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Abstract

In this paper, a new approach to the synchronization of accesses to
shared data objects is developed. Traditionmal approaches to the
synchronization of access to shared data by concurrently running computations
have relied on mutual exclusion--the ability of one computation to delay the
execution of other computations that might access or change shared data
accessed by that computation. Our approach is quite different. We regard an
object that is modifiable as a sequence of immutable versions; each version is
the state of the object after an update is made to the object.
Synchronization can then be treated as a mechanism for naming versions to be
read and for defining where in the sequence of versions the version resulting
from some update should be placed. In systems based on mutual exclusion, the
timing of accesses selects the versions accessed. In the system developed
here, versions have two-component names consisting of the name of an object
and a pseudo-time, the name of the system state to which the version belongs.
By giving programs coantrol over the pseudo-time in which an access is made,
synchronization of accesses to multiple objects is simplified.

Qur approach is intended to be used in an eanvironment where unreliable
components, such as communication lines and processors, and autonomous control
of resources occasionally cause certain objects to become inaccessible,
perhaps in the middle of an atomic transaction. Computations may also
suddenly halt (perhaps as the result of a system crash) never to be restarted.
OQur approach provides facilities for recovering from such sudden failures,
grouping updates into sets called possibilities, such that failure of any
update belonging to a possibility prevents all of the other updates in that
possibility. The pseudo-time naming mechanism also provides a useful tool for
restoring a consistent state of the system after a failure resulting in
irrecoverable loss of information or a user mistake resulting in an
inconsistent state.

Keywords: data synchronization, locking, recovery, distributed systems, data
bases, atomic actions.




Introduction

The research reported here was begun with the intention of discovering
methods for combining programmed actions on data at multiple distributed
computers into coherent actions forming a part of a distributed application
program. The primary concerns were that it be easy to coordinate such
combined actions with other councurrent actions accessing the same data, and

that it be easy to haandle failures in any part of the combined action.

In the course of the research it became clear that coordinating access to
data and recovery from failures were complementary mechanisms aimed at
achieving the same goal--providing data and program modules whose behavior is
easily specified without consideration of the details of the choice of data
representatlion or the sequence of primitive steps executed that achieve the
behavior. This goal is the familiar "information-hiding principle'" elucidated
by Parnas [15]. Atomic actions form one such class of modules. In this
paper, we describe a new method for synchronization and failure recovery that
works well in a distributed system. We concentrate here particularly on the

application of this method to the implementation of atomic actions. More
general applications are described in the author’s doctéral dissertation [17],

from which this treatment was derived.

Decentralized Computer Systems

By decentralized computer systems we mean a set of computer nodes
consisting of processor, memory, and permanent storage (disk), connected

together by a communications network. Each node can be, and often is, used as



a powerful stand-alone computer. The network provides sharing of information
between these nodes. It is this sharing of information among programs

executing on distributed nodes that must be coordinated.

Communication among nodes is by message passing. The arrival of messages
at nodes causes programs to be executed that may result in modifying data at
that node or retrieving data from that node. In what follows data is modelled
as record-like objects that may contain references to other data objects
either on the same site or on other sites. The algorithms that manipulate
such data are composed of prograams existing at multiple sites that communicate
by message passing. Coordination is required because there may be several
computations that access the same objects in the system at any oné time,
initiated by independent users of the system. As such, the concurrency that
concerns us is the unplanned kind, rather than the kind of concurrency |

designed into an individual computation to speed it up.

Coordination of concurrent processes is difficult in a distributed system
because of communication delays and modularity. In a ceatralized system with
shared memory, coordinatioan can be achieved inexpensively by locking the data
to be accessed while the computation uses it. Locking is inexpensive, because
all processes can easily access the locks, and because deadlock detection or
avoidance can be centralized. 1In a distributed system, locking requires
interactions between the users of the data and therefore substantial
comaunications delays. Furthermore, deadlock detection is impractical because
it requires global knowledge of all computations and their locks. Deadlock
avoidance is impractical because a module of a distributed computation that
uses modules on other nodes may not have knowledge of the data accessed or the

order of access at those nodes.



Recovery from failures is made difficult in a distributed system by the
peculiar nature of communication failures. In particular, when node A
requires a service from node B that involves modifying data objects stored at
node B, certain kinds of communication failures will leave node A in doubt as
to whether node B has performed the requested action or not. The requesting
computation at nodé A has ohly one option at this point, since further actions
by node A are usually contingent upon successful completion of the request at
B to insure consistency between various parts of the system. Node A must
block until node B’s state can be ascertained, but this may take a very long
time. 1If node A holds resources needed by other computations, then such a

failure can cause deadlock.

In a monolithic distributed data base, such failures may be tolerable,
since each node and communication link is maintained to a high standard of
availability. 1In a system where nodes are autonomously managed, such fallures
are more likely to happen, and more likely to be of long duration. For
example, after node A sends its request, but before B responds, node B (a

desktop computer) may be powered off for lunch.

Atomic Actions

The goal of this research is to support the construction of atomic
actions. An atomic action is an operation on data whose effects on data are
completely specified by the algorithm executed by the atomic action. 1In
particular, though the atomic action may access (read or update) many pieces
of data, each many times, as part of its execution, the effect of the atomic

action can be described as a relation between the initial state of all of the



data items it touches and their final states when the atomic action is

finished.

Atomic actions require both synchronization and recovery mechanisms in
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compqga;}pns within the system cigngkggfve an intermediate state of the data
objects accessed. If an intermediate state of an object could be observed
outside the atomic action then the behavior of the atomic action could not be
specified solely in terms of a relatiom between initial and final states of
the objects accessed. Synchronization is required to ensure also that no
other computation can modify any data object used by the atomic action during
its execution. That 1is, the atomic action’s program can be wri;ten without
any consideration of interference from concurrent access to the data it
accesses. Recovery mechanisms are required to ensure that if a failure
occurs, preventing completion of an atomic action, that the intermediate state

of the data resulting from partial completion of an atomic action is not

exposed to observation by other computations.

Our concept of atomic actions is quite similar to that of Lomet ([14] and

also similar to the sphere of control described by Davies {6,7]. 1If all

computations in the systems perform all their data accesses as part of atomic
actions,‘then the observable behavior of the system will be the same as a
gserial schedule, as in the definition of atomic transaction developed by

Eswaran, et al. [8].

The simplest implementation of atomic actions is to delay all other
computations in the system for the duration of the atomic action. This is

often inefficient in a single processor system, but in a distributed system
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connected by a network, it may be impossible, because of communications

failures.

It is sufficient, however, to guarantee that an atomic action has
exclusive access to the data it actually reads or updates. Locking is often
used to achieve this, by associating a lock (or mutual exclusion semaphore)
with each data object that will be used by a computation before that
computation can access the data. Locking introduces the possibility of
deadlock, the detection of which may be quite difficult in a distributed
system, while classic deadlock avoidance techniques cannot cope with
transactions whose data accesses are unknown, due to the presence of
information-hiding mechanisms that hide the representations of objects, or due
to the use of pointer or accesses otherwise predicated on values obtained

earlier in an atomic action’s execution.

The essence of locking is to seize exclusive access to a group of objects

for a period of time. Thus, the proper behavior of an atomic action is

controlled indirectly, by ensuring that the timing of its steps is properly
coordinated with the timing of other computations. The basis of the locking
approach to implementing atomic actions is that there is one instant or
interval during the atomic action at which all locks are simultaneously held.
That interval must either precede or follow the corresponding interval of any

potentially interferring atomic action.

In contrast, the mechanism proposed herein coordinates the access to a
set of objects by a naming mechanism that gives names to versions (virtual
global states) of the system. There are two naming mechanisms described

below. Pseudo-~times are a totally ordered set of names referring to




successive virtual states of the system’s data. DPossibilities are a mechanism

for referring to groups of updates to objects for the purpose of error

recovery.

Atomic actions are implemented by giving the virtual processor executing
the atomic action exclusive use of both a sequenee of pseudo-times and a
possibility. Access to a particular object in a particular state of the
system requires that both a possibility and a pseudo-time for that state of
the system be used as parameters to the access. There is a very close analogy
between this approach to implementing atomic actions and the capability
approach to protection of data [5,9]. In both approachés, having a name for
something is a prerequisite for its use, so exclusive use can be granted by

restricting the propagation of names.

The following discussion elucidates the properties of pseudo-times and
possibilities, and illustrates their use in the construction of atomic

actions.

Pseudo-time and Known Histories

Each object is represented as a sequence of versions.* Each version of
an object represents a particular state that the object attains during its
life. An update to an object is implemented ﬁy creating a version of the
object and assigning that version to 1its proper place in the sequence of

versions.

% Object versions were inspired by the treatment of synchronization in
Stearns, et al. [18], though our mechanism using known histories and
pseudo-time is quite different. Also closely related is the practice of using
version numbering for modifications to files, as in TENEX [3], though such
operating systems provide no mechanism for interfile consistency.




At any point in tihe, the object has a known history, which is an ordered

sequence of versions of the object history that have been created by updates.
As time proceeds, the known history is educed (led out) by reads and updates
to the object. The eduction will converge toward a complete history of the
object« The mechanism of eduction will be discussed shortly. Please note,
however, that the time order of creation of an object’s known history may be

different than the order of versious in the known history.

Versions of different objects are correlated by a correspondence between

the versiéns of an object and a totally ordered set called pseudo-times. For

each object, pseudo-times serve as indices to the versions. That is, there is
a mapping from pseudo-time to versions that is a function, so for a particular
pseudo-time, its image under the mapping is at most one version. Each object
has a creation pseudo-time and a deletion pseudo-time. The mapping from
pseudo-time to versions has the property that fér all pseaudo~times between the
creation and deletion pseudo-times there may exist corresponding versions, and

for all other pseudo-times, there are no corresponding versious.

The pseudo-time ordering orders the versions in each object’s known
history. A pseudo-time stands for a particular (virtual) system state, where
the version of each object that corresponds to the given pseudo-time is that
object’s contribution to the state. As we shall see, the pseudo-time ordering
of states 1s somewhat decoupled from the real time ordering of events in the
system. For example, suppose X and Y are pseudo-times, such that X<Y. Then,
the version of object A corresponding to pseudo-time Y may be incorporated
into A”s known history at a real time when the version of object B

corresponding to pseudo-time X is yet undetermined.



The desirable property of this definition of system states is that the
definition does not require simultaneity in real time. Thus, requiring that
the initial values of all objects accessed by an atomic action be from the
same system state can be implemented by using the same pseudo-time to select

each version accessed.

Figure A is a pictorial representation of a group of known histories.
The circles represent object versions. Each version corresponds to a range of
pseudo-times, indicated between the arrows connecting it to the pszudo-time
axis. The versions making up the global system state A are X.l, Y.2, and Z.2.
The versions making up the system state B are X.2 aﬂd Z.2. At the real time
these known histories were observed,* there is no version yet decided for

object Y in system state B. That version will be decided later.

Programs and Pseudo-time

To simplify the discussion here, we assume that each independently
initiated computation is represented by a sequential process.** An individual
process executes a program that consists of one or more atomic actions to be
performed (where such atomic actionss are specified as programs making one or
more data accesses). Grouping of program steps into atomic actions can be

specified by some relatively simple syntax, as shown in the later example. We

* Presumably some omniscieat observer, since in a distributed system it may
not be possible to observe all objects simultaneously.

** The case where computations have internal concurreancy, though too complex
to handle here, can be treated by natural extensions to the mechanisms
described here [17]. Note also that these sequential processes can model
computations that need not be executed sequentially--for example, successive
reads of two distinct data objects can be executed concurrently in real time.
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discuss here the structure of an underlying implementation using pseudo-time

and possibilities.

All programs access data with an implicit specification of the
pseudo~time to be used‘in accessing the data. That is, when a progran
attempts to read a value from data object X, the underlfing implementation
specifies the particular pseudo-time to be used in conjunction with X to
select the proper version of X. Similarly, when a program attempts to update
X, the underlying implementation furnishes a pseudo-time that is used to
select the place in the object history where the version resulting from the

update should be put.

The mechanism for providing the proper pseudo-time for accesses and

updates is the pseudo-temporal environment (PTE). The pseudo-temporal

environment is a part of the virtual processor executing the program, much the
same as are the program counter and the object name resolution environment.
Essentially, the pseudo-temporal environment is a source of monotonically
increasing pseudo-times selected from a given subset of all pseudo-times.
Monotonicity is required within a process so that the pseudo-time ordering of

system starts reflects the causal ordering of steps within a process.

Each object access or update involves selecting a new pseudo-time from
the pseudo-temporal environment of the executing program, to be used to
specify the version accessed or updated. Since the‘pseudo—times selected for
a given executing program increase from access to access, each program step

sees a successively later state of the system.
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Atomic Actions and Pseudo-temporal Environments

An atomic action is executed in a pseudo-temporal euvironmeant that
provides exclusive access to a particular range of pseudo-time. No program
executed outside the atomic action will have pseudo-times in its PTE that lie
between two pseudo-times in the atomic action’s PTE. As shown in figure B,
each atomlc action has exclusive access to a contiguous region of pseudo-time,

while processes in general may access several regions of pseudo-time.

Creation of an atomic action requires the construction of a
pseudo-temporal environment that grants the atomic action exclusive access to
a region of pseudo-time that no other computation can access. In some sense,
then, pseudo-times are used for synchronization in much the same way as
capabilities are used for protection--if a program cannot name a system state,
then it cannot access it. For this reason, the preseat mechanism can be

described as a naming mechanism for achieving synchroanization.

Implementing Known Histories

_Objects are imple@ented as a set of versions that chprise the known
history. One feasible implementation is as a singly-threaded list of
versions, where each version is marked with the start and end pseudo-times of
the range of pseudo-times that refer to the version. 1In figure C, we
fllustrate such a list. The followiqg discussion assumes that once a version
of an object 1s created, Lt will be stored Eore?er. Practical implementatlon
requlres developlng a strategy for throwing away old versions, a simple

example of which is described in the author’s dissertation [(L71.
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Reading an object requires searching the known history for a version
whose range of pseudo-times encompasses the pseudo-time selected from the PTE
controlling the access. If such a version 1s found, then the access simply
returas that version. If not, the proper version has not yet been chosen for
that particular pseudo-time, so the completion of the access requires eduction

of the known history.

One way in which an object’s known history is educed is by updates to the
object. An update is completed by installing a new version containing the
required value into the proper point in the known history, with start and end
pseudo-times equal to the pseudo-time selected for the update from the
compu;ation's pseudo-temporal environment. (See figure D.) Since it is
required that the mapping from pseudo-time to Versions of an object be
functional, there is the possibility that an attempt to install a new version
may be blocked by a version that already exists corresponding to the desired
pseudo~time. 1In thé case of such blockage, the update will fail, with no

effect on the known history. Such failures will be discussed shortly.

The other way an object’s known history is educed is by extending the
range of pseudo-time covered by one version. That is, the end pseudo-time may
be increased so that the version corresponds to a loanger range of
pseudo-times. This type of eduction corresponds to "inertial' behavior of
objects--an object not updated remains the same. The cause of such an
eduction 1is an accéss at pseudo-time P that 1is not satisfied by any version in
the known history. In order to respond with a value, the version whose end

pseudo-time 1s the greatest value still less than P is educed so that its end
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pseudo-time is equal to P. That version can then be used to satisfy the

access. In figure E, an access at pseudo-~time P causes the version whose end

pseudo~time is Y to be educed.

Example

To illustrate what has gone on so far, consider the following simple
example of an atomic action to subtract A from the balance of a bank account,

and add A to the balance of another.

begin atomic action

bal_l :=bal_l + C
bal 2 :=bal_2 - C

end atomic action

The cells bal_l and bal_2 are objects. The atomic action makes four uses of
bal_1 and bal_2, two reads to obtain the values of bal_l and bal_2, and two;
updates to set the new values. The value of bal_l is to be obtained at
pseudo-time Pl, and updated at P2. The value of bal_2 is obtained at P3 and
updated at P4. Assume that bal_l’s initial value at PO is X and bal_2°s is Y.
Because of the order of execution of the steps of the action, we know

Pl < P2 < P3 < P4.

The steps are pictured in figure F. First, bal_l’s known history is
educed by extending the version at PO to correspond to Pl. Then bal_l is
updated by creating a new version valid in P2. Similar steps are then

performed for bal_2.

We have insured that no other computation can use the objects at any

pseudo-time between Pl and P4 inclusive. Thus, the values observed for bal_l
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at Pl and for bal_2 at P3 must be unchanged from the initial values.
Furthermore, with the exception of the changes to bal_l and bal 2 that are
explicitly made, no other object value changes will occur between the initial
system state corresponding to Pl and the final system state corresponding to
P4. We have not completely implemented atomic actions, however, since it is
still possible by our eduction rules that a EOmputation reading at later
pseudo-times than P4 could read both the new version of bel_l and the old
version of bal 2. The token mechanism about to be described prevents this

eduction.
Failures

The remaining knotty problem in implementing atomic actions is the
handling of failure. If the atomic action example ahove féiled to complete
(was not able to perform the update at P4 for some reason), then other
computations might be able to observe the intermediate state at P2 by
extending the range of pseudo-times covered by the new version of bal_l and
the old version of bal 2. There are many possible re asons for such a

failure, such as:

a) inability of the computer controlling the current process step to
communicate with the site containing bal_1l after requesting the
update at P2, but before it is known that the update completed,

b) a failure of some node or communications link preventing forward
progress of the process,

c) a protection violation is incurred in trying to use bal_2 (perhaps

resulting from revocation of access), etc.
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Not all of these reasons can be detected in advance of the attempt to access

bal_2.

In the mechanism for managing known histories, another possible occasion
for failure was introduced. If a version of bal_2 already corresponds to P4,
for example, the update cannot be performed. This faillure is easily handled
in the same way the other failures listed above must be handled-~by backward

error recovery [5,6,16]. That is, all the updates made by the atomic action

in the course of 1its execution must be undone.

Backward error recovery is potentially difficult in the presence of
concurrency, since undoing an update may require undoing the effects of other
computations that used the value created by the update as input. This can

lead to a variety of problems, e.g., the domino effect [16]. WNone of these

problems will be encountered with respect to atomic actions if the
implementation respects the defining rule that no computation outside the
atomic action can observe the intermediate states the system attains duriag

the atomic action.

Tokens and Possibilities

The mechanism used to implement backward error recovery is a close

relation to the two-phase commit mechanism described by Gray [10] and Lampson

and Sturgis [13]. That is, all updates are made tentatively until the atomic
atomic action finishes, whereupon a single primitive atomic action installs

all updates permanently.
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A tentatively created version is called a token. Tokens are grouped into

sets called possibilities. Eventually either all tokens belonging to a

possibility are committed, made actual versions, or all tokens of a
possibility are aborted, completely erased. All updates made in an atomic
action are in the same possibility, thus all updates are committed or all are
aborted. Aborting a possibility allows backward error recovery in the case

that a failure 1is discovered before the atomic action terminates.

Each computation executes in a possibility. That is, anogher part of the
state of the virtual processor executing a computation is the name of the
possibility in which it is executing. All updates performed by the
computation result in the creation of tokens belonging to the possibility in
which the computation executes. Tokens are like versions, in that they
correspond to a range of pseudo~time in the object known history, and have a
value, but there are restrictions on which computations can access the value
of a token or extend its range of pseudo-time. When some computation attempts
to read an object in a pseudo-time that either maps to a token in the known
history or maps to a point where the immediately preceding item in the known
history is a token (in figure G, where diamonds represent tokens, Q and R are
such pseudo-times), the reaa must wait if the token is not a member of the
possibility in which the reads 1is attempted. Such reads will wait until the

possibility coantaining the token is either committed or aborted.

This waiting is the mechanism that guarantees that objects updated by a
partly completed atomic action are not observed outside that action. We must
take special care, however, that an updated object created by an atomic actiomn
can be read later in that action. For this reason, if a read that maps to a

token as above, is executed in the possibility that coantains the token, the
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token’s value will be returned, and, if necessary, the end pseudo-time of the

token will be increased to the pseudo-time of the read.

Consider, for example, an atomic action that updates an object, then
reads it several times. The atomic action will create a token as the result
of the update, but the possibility associated with the update cannot be
committed until the atomic action completes, to guard against later failures,
yet the reads attempted by the atomic actiom should be allowed. The rule for

token accessibility gives the correct behavior.

Implementing Atomic Actions

An atomic action is executed in a pseudo-temporal environmeant that gives
it exclusive access to a range of pseudo-time. In addition, it executes in a
possibility that is used by no other computation, thereby guaranteeing that
all the tokens it creates are visible within the atomic action, but not
outside the atomic action. The final step of an atomic action 1s to commit
its possibility. Since that is the ftnal step, if the atomic action cannot

complete due to any failure, its possiblity will never be committed.

To guard against a possibility remaining in a uncommitted, unaborted
state forever, a timeout is associated with it. If the timeout expires while
the possibility is not yet éommitted, the possibility is automatically

aborted.

More Example

Let us coasider the earlier bank account example further, given the new
ideas of tokens and possibilities. At the beginning of its execution, the

atomic action creates a pseudo-temporal eunvironment and a possibility, Q, and
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loads them into its virtual processor. It then access bal_l at pseudo-time
Pl, extending the range of the existing version. Then it updates bal_l to its
new value at P2, making the resulting token a member of Q. Should a failure
be encountered past this point, the possibility Q will be aborted, either
automatically by timééut, or explicitly by the atomic action. Consequently,
the new token for bal_l will not be observed outside of the atomic action
should a failure occur. Assuming no failures, bal_2 will be accessed and
updated, creating another token as part of Q. Once all has gone correctly,
the process executes the primitive atomic action that commits all members of

Q.

Now consider the interaction of the example atomic action with some other
concurrent computation that reads or updates bal_2. Because the atomic action
has exclusive access to its pseudo-temporal eunviroument, the pseudo-time, P35,

of such an access must be either less than Pl or greater than P4.

A read at P5 < Pl, executed before the atomic action accesses bal_2 the
first time, will extend the range of pseudo-time, for the initial value to P5,
returaing the initial value. Then the atomic action will extend the range of
P3, also returning the initial value. If the read is attempted after the
atomic action’s access to bal_2 (but P5 < Pl), then the atomic action will
have already extended the range to Pl. Thus it is irrelevant which order the

two accesses actually are processed at the object’s known history.

The order of processing does matter, however, if P4 < P5. 1If the update
to bal_2 by the atomic action is processed first, thean a token will be
created. Then the read at P5 will discover the token, and since it is not

executed in posgsibility Q, the read will wait until the Q is either committed
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or aborted. If Q is committed, then the token will become a version whereupon
the access at P5 will extend it. 1If Q is aborted, then the token will be
removed from the known history, and the initial version of bal_2 will be

extended to P5.

The other order, where the access P5 occurs first, is more interesting.
When the update to bal_2 is attempted, it will fail, .since the initial version
will have been extended to P5, covering the point of update at P4. Thus the
atomic action will be aborted. In the following discussion, we sﬁow how to

reduce the frequency of such aborted actions.*

Relation of Pseudo-time and Real Time

The problem of a read aborting an atomic action doing an update only
results if the time at which the read is attempted precedes the time of the
update, but the pseudo-time of the read is greater thaan that of the update.

We can drastically reduce the likelihood of this occurrence by ensuring that
the pseudo-temporal environment of an atomic action started at time t contains
pseudo-times less than the pséudo—temporal environment of an atomic actiomn

started later than t.

Of course, in a distributed system with highly variable communications
delays, an atomic éction may be delayed so that its data accesses are
attempted later than accesses to the.same data by an. atomic action starting
later. In such an event, it 1is entirely possible that the earlier-starting

atomic action will be aborted. This is a price that must be paid in order to

* There is a close analogy between this aborting described here and the
aborting resulting from a detected deadlock in a scheme with deadlock
detection.
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support atomic actions where the set of data objects used and modified cannot
be predicted in advance (an alternative scheme might use locking of data at
the time an access is’attempted, with deadlock detection, but it would be
still necessary occasionally to abort atomic actions that have done a

substantial amount of work).

Implementation of Pseudo-times and Pseudo-Temporal Environments

‘Pseudo—temporal environments for atomic actions are ranges of
pseudo~time, guaranteed to be different from any other pseudo-times 1in the
system. A pseudo-temporal environment should be easily constructed, since one
is required for each new atomic action. The constraint just mentioned, that
later-constryucted pseudo-temporal eavironments have greater pseudo-times than

earlier ones, should also be honored.

One implementation that satisfies these constralnts uses approximately
synchronized real-time clocks at each node of a distributed system. Clocks
can be synchronized easily to within microseconds using the WWV time standard.
Lamport’s clock synchronization mechanism would also suffice [12]. These
clocks are used to create timestamps that are unique. To the value read from
the clock, a unique sité identifier is concatenated as the low-order bits.
Thus,‘even though two sites need not coﬁmunicate, it is guaranteed that the

sets of timestamps they generate are disjoint.

A pseudo~temporal environment for an atomic action 1is represented as a
two-component structure consisting of the timestamp from its creation, and a
timestamp read as part of the last selection of a pseudo-time from it. For
simplicity, assume that each of these quantities is specified as an N-bit

integer.
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A new pseudo-time is selected from the pseudo—temporal environment by
getting a timestamp and prefixiang it with the timestamp of creation of the
PTE. (See figure H.) The timestamp fead must be greater than the timestamp
of all prior selections; if not, either the new selection must wait, or the
real-time clock must be set forward. The real-time clock value read also

replaces the timestamp last selected in the PTE.

Comparison of ﬁseudo—times is done by treating them as binary fractions,
where the leftmost digit is the high-order Sit of the creation timestamp of
the source PTE. As a result of this definition, the pseudo-times in one PTE
always are less than any pseudo-times selected from a PTE created later. If
two PTE’s are created "simultaneously" at different sites, pseudo-times from
each will be ordered by the order induced by the site identifiers that make

timestamps unique in their low-order digits.

Thus far, we have discussed the PTE’s and pseudo-times associated with
atomic actions. Processes that make accesses to data outside of atomic
actions nonetheless use pseudo-times. Such pseudo-times are derived from a
simpler kind of PTE that consists only of a cell containing the time of last
selection. A new pseudo-time is selected by just reading a timestamp and
storing it in the PTE. Treating these N-bit timestamps as binary fractiouns

orders them correctly with respect to timestamps belonging to atomic actions.

The use of timestamps for synchroanization was originally developed by
Johnson and Thomas [l11]. Later work by Thomas [19] and Bernstein, et al. [2]
have carried this approach further. We were inspired by these approaches,

though they lacked the crucial insight of using a set of timestamps as a

capability to gain exclusive use of a set of system states.
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Implementing Tokens and Possibilities

To implement tokens, the representation must keep track of which tokens
belong to each possibility, and provide a single primitive actionm by which all
tokens in a possibility can be committed. The implementation shown here is a

particularly simple two-phase commit protocol [10,13].

A possibility is implemented as a commit record, a piece of data that has

three possible states~-unknown, committed, and aborted. 1In addition the
commit record has a time of expiration, after which it is automatically
aborted if not yet committed. 1In a distributed system, the commit record is
placed at a particular site.* When a commit record is created, it is in the

"unknown" state, and its expiration time is set.

Tokens in a possibility contain a pointer to the commit record
representing the possibility. An attempt to access a token first checks to
see 1if the possibility in which the access is attempted matches the one
containing the token. If so, the token is accessed as if it were already a
version. 1If not, the current state of the commit record is checked--if still
"unknown", the access waits, if aborted, the token is deleted and the access

is reattempted, and if committed, the token is made a version and the access

is completed.

Since the commit record permanently records whether the possibility is

comnitted or aborted, and transmission of this information is triggered by

* It is possible to distribute the implementation of commit records so that
the state of the commit record is not kept at a single site. Such a strategy
enhances availability of the commit record’s state at the cost of a more
complex implementation. See the author’s dissertation for details of this
technique and other subtle issues of the implementation of possibilities.
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attempts to access tokens, committing or aborting all of the tokens in a
possibility is accomplished by simply setting the state of the commit record.
Unlike the protocols of Lampson and Sturgis [13], Gray [10], or Alsberg [l],
this protocol 1s extremely simple to understand and get right. The provision
of a simple way to abort a whole possibility explicitly or by timeout is also

novel.

Further Topics

The approach described here was first described in the author’s doctoral
dissertation [l7]. Space in this paper does not permit discussion of a number
of very important issues briefly outlined here. The interested reader is

referred to the dissertation for details.

A major result is that atomic actions are modularly composable
operations. That is, one can implement atomic actions so that new atomic
actions can be constructed out of previously existing atomic actious without
either (a) modifying the preexisting implemeantations or (b) requiring that the
new actions know what objects the preexisting atomic actions access. Locking
mechanisms for providing synchronization or recovery for atomic actions make
it difficult thus to compose atomic actions because of the need to have at
least one instant of time where all data touched by an atomic action is
locked. Composing atomic actions in a system based on locking thus requires

extending the time during which an object is locked.

Implementing composable atomic actions requires extending pseudo-temporal

environments and possibilities. PTEs are extended so that a nested atomic
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action has exclusive access to a contiguous subset of the pseudo-times in its
containing atomic action’s PTE. Possibilities are extended so that the

outermost atomic action is the union of dependent possibilities.

Because multiple versions of objects are maintained, atomic actions that
read very large numbers of geographically distributed objects are easily
executed concurrently with later updates. It is thus unnecessary for such

large transactions to lock out all other atomic actions.

Using pseudo-times as unames of system states allows backing up a set of
objects to an earlier consisteat state, by reading the value of these objects
as of an earlier pseudo-time known to correspond to a consistent state, and
performing updates in the present system state. Since all versions of objects
are saved (but see below), taking a checkpoint for such backup simply requires
remembering a pseudo-time. Pseudo-time thus also provides an indexing
technique for backup, given that we add a state restoration mechanism that,
given a pseudo-time saved at a checkpoiat, will restore the states of a set of

objects to that of the checkpoint.

Object known histories as described here have no provision for forgetting
about old versions that will never be read again. At the very least, such
versions should be moved to archival media for backup (given the checkpointing
strategy above), and probably should be garbage-collected. We have a scheme
for garbage-collecting such old versions that has the property that for
objects that have not been receatly updated, only the most recent (in

pseudo~time) version need actually be saved.
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We also have a garbage-collection mechanism for possibilitieé that
removes a commit record when the last token referring to it 1is either aborted

or committed.

In a distributed system, where communication 1s costly, it is often
useful to encache the state of an object at a site other than its home site.
Versions of objects provide a useful unit of encachement, and several
strategies for distributing new versions to encaching sites can use the fact

that the (object name, pseudo-time) pair uniquely identifies the version.

If reads and updates to objects in a distributed systém are requested by
messages, the mechanisms outlined in this paper work correctly, even if the
communications system reorders the messages, duplicates tﬁem, or loses them.:
The reason for this is that the pseudo-~time and possibility required for each
read and update provides enough identification to order each read or update
requests effect on the object, and to ensure that a request is idempotent (may

be executed repeatedly, with the same effect as 1f executed once).
Conclusions

In this paper, we have concentrated our attention on one aspect of
synchronization--control of simultaneous access to shared data objects. It
has been traditional to treat such sunchronization with the same ideas and
mechanisms as other problems of synchronization, such as disk queue scheduling

and interprocess control communication,* even though synchronization of access

* Interprocess coatrol communication is a generic term for mechanisms that
allow a process to block itself when it has nothing to do, allowing a physical
processor to be multiplexed among many processes. IPCC may be used in
implementing controls for access to shared data, though it is more generally
useful.
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to data 1s a very simple and important case. The power of synchronization
mechanisms has been measured by determining what "synchronization problems"
they can and cannot solve, where such problems often have little to do with

the important case of concurrent access to data.

As we have seen, by treating data synchronization alone, we need not be
so concerned about the timiung of programs accessing data, but rather we
concern ourselves with the more relevant requirement that the program access
the correct states of the data. The division of synchronization into two
élasses, data access synchronization and process (timing) synchronization,

seems to be a useful and powerful division.

Our view that a data object really stands for a sequence of states and
that accesses (reads and updates) to the object are operations on that
sequence 1is rather powerful. By defining a naming mechanism for selecting the
point in the sequence of states to be operated on and implementing programs
with that naming mechanism, programs accessing shared objects can be defined
without need to consider their timing. Since timiang of programs is one of the
attributes of program execution over which the designer has little coantrol
(especially in distributed systems) reducing the importance of timing in

understanding program execution simplifies the design task.

It 1s interesting to note that our object semantic model is somewhere
between the traditional von Neumann machine semantics based on changeable
memory locations and more recent "side-effect free" machine semantics best
illgstrated by dataflow machine architecture [4]. Although our objects can be
updated, they are bullt on a substructure consisting of immutable object

versions that correspond to the structured objects available in a dataflow

-/
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machine. The immutability of object versions leads to the same advantage that
is accrued froﬁ immutability in a dataflow architecture, that the timing of
concurrent programs is not important to the behavior of the program. However,
by supporting an update semantics on top of the immutable versions, we support
a user view of the system as an extensive memory with state charging
operations, a view that seems to be better for inter-user sharing. Thus, we

may have gotten the "best of both worlds."

In a system designed to be used in building modular abstract operationmns,
both the synchronization and recovery mechanisms must be designed to preserve
the degree of abstraction of the module interface; Both improper
synchronization and improper recovery from failures may result in compromising
the abstraction, and therefore both mechanisms must be present and correct to
provide such abstractions. We have shown both a synchronization mechanism and
a mechanism that provides limited backward error recovery, that work well
together in building atomic actions, a kind of abstract operation. We believe
that such mechanisms must be designed to work together; the traditional
approach of implementing reliability measures and synchroanization measures

independently would not work in the distributed computing eavironment.
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Figure C Known History of an Object
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Figure F Example eduction of two known histories
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