M.I.T. Laboratory for Computer Science April 28, 1979

Computer Systems Research Division

Request for Comments No. 171

Copying Complex Structures in a Distributed System

Karen R. Sollins

Attached is the paper I have submitted to the 7th SOSP.

This note 18 an informal working paper of the M.I.T. Laboratory for Computer
Science, Computer Systems Research Division. It should not be reproduced

without the author’s permission, and 1t should not be cited in other
publications.

Copying Complex Structures in a Distributed System

Karen R. Sollins

Laboratory for Computer Science
Massachusetts Institute for Technology
545 Technology Square
Cambridge, Massachusetts 02139

April 27, 1979

This research was supported by the Advanced Research Projects Agency of the
Department of Defense and was monitored by the Office of Naval Research under
Contract No. NO0O0l4-75-C-0661.

Copying Complex Structures in a Distributed System

ABSTRACT

This papef presents a model of a distributed system where the universe of
objects in the distributed system is divided into mutually exclusive sets,
each set corresponding to a context. This model allows naming beyond the
context boundaries, but limits communications across such boundaries to
message passing only. Copying of complex data structures is investigated in
this model, and semantics and algorithms are presented for three candidate

copy operations. Of particular interest is a new operation copy-full-local

which copies a complex data structure to the boundaries of the context

containing the object.

Key words and phrases: copying, sharing, distributed system, message passing,

strongly typed objects.

Copying Complex Structures in a Distributed System

1l. Introduction

Many aspects of computing are based on the ability to copy informatiom.
The foremost of these is parameter passing by value; in distributed systems,
it is the only way to pass parameters between program modules executing at
different nodes. Since these parameters may be abstract objects whose actual
representations are complex data structures, copying in this kind of
environment is a non-trivial matter. The second area is a more general
sharing where copies of some objects will be maintained at several nodes. Of
course, if the object is mutable, it brings up immediately the question of
mutual consistency of these copies; however, this is not the subject of this
paper. Finally, copying is needed to move an object from one location to
another; this is different from the previous, in that after an object is
moved, there is still only one instance of the object in the system. Each of

these and possibly other areas require the ability to copy. Each also

requires other mechanisms, which have, in general, been topics of research.
This paper concentrates only on copying, in particular copying complex data

structures [10] .

In addition to the problems for which copying is a part of the solutionm,
there are a number of interesting problems that must be addressed in
developing semantics and algorithms for copying. For example, consider the
situation in which a structured object is being copied. Of interest here are

those components that are contained by naming in more than one other

-2 - Copying Complex Structures

component, in other words shared by other component objects. A decision must
be made as to whether or not those shared components are copiled only once,
once for each containing object, or once for each pointer to the object.
Another question that must be answered is whether or not more than one kind of
copy operation is needed, and, if so, what the semantics of the different
operations are. In order to address these problems, a model is necessary.
This paper will begin with a model of a distributed system which combines
aspects of recent work on naming objects, distributed systems, and strongly
type object based systems. The paper will then return to the issues
surrounding copying, and, finally, present a solution to them consisting of
the semantics of three copy operations, and algorithms describing how they
might be implemented. In particular, the paper will present a new copy

operation, copy~full-local which copies a complex data structure to the

boundaries of the domain containing it. The model will allow naming beyond
such domain boundaries but the communication between such domains is only by
message passing. For a more detailed treatment of this subject, the readers

are referred to the full report.

2. The Distributed System

The model of a distributed system used in this research has been
influenced strongly by the work of Saltzer([9], Liskov et al.[4,5], and
Svobodova et al.[ll] In Saltzer’s work every object is associated with a
context or naming environment; all the names or pointers in an object are
resolved with respect to the context specified for that object. The purpose

of contexts in Saltzer’s work is to achieve what he terms modular sharing. A

-3 - Copying Complex Structures

1
number of ideas from the work in CLU of Liskov et al.[4,5] have influenced

this work. First, the work on CLU presents a strong justification for
abstractions or strongly typed objects and type extension. Second, the CLU
syntax and approach to modularity in programming has provided a basis for
implementation of a number of the most important procedures for this research;
most of these appear in the full report{10]. CLU also provides approaches to

the semantics of copying, the copyl and copy operations for arrays and

records. Both arrays and records can be complex structures. The copyl copies
only the top level of one of these structures, while the copy copies the
complete structure. The third strong influence on this research is the work
on distributed systems of Svobodova et al.[ll] The model of a distributed
system in that work assumes guardians communicating only by message passing.
The universe of entities in this model is divided into two kinds of entities,
active, which are called processes, and static, called objects. A guardian is
composed of one or more processes and the local address space (the directly
accessible objects) of those processes. The local address spaces of guardians
are mutually exclusive sets of objects. A process or object can refer

directly only to objects within the same guardian. Across guardian boundaries

only processes may be named.

The model of a distributed system used in the research reported in this
paper contains aspects of the models mentioned above. The model assumes the
hardware of the system to be a network of computers, each computer having its

own private memory or namespace for objects. The single namespace in a

1. Although the article in Comm. of ACM on CLU[4] provides much of the
knowledge of CLU used for this paper, it does not contain all the details.
For those the only source is '"The CLU Reference Manual'[5].

-4 - Copying Complex Structures

computer provides neither enough flexibility in naming objects nor enough
protection in accessing objects. Thus, this work first develops a model of a
context that facilitates finer partitioning of the namespace, and takes into

account the other works mentioned above.

Each computer or node in the distributed system supports one or more
contexts. As with guardians, the universe of objects on a node form disjoint
sets, each set corresponding to a single context. Thus the context defines
the local private memory or namespace. In order to provide flexible control
of sharing and to limit error propagation, the only means of communication
between contexts is by passing messages. This constraint allows enforcement
of arbitrary degrees of protection at the context boundaries. It does not
eliminate the possibility of sharing an object across context boundaries, but
does limit the means of access to that object; if an object is known beyond
the boundary of its local context, the only means of operating on the object
is by passing the name of such a foreign object in a message requesting that
some operation be performed on the object in the containing context. The user

will see a collection of contexts with messages flowing between them.

In line with the work on abstractions in CLU, the model assumes strong
typing for objects and supports extended types. Thus, every object has one
type for its lifetime; there are predefined base types provided by the system,
with a provision for creation of extended types composed of both base and
extended types. A base type object contains a value, and an extended type
object contains a list of names of component objects. Such an extended type
object contains only names local to the context in which it resides. The

context translates these names into one of two different kinds of names: a low

-5 - Copying Complex Structures

level name for a local object (this is discussed further, below), and a
globally unique name for a foreign object. In order to contain a foreign
object the containing object uses a local name, and the context provides a
translation into a name that is unique throughout the whole distributed
system. Since contexts are assumed to be uniquely named throughout the
system, globally unique naming can be achieved by combining context and object

name.

There must be supporting mechanisms for this model of contexts. For the
purposes of this paper, only the message and storage handlers are of concern.
The message handler must be able to (1) pass messages between contexts local
to a single computer, (2) pass messages from a local context out into the
network, and (3) receive messages and see that they are delivered to the
correct local context. The message handler transforms messages passed between
contexts into the kinds of messages that can be passed through the network
hardware. The message handler contains information about low level protocols.
It is quite possible that the low level messages of the network do not
correspond to the high level message objects (or images, as will be presented
below) discussed in this paper. These high level messages may be buffered and
sent in groups, or split into smaller packets. Whatever is done by the
message handler at such a low level is hidden from the contexts and users.

The storage handler, as its name indicates, oversees storage of objects. For
each object stored in the node, it provides a unique name in order that the
physical object may be aécessed (through the storage handler). Each storage
name is known to a single context and associated with the local name assigned

to that object by that context.

-6 ~ Copying Complex Structures

There are three complementary views of the context. First, as it was
initially presented, it appears to the user to be a namespace. A context is
an environment in which local objects exist and can name each other using only
names local to the context in which they reside. Second, aﬁ extension of this
view leads to classifying contexts as virtual nodes in an abstract network,
where the nodes can communicate only by sending messages. Third, contexts
also can be viewed as typed objects; a context has state and a name and can be
considered to be of type context. It is useful to consider contexts to be
objects at times and as such to make use of the operations defined for the
type context; this is more apparent in the implementations presented in the
full length report on this work [10] than in this paper. The view of contexts

taken in this work is a combination of the three views.

In consideration of the model of a distributed system that has been
presented here, it appears that there are a number of issues to be addressed
in copying objects between contexts. These will be discussed in the following
section. Within a context, copying appears to be less difficult, and if it
can be achieved across context boundaries, it certainly can be achieved within

them. Therefore, this paper concentrates on copying between contexts.

3. 1Issues and Goals in Copying

As mentioned in the introduction to this paper, there are a number of
issues related to copying that must be considered before deciding on the
semantics of copying. The most important in this research is the question of

whether or not to maintain sharing of component objects. Although a more

-7 - Copying Complex Structures

common concern is sharing among processes or users, this research concentrates
on sharing among objects. In the model assumed for this research, objects
can have arbitrarily complex structures; they also can be contained

recursively.

The simplest question is whether maintenance of sharing would be
necessary in copying objects if recursion were not allowed, but sharing
components were, as in Figure l(a). If sharing does not occur in a copy where
it does in the original, the behavior of the copy may be different from the
behavior of the original object under the same conditions. Now, considering
the more complex structure that includes recursive containment of components
such as the structure in Figure 1(b), it becomes even clearer that such
sharing must be copied in order to terminate a copy operation which copies the
complete séructure. Finally, the most complex situation is that in which such
sharing of components occurs across context boundaries, as in Figure l(c). In
this case, a new dimension has been added to copying, because of the
liﬁitation of communicating only by message passing. In all three situatioms,
depending on the means of guaranteeing a consistent copy of the data, deadlock
is possible. In the third case, such a deadlock would involve more than one
context. If the structure were part of distributed data base, with components
of the structure in many contexts, the problems of copying without regard to
sharing in the structure appear to be unmanageable. Therefore, the primary
goal of the copying described in this paper is to maintain any sharing that

exists in the object being copied.

-8 - Copying Complex Structures

Closely related to the question of sharing is the question of exactly
what the semantics of copying are to be. The standard meaning of‘copying is
to create at another location another version of the object being copied, the
copy having the same behavior as the original. Now the question is what is
meant by "the same behavior". CLU provides two answers to this, as previously
mentioned. The copy operation copies the complete structure, although sharing
relations are not maintained. The other copy operation provided by CLU is
copyl. This operation copies only the top level of the structure, copying
pointers to all the components of the original. In fact, the copy operation
is defined by calling copyl on the original object, and then calling copyl for

each component, moving through the structure until all the components have

L i
7

(a) Non-recursive sharing (b) Recursive sharing

N\

/

(c) Recursive sharing across context boundaries.

Figure 1 Examples of sharing of components within a data structure.

-9 - Copying Complex Structures

been copied. Copy provides the standard semantics for copy by copying all of
the object, and copyl allows for creation of specially tailored copying, in
which not all the components are to be copied. In this research the

operations similar to copyl and copy are copy-one and copy-full.

The model of the system presented in this paper is much more complex than
that of CLU, and, as mentioned previously, data structures can be more
complex. As a result, this research has led to a third kind of copy

operation: the copy-full-local. The copy-full-local operation copies to the

boundary of the context containing the original object. Figure 2 is an
example of this. Only those components directly connected to the top level of
the structure and in the original context are copied. This copy operation
complements the other two in such a way that the three provide the user with a
great deal of flexibility in copying complex data structures across context

boundaries.

<L/

original copy

Figure 2 An example of the copy-full-local operation. The object labelled
with * is copied into the object labelled with #**, and the components labelled
1 is copied into 1°. The component labelled 2 and 3 are not copied.

- 10 - Copying Complex Structures

It must be pointed out that a variety of copying algorithms‘have been
developed by other people. These include those developed simply as copying
algorithms (for example both Clark [2) and Fisher [3]) and those with
particular functions in mind such as garbage collection (for example McCarthy
[6,7], and Baker [1]). Although these works must be considered, they present
a common problem. They all use the copy that is being created as part of the
workspace needed to generate the copy. If copying is to be performed across
context boundaries, such use of the copy implies increased message passing.
Because of the cost in time and greater possibility of failure due to the need
for cooperation between contexts, this paper presents an alternative approach

that avoids these problems.

A final point is that the model assumes objects of arbitrary structure;
this includes arbitrary size. Since objects can be very large, it may be
impossible to create an image of the complete structure of an object beforé
sending the pieces to the receiver. The receiver may have similar space
limitations. Therefore it should be possible to process the images of

components separately.

In light of the discussion of this section, four goals are set for
developing algorithms and implementations of the three copy operations: (1)
any sharing that exists in the original structure must be maintained; (2)
economy of mechanism by using a single approach in all three operations is
desirable; (3) since all communication between contexts is by message passing,
the amount of message passing necessary should be limited; (4) it should be

possible to send and receive component images separately.

- 11 - Copying Complex Structures

4. Copying

This section presents the algorithm for achieving copying by sending and
receiving images, followed by an example of performing a copy-full on an
object that contains components in two contexts. The purpose of this example
is provide a clearer picture of the mechanism needed to achieve the copy
operations described in the previous section. The succeeding section will
discuss the implementation and indicate the simplicity of including copying
when implementing a type manager or cluster.1 The procedure for sending a
copy of an object to another context is similar for all three copy operations.

When it has been decided that an object is to be copied, the first step is to

create a message-context in the sending context. A message-context is an

object that is growable and has only a short lifetime. It is a mapping
between the indices of its entries and the values of those entries. An entry
is created as follows: each name in the original object is examined to find
its full name, {context name, local name} pair. This becomes an entry in the
message-context if it is not there already. A message-context is a mapping
between indices and full names. The entry associated with index 0 is the full
name of the top level object being copied. Once the message-context exists,
an image of the object is created. An image contains the indices of those
entries in the message-context containing the full names corresponding to the
local names of the components of the original object. The header of the image
of each component includes the index of the entry in the message-context that

contains the full name of the corresponding object. The header also contains

l. The term type manager is used throughout this paper to be synonymous with
the CLU term cluster.

-12 - Copying Complex Structures

the type of the object from which the image was created. When an entry for
the original object has been made in the message-context and an image of it
has been created, the image is ready to be sent. At this point an image of
the next object named in the message-context that is to be copiled is created
in the same manner as the top level object using the same message-context,
thus adding entries to the end of the message-context when necessary. This is
repeated until an image has been created and sent for every object named in
the message-context that is to be copied. For a copy-one operation, only the
top level object is copied. Once this image has been sent, an image of the
message~context must also be sent, in order to create the correct entries in
the receiving context for the names in the object being copied. For a
copy-full, once images for all the components have been created and sent,
nothing more needs to be sent. The message-context is of no more use.
Finally, for a copy-full-local operation, all the components that are in the
sending context will be copied, and a partial image of the message-context

containing the indices and entries for the foreign components must be sent.

As indicated above, the image created for each object copied will have a
two part header. One part is the index of the object’s name in the
message-context. This would not be necessary if we could guarantee that all
messages would be received in the same order they were sent; however, such an
assumption is unnecessary.l The other part of the header is the type of the

particular object to which the header is attached. Again this would not be

necessary in most cases assuming that messages were received in the order

l. This assumption would put additional burden on the lower level protocols,
and since the overhead of sending the index is low, such an assumption is not
considered necessary. It also would limit the usefulness of spraying messages
(in particular images) down multiple paths.

- 13 - Copying Complex Structures

sent, because if the order of arrival were predictable and the types of the
components already known, as the images arrived their types would be known.
However, if the receiver is expecting an object of the CLU type any), the
arriving image had better have its type attached to it, in order that the
receiver can invoke the correct type manager. In addition, the components of

an image header provide redundancy that can be used for reliability.

For a better understanding of the algorithm, an example of the copy-full
operation follows. For examples of all three operations, see the full report
on this research[10]. The copy-full operation is the most encompassing of the
three copy operations, and as such uncovers problems not encountered with the
other two. First, the problems associated with shared components appear.
(This is also a problem in the copy-full-local operation, although it is not a
problem in the copy-one.) The message-context maintains all such sharing.

The second consideration is the problem of handling foreign components. (This
is not a problem in either of the other operations.) In the case of the
copy-full operation, there are problems associated with acquiring a copy of a
foreign component, as well as sharing components across context boundaries.

In order to maintain such sharing across context boundaries, a copy-one
operation should be performed on any foreign component. This means that the
sending context will acquire only the top level of the foreign component plus
the names it uses. By this means the message-context will discover all

sharing, even that involving foreign components.

The object to be copied in this example is depicted in Figure 3. For the
remainder of this discussion the term l-n is used for local name and s-n is

used for storage name. Also, contexts are depicted as containing objects, as

- 14 -

Copying Complex Structures

context

1

context 3

l-n 18
1-n 8
l-n 12
len 17
l-n 7

s-n 1
s-n 2
s-n 3
context 3, l-n 9
s-n 4

l-n 18

l-n 8

l-n 8
1-n 12
l-n 17

value

l-n 12

len 7

l-n 8

value

l=n 7

l-n 9

s-n 5

l-n 9

(a) The names in an object, its components, and the relevant contexts.

(context 1)

M/I (context 3)

(b) Block diagram of the structure of the object 1-n 18 of (a)

Figure 3 An example of an object.

and s-n for

The abbreviation l-n is used for local name

storage name. A context here is represented as a node in an
abstract network, containing objects, and as a namespace containing a mapping
from local names to either storage names or globally unique names. Those
objects containing local names are of extended type, and those containing the
word value are of base type.

-15 - Copying Complex Structures

a node of an abstract network would, while at the same time providing name
translation as a namespace would. In the example, the object 1l-n 18 will be
copied using the copy-full operation from context 1 into another context,
context 5. Figure 4 depicts the message-context and images created in the
sending context while performing the copy-full. The message-context is
created with an entry for {context 1, 1-n 18). In context 1, 1-n 8 is first
looked up and found to be local to that context. Hence its full name is
{context 1, 1-n 8). This entry 1s created in the message-context and since it
has index 1, a 1 is put into the first position in the image of 1-n 18 being
created for sending. Then the full name is found for 1-n 12 in context 1,
and, since it is not already in the message-context, a second entry is made,
and another index is put into the image. Now, when l-n 17 is followed, rather
than a storage name in the context, there is another {context name, local

name} pair., This, then, is used as the full name for the entry in the

message-context

context 1, 1-n 18
context 1, 1-n 8
context 1, 1-n 12
context 3, l=n 9
context 1, 1-n 7

WD~ O

type | 0 type [1
1 value

2
3

type | 3
value

type | 2

o

4 type | 4
value

Figure 4 For the copy-full operation images 0, 1, 2, 3, and 4 will be sent,
but no image of the message-context need be sent in copying {contextl, 1-n 18}
of Figure 3. Again, l-n is an abbreviation for local name.

- 16 - Copying Complex Structures

message-context in the same way as the other full names. Once this has been
completed, and the image has a header containing the type and index 0, the
image can be sent. Now, the next entry in the message-context, {context 1,
l-n 8}, 1is considered and an image of that object is created as with the
first. It i1s of a base type, and therefore its image will contain a value.
Again, a header will be attached to the image, this time containing the type
of this object and an index of 1 (which 1is the index of its entry in the
message-~context). Now this image can be shipped. Once an image of l-n 8 has
been created, the image of the next entry in the message-context can be
created. This next object is {context 1, l-n 12}, which is of an extended
type. 1t contains a list of two names. The first is l-n 8. When the full
name is found for this, {context 1, l-n 8}, and it is compared with the
entries already in the message-context, it is discovered that there already is
an entry for that object. Its index is used in the image of 1l-n 12, but no
new entry is made in the message-~context. Now the next name in 1l-n 12 is
handled. It is found to have a full name of {context 1, l-n 7} which is not
yet an entry in the message~-context, so an entry 18 created and the index of 4
is used. Once the header containing the type of 1-n 12 and an index of 2 have
been attached to the image of 1-n 12, this step of the operation is complete.
The next object to be copied is {context 3, 1l-n 9}; a copy of this must be
acquired from context 3. Once that has been done, an image can be created for
this objéct having in its header of the name of the type of {context 3, 1-n 9}
and an index of 3. The copy operation from context 3 must be a copy-one,

although for an object of base type as in this case, it makes no difference.

-17 - Copying Complex Structures

There are several issues that need mentioning here. First, context 1
will not keep the copy of {context 3, l-n 9}. If such a copy were kept in the
sending context, the copy-full operation would have permanent side-effects on
the sending context; this is clearly undesirable.1 Second, there may be a
problem with acquiring that copy from a foreign context. It will, at least,

cause some delay; at worst, it may be impossible, causing the original

copy-full to fail. The copy-full-local operation solves this problem.

To resume the example, assume that the copy-one on {context 3, 1-n 9}
into context 1 has been completed successfully. The object {context 1, l-n 7}
will be processed next. This is another object of a base type. The value
will be copied as with 1-n 8, and the header attached. Now, considering the
message-context, it becomes evident that all the objects named in it have been
copled and their indices attached to them in their headers. Therefore no part
of the message-context needs to be sent to the receiver of the copy, and it is

expendable.

Once an image has been sent from a context, the message handler must
determine how to find the receiving context. If the receiving context is on
the same node, the network need not be involved. The images passed out of the
sending context are passed directly to the receiving context. If the
recelving context is not on the local node, the message handler must prepare

2
each message for transmission through the network to the correct node. At

l. Of course, copy-full operations will have temporary side-effects when
there are foreign components.

2. This work does not deal with the communication protocols of the network,
although of course the message handler must know about them. The copy
operations can know nothing about these protocols nor about the degree of
reliability they provide.

- 18 - Copying Complex Structures

the other end of the transmission, the message handler at the receiving node
will receive the messages from the transmission medium and pass them to the
receiving context, assuming a receive command is pending in that context.
Whether or not the network was involved, it is in the receiving context that
the images created by the sending context are used to create the actual copies
of objects. The receiving procedures will be presented as a set of cases each
to be handled differently, as there are so many possible orderings of the
arrivals of the parts of a copy, and processing is to begin as soon as a
recelve command has been issued and at least one image has arrived. As has
been mentioned previously, the order in which the images arrive is
unpredictable, and they are processed in whatever order they become available

at the receiving site.

Each piece of a copy must be identifiable as part of that copy and
labelled with its own type and index i1f it is a copy of a component or the
fact that it is a message-context or a part thereof, if the copy was a
copy-one or a copy-full-local. The procedure is as follows.

1. When the first image (component or message-context image) is ready
to be processed, a local receiving message-context is created.
It will contain, in addition to the index for each object, the
local name for that object once that name has been determined.

2. When the message~-context image arrives, its entries are processed
sequentially. When an entry is processed, the receiving
message—context is first checked. If there is a local name
there associated with the index of that entry, this local name
is used to find the location in the local context to place the
full name carried by the message-context image. If there is no
local name in the receiving message-context for that entry, the
context must find a local name to refer to the foreign object,
this entry 1s created in the local context, and an entry is
created in the receiving message~-context for the appropriate
local name having the appropriate index.

3. When a component image arrives, the receiving message=-context is
checked for a local-name to be used for the new object. I1f a

-19 - Copying Complex Structures

reference to the arriving component has already been received in
another image, a local name will have been assigned. If not,
one must be requested from the context. Using the appropriate
local name, the image is transformed into a copy of the original
object. If the object is of a base type, its value is taken
from the image. If is of extended type, each name is picked up
out of the image. Using this name as an index into the
message-context, a look up is done. If either that object’s
image itself has arrived previously, or another reference to
that object has arrived in yet another image, then there already
will be an entry in the receiving message-context containing a
local name for the reference. This will be used in the copy of
the component being created. If there is no local name for the
reference yet, the context must provide one. Thus an entry will
be created in the receiving megsage-context, having the
appropriate index and the local name provided by the context.
Also an entry must be made in the context, although no object
will be assigned as yet; i.e., there will be a local name in the
context having no other name (either storage or full name)

assoclated with it.
4. Images are received until there are no entries in the context that
do not have storage names or full names associated with them.
At this point, the copy has been completed and the receiving
message-context 1s no longer needed.
Figure 5 depicts context 5, the receiving context in the example discussed

earlier. In the figure all the copiles of the components have been created.

Also the receiving message-context is complete, but has not yet been deleted.

This section has presented an algorithm for achieving the copy operations
and that meets the goals described earlier. This description may leave the
impression that these copy operations are too complicated, but the next
section will point out how little work is involved in including such operation
in a type manager. Most of the work can be done by procedures that can be

provided in each context when the context is created.

- 20 ~ Copying Complex Structures

context 5
message—context
l-n 31 s-n 6 0} 1-n 31
l-n 32 { 8=n 7 1 l-n 32
l-n 33 | s-n 8 2} 1l-n 33
l-n 34 | s-n 9 3] 1-n 34
1-n 35 | s-n 10 4| l=n 35
l-n 31 l-n 32
1-n 32
l-n 33
l-n 34
l-n 3
1-n 33
1-n 32
l-n 35 l-n 35

Figure 5 The results in context 5 of a copy-full on {context 1, 1-n 18} of
Figure 3 to context 5 before the receiving message-context has been deleted.
As with previous figures, the context contains a mapping as well as objects.
Also, again, l-n is an abbreviation for local name and s-n, for storage name.

D+ Implementation

This section presents only an overview of an implementation; a sample
implementation of images, message-context and the sending and receiving
protocols can be found in the full report[10}. The implementations are in a
CLU-like language. The algorithm as described in the previous section is
quite involved. Therefore one of the strong forces in developing the
implementation was to hide as much as possible from both the user of the copy
operations and the creator of new types for which copy operations are to be
defined. The functions of the message-context are (1) to find sharing among
components, (2) to keep track of which components should be and have been

copied, and (3) to provide those references that must be copied in the cases

- 21 - Copying Complex Structures

where only a partial copy (copy-one or copy-full-local) is being performed.
The user and programmer do not need to know about these functions or the
message-contexts that provide them. In contrast, the creation of images
should be type dependent. This means that the type implementer must know
about images, and must provide a create-image operation for his type. There

also must be a create-image for the type of each component to be copied.

As mentioned previously, each context will be equipped with three

procedures named generic-copy-one, generic-copy-full, and

generic-copy-full-local. In order to define one of the copy operations for a

particular type, the programmer simply writes the operations including the
create-image operation as has been done for copy-full and create~image in
Figure 6. The appropriate generic copy procedure invokes
message—context$create1 passing it the name of the top level object being
copied and the name of the copy operation being performed (copy-one,
copy-full, or copy-full-local). The message-context is viewed as the essence
of the copying of the top level object since it contains the names of the
object and the copy operation. Therefore, the generic copy operation next
invokes message-context$send to send the message-context. The
message—context$send operation oversees the creation of images for the
components to be copied by invocation of the create-~image operations of the
appropriate type managers followed by the image$send operation. When all the
components have been copied as determined by the particular kind of copy

operation, an image of the message-context is created and sent if that is

appropriate. At this point the message-context$send can return, as can the

l. In CLU message-context$create is the invocation of the create operation
of the message-context type manager or cluster.

- 22 - Copying Complex Structures

copy-full := proc (object-name: foo, receiver-name: any);
generic-copy-full (object-name, receiver-name);

return ();

end copy-full;

create-image := proc (object-name: foo);
image-name: image :=image$create ("foo");
for component: any in components-of-object-name do
for the name of each component of the object create an entry in
the image
end;
return (image-name);
end create-image;

Figure 6 The copy-full and create-image operations of the type foo. The
syntax used in these procedures is similar to that of CLU. The type of the
receiver of such a copy has not been specified and therefore any has been used
for 1it.

generic copy procedure invoked, and finally the original copy operation. 1In
performing a copy-full, a foreign component may need copying. In this case, a
copy-one of the foreign component must be invoked through the message-passing
facility. In order to receive, similar sorts of procedures must be provided.
It should also be mentioned that it is trivial to modify the above procedures
to include also local copying within a context, with no extra burden on the

programmer.

An interesting result of the requirement of retaining sharing relations

in copying is that copy-full, unlike copy of CLU, cannot be composed of

multiple calls on copy-one (copyl in the case of CLU). The reason for this is

that each invocations of copy-one created a new message-context and it is the
single message-context of copy-full that achieves the retention of sharing.

This point is more apparent in the full report[10] than in this paper.

- 23 - Copying Complex Structures

Although no reference has been made to it yet, the operations discussed
above depend on a synchronization mechanism in order to guarantee that a copy
is consistent within itself. 1If a large object is being copied using a
copy-full or copy-full-local operation and more than one process is running in
the sending context, there must be some form of guarantee that components do
not change during the copy operation. The apparently simplest approach is
locking, but this immediately raises up the specter of locking a whole or
large part of a database. It also requires an extra traversal of the
structure. A much more serious problem is deadlock; there has been work on
deadlock detection and avoidance at a single site, but the problem becomes
quite costly with attempting to lock foreign components in the case of a
copy-full operation. An approach developed by Reed[8] appears to provide a
better solution to this problem. Reed proposes that when mutable objects are
modified, new versions of them are created and time-stamped. Thus, as lopg as
the older versions are saved, it is possible to refer to and use a consistent
version of the object. This idea solves the problem of deadlock as well as

that of making an additional pass of the structure.

6. Conclusions

In conclusion, this paper presents two major points. The first, and most

important, is the new copy operation, copy-full-local. This operation copies
a complex data object to the boundary of the context or domain containing that
object. In the situation in which the universe of objects is divided into

mutually exclusive sets or contexts and where the only means of communication

between those contexts is message passing, the copy-full-local operation

- 24 - Copying Complex Structures

complements the semantics of the two kinds of copy operations provided in CLU.
One of these operations copies only the top level of a structured object, and
the 6ther, the complete structure. The copy-full-local operation lies between

these two extremes in functione.

The second conclusion to be drawn from this research is that most of the
mechanism to support the three kinds of copy operation can be embedded in the
contexts by providing three generic copy operations. They can be invoked
directly by the creator of a type with an argument of the names of the object
to be copied and the intended receiver. The only requirement is that there
must be a create-image which will create an image of an object (this being the
only base type capable of being sent) must be defined for the type of every

component (including that of the original object) being copied.

There are many issues related to this research that have not been
addressed in this paper. A partial list follows:
(1) Exception handling must be an integral part of operations such as the copy
operations presented here. Message-context can be an aid in backing out of a
copy operation that fails, although there may be a problem finding images used
in copying in both the sending and receiving contexts.
(2) In order to achieve the operations that perform partial copying (copy-one
and copy-full-local) the types of all objects to be copied must have the same
representation in both contexts.
(3) Globally unique naming of contexts and the types involved in copying is an
assumption in this research. Whether this is feasible and reasonable needs

further investigation.

- 25 - Copying Complex Structures

(4) Specializing copying to different types needs attention. This can be
achieved in the type specific create-image operations. Whether or not it is
useful must be considered.

These and other points related to this work are addressed in greater depth
(although not necessarily solved) in the full report on this work[10]. 1In
particular, the most interesting of these and a topic of much current and
probably future research is the issue of exception handling, which is closely

related to the work on atomic transactions.

References

[1] Baker, H.G. Jr., "List Processing in Real Time on a Serial Computer",
Comm. of ACM 21, 4 (April 1978), pp. 280-294.

[2] Clark, D.W., "List Structure: Measurements, Algorithms, and Encodings,"
Ph.D. Thesis, Dept. of Computer Science, Carnegie-Mellon University,
Pittsburg, Pa., August 1976.

(3] Fisher, D.A., "Copying Cyclic List Structures in Linear Time Using
Bounded Workspace," Comm. of ACM, 18, 5 (May 1975), pp.251-252.

(4] Liskov, B.H., et al., "Abstraction Mechanisms in CLU," Comm. of ACM 20, 8
(August 1977), pp. 564-576.

[5] Liskov, B.H., et al., "The CLU Reference Manual," CSG Memo # 161, M.I.T.
Laboratory for Computer Science, Cambridge, Mass., July, 1978.

[6] McCarthy, J., et al., LISP 1.5 Programmer’s Manual, 2nd edition, M.I.T.
Press, Cambridge, Mass. 1965.

{7] McCarthy, J., "Recursive Functions of Symbolic Expressions and Their
Computation by Machine", Comm. of ACM 3, 4 (April 1960), pp.184-195.

(8]

(9]

[10]

(11]

- 26 - Copying Complex Structures

Reed, D.P. "Naming and Synchronization in a Decentralized Computer
System", M.I.T. Laboratory for Computer Science Technical Report TR-205,
Cambridge, Mass., September, 1978. (Also Ph.D. thesis, Department of
Electrical Engineering and Computer Science, M.I.T., September, 1978.)

Saltzer, J.H., "Naming and Binding of Objects," Lecture Notes in Computer
Science 60 (Ch. 3), Springer Verlag, New York, 1978, pp. 99-208.

Sollins, K.R., "Information Sharing in a Distributed System," M.S.
Thesis, Department of Electrical Engineering and Computer Science,
M.I.T., Cambridge, Mass. to be completed.

Svobodova, L., Liskov, B., Clark, D., "Distributed Computer Systems:
Structure and Semantics," M.I.T. Laboratory for Computer Science
Technical Report TR???, Cambridge, Mass., March, 1979.

