changes to be

made to the object.

ii. To commit the operation, use the two-phase majority commit protocol.

iii. To abort the operation, delete the list of changes at the master copy

agent.
Finally, another refinement is needed to support forward recovery:

Scheme C: i. In the master copy agent, construct a list of changes to be
made to the object; each time a new action is requested on an
object, send the request and the current list of changes to all
backup agents using the majority commit protocol.

ii. To commit the operation, send the final 1list of changes and
perform the changes using the two-phase majority commit
protocol.

iii. To abort the operation, delete the list of changes in all

copies.

* For a more rigorous treatment of this subject see [7].

18

iv. To continue the operation with a new master, repeat failled
(last) action at the new master, continue as described in part

i.

7. Conclusion

Distributed systems present a number of new problems that have to be
solved to achieve reliable operation. The major problem is uncertainty, the
fact that it is impossible to always know the entire global state of the
system. Also, in distributed systems the tradeoff between reliability and
performance becomes much more prominent than in centralized systems.

This paper presented distributed applications as a network of agents that
represent various resources and that communicate by sending messages. The
reliability problem was addressed along two lines: the replication of the
resources and the communication between agents. Work is continuing in both of
these directions. 1In the area of communication protocols, it 1s necessary to
work out the details of how the three types of mechanisms, error messages,
exception signalling and timeouts fit together. The multipie copy problem
needs to be analyzed from two angles: the robustness of the proposed scheme,

that is, the types of faults it can tolerate, and performance. Unless this

type of scheme can be made reasonably efficient, it will be of little value in

building actual systems.

19

(1]

(2]

[3]

(4]

[5]

(6]

(71

(8]

(9]

[10]

[11]

{12]

[13]

(14]

REFERENCES

Alsberg, P.A., "A Principle for Resilient Sharing of Distributed
Resources," Proc. of the International Conference on Software

Engineering, San Francisco, California, October, 1976, pp. 562-570.

Avizienis, A., et al., "The STAR (Self-Testing and Repairing) Computer:
An Investigation of the Theory and Practice of Fault-Tolerant Computer
Design," IEEE Trans. on Computers, C-20, 11, November, 1971, pp.
1312-1321.

Bartlett, J.F., "A “Non-Stop’ Operating System'" Tandem Computers Inc.,
Cupertino, California, 1977.

Baskin, H.B., et al., "PRIME - A Modular Architecture for
Terminal-Oriented Systems," Proc. AFIPS SJCC, 1972, pp. 431-437.

Clark, D.D., et al., "An Introduction to Local Area Networks," Proc. of
the IEEE, 66, 11, November, 1978, pp. 1497-1517.

Ellis, C.A., "Consistency and Correctness of Duplicate Database
Systems,'" Proc. of the Sixth Symposium on Operating Systems Principles,

November, 1977. pp. 67-84.

Eswaren, K.P., et al., "The Notions of Consistency and Predicate Locks
in a Database System," Comm. of the ACM, 19, 11, November, 1976. pp.
624-633.

Garcia-Molina, H., "Performance Comparison of Update Algorithms for
Distributed Databases," Stanford University Digital Systems Laboratory,
Technical Note No. 143, June, 1978.

Gray, J.N., "Notes on Data Base Operating Systems," Lecture Notes.ig
Computer Science, 60, Springer-Verlag, 1978, pp. 393-481.

Hoare, C.A.R., "Monitors: An Operating System Structuring. “acept,"
Comm. of the ACM, 17, 10, October, 1974, pp. 549-557. :

Lampson, B., et al., "Crash Recovery in a Distributed Data Storage
System,'" Xerox Palo Alto Research Center, 1976, (to appear in Comm. of
ACM).

Liskov, B., et al., "Abstraction Mechanisms in CLU," Comm. of the ACM,
20, 8, August, 1977, pp. 564-576.

Lomet, D.B., Process Structuring, Synchronization, and Recovery Using
Atomic Actions," Proc. of an ACM Conference of Language Design for
Reliable Software, ACM Operating Systems Review, 11, 2, April, 1977, pp.
128-137.

Montgomery, W.A., "Robust Concurrency Control for a Distributed
Information System," M.I.T. Laboratory for Computer Science, Technical
Report No. 207, December, 1978.

20

(15]

(16]

[17]

(18]

[19]

[20]

(21)

(22]

[23]

[24]

[25]

Ornstein, S.M., et al., "Pluribus - A Reliable Multiprocessor," Proc.
AFIPS NCC, 1975, pp. 551-=559.

Randell, B., "System Structure for Software Fault Tolerance," IEEE
ITrans. on Software Engineering, SE-1, 2, June, 1975, pp. 220-232.

Randell, B., et al., "Reliability Issues in Computing System Design,"
Computing Surveys, 10, 2, June, 1978, pp. 123-165.

Reed, D.P., "Naming and Synchronization in a Decentralized Computer

System," M.I.T. Laboratory for Computer Science, Technical Report No.
205, September, 1978.

Roberts, L.G., et al., "Computer Network Development to Achieve Resource
Sharing," Proc. AFIPS SJCC, 1970, pp. 543-549.

Rothnie, J.B., et al., "The Redundant Update Methodology of SDD-1: A
System for Distributed Databases," Computer Corporation of America,
Report CCA-77-02, February, 1977.

Svobodova, L., et al., "Semantics of Distributed Computing," Progress
Report of the Distributed Systems Group, M.I.T. Laboratory for Computer
Science, September, 1978.

Takagi, A., "Concurrent and Reliable Updates of Distributed Databases,"

M.I.T. Laboratory for Computer Science, Computer Systems Research
Division, Request for Comments No. 167, November, 1978.

Thomas, R.H., "A Solution to the Update Problem for Multiple Copy Data
Bases Which Use Distributed Control,'" Bolt Beranek and Newman, Report
No. 3340, July, 1976.

Wensley, J.H., et al., "The Design, Analysis, and Verification of the
SIFT Fault Tolerant Software," Proc. International Conference on

Software Engineering, San Francisco, California, October, 1976, pp.
458-468.

Wulf, W.A., et al., "An Introduction to the Construction and
Verification of Alphard Programs," IEEE Trans. on Software Engineering,
SE-2, 4, December, 1976, pp. 253-265. :

21

Figure I: A model of a distributed application,

Ai appicotion ogents

Ci communication
agents

Ni nodes

<«—— possible communications on the application level
<+—+* flow of information in the network

Figure 2: The abstract network: communications on and
“between the application and the system levels.

Type I errors:

message undeliverable:
target agent does not exist
message cannot be

~—— Type A errors:

message rejected:
unacceptable command
unacceptable input data

constructed , operation aborted
(encodeq 6peration failed)
target node is inaccessible
\\ Fa
\Y
!%5
communication | i JI
medwm* N e

/ Type C errors:

Ai application agents
Ci communication agents
Ni nodes

checksum error
duplicate
out of order

Figure 3: Flow or error notifications in the abstract network.

_-

_-
.e /
‘

Am agent guarding the master @
copy

Agi agents guarding the backup copies

Ui users
—p ypdate requests
— —» propagation of changes

Figure 4: Centralized update scheme
(master/ backup).

A aogents guording individual
copies

Ui users

—» update requests @
— -» propagation of changes

Figure S: Distributed update scheme.

Ap ogent guarding the master copy
{current version)

A g oagent guarding the backup copy
(current version)

Ayi agent guarding version vi (current or older version)

Ui users

- update requests
— —» propagation of changes

- —oread requesis

Figure 6: Multiple version scheme with backup.

