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Abstract

The goal of this paper is to tie together recent results and insights
that have emerged from the body of research on the update problem in
distributed systems. Its intent is not to propose yet another algorithm.
Rather, the paper seeks to present a realistic picture of where we stand, and
what problems we should concentrate on in order to make distributed systems

practical.

Introduction

Much of the work on distributed systems has concentrated on the problem
of performing an update that involves several physical nodes. While not all
distributed applications will require such rigorous control as is implied by
the protocols that have emerged from this body of work, mechanisms for
performing distributed updates atomically belong among the basic mechanisms of
a distributed operating system. And, most of the reliability issues
concerning distributed systems have been raised in connection with such
mechanisms.

The goal of this paper is to analyze and tie together the recent advances
and insights concerning the problem of modifying a set of objects in a
distributed system in a single atomic operation. Three separate research
reports recently came out of the Computer Systems Research Division of the
Laboratory for Computer Science at M.I.T.: the work of Reed [REED78],
Montgomery [MONT78] and Takagi [TAKA78]. While each of them presents a new
approach to ensuring atomicity of concurrent transactions, what is
particularly appealing and important about these reports is that they address
the problem of implementation and develop innovative mechanisms that make the

implementation of the protocols on a real distributed system feasible. These



three reports together, analyzed and compared, provide a number of interesting
insights that represent a significant step towards our understanding of how to
build reliable distributed systems.* Of course, the research presented in the
three specified reports cannot be addressed in isolation from the earlier work
in this area, in particular since all three pieces of research have a common
root, the two-phase commit protocol developed independently for System R at
IBM [GRAY78) and Lampson and Sturgis at Xerox PARC [LAMP76].

The paper extends the discussion of the atomic distributed update to the
replicated database case and points out the essential differences between it
and the partitioned database case. A revision of the general model of
transaction and the assumptions regarding the properties of the underlying

(hardware and software) system concludes the paper.

Atomic Operations

The distributed update problem can be divided into two categories:
1) wupdate of a partitioned database, and
2) update of a replicated database.

It should be pointed out that a database is used here as a
generalization, an abstraction, that is, it does not necessarily imply the
kind of database to which the user interfaces through an elaborate database
management system. The state information of any system (application)

represents a database. More specifically, a partitioned database can be

* Although many of the problems that will be discussed here occur in a
conventional system built around a central processor, the physical
distribution and decentralization of control constrain the possible solutions.
In particular, it is necessary to limit the number of messages that must be
exchanged among the participating nodes to ensure reasonable performance.
Another problem is that if one node sends requests to several different nodes,
these requests will experience different delays, and consequently may be
received in a different order relative to requests from other nodes.



defined as an abstract object that consists of several separately managed
pieces (abstract objects) that may reside at different physical nodes. A

replicated database is an abstract object that is implemented as a set of

objects, called here images, where each image represents the same abstraction.
In both cases, the problem is to ensure consistency among the different
objects that form the representation. In the first case, the consistency
constraints are defined by the semantics of the data; this is usually referred
to as internal consistency. In the second case, it is usually required that
all images are always the same; this is called the mutual consistency
requirement. In both cases, it is unreasonable to require that the
consistency constraints will hold at every instant; practical update
algorithms must be allowed to produce brief inconsistencies as part of
changing the whole database to a new consistent state. However, if all
actions that need to be performed to step a database from one consistent state
to another are grouped together in a single atomic operation, the consistency
constraints are guaranteed to hold between these atomic operations. In the
context of a partitioned database, atomic operations are usually called
transactions; in this paper, these two terms will be used interchangeably.

The definition of an atomic operation is that it is indivisible; the
temporal inconsistency of the database on which it operates is hidden within
the operation. This indivisibility has two implications:

1) the results of an atomic operation are not affected by other,
concurrent operations, and

2) an atomic operation is either carried to its completion, according

to its specification or, if it fails, or if the originator decides



to abort it, it leaves the system in the state it was prior to the
invocation of that operation.*

This paper is concerned mainly with the second aspect, that is, recoverability
of an operation. Actually, as it stands, 2) also states a requirement of
correctness That is, it requires that the program that implements an atomic
operation either be provably correct or that there exist sufficient defenses
in the system that will detect not just hardware failures and synchronization
errors but also errors caused by the program that implements the operation.
The first is an area of much current research; the second approach has been
investigated by a group from the University of Newcastle upon Tyne [RAND78].
However, in addition to executing correctly in a standalone mode, an atomic
operation must execute correctly in the presence of concurrent operations.*

This paper is not concerned with how errors are detected; it concentrates
on the problem of recovery from those errors (failures) that are detectable.
The class of detectable errors is assumed to include scheduling anomalies
(e.g., deadlocks). Alto, an operation may be aborted (and thus must be
recovefed) at the request of its initiator.

The protocols for managing transactions in a distributed environment use
two kinds of mechanisms:

a) mechanisms that enforce the correct order of individual actions, and

b) mechanisms that supervise commitment of the entire operation

(transaction).

* In order for operations to be recoverable, scheduling of concurrent
operations has to be handled carefully; thus these two aspects of
indivisibility cannot be completely separated.

* In most schemes, this is guaranteed only if the other (concurrent)
operations are also atomic. Reed’s work is a notable exception [REED78].



Although it would be possible to design both a and b type mechanisms so that
they could be used to build atomic operations for any kind of distributed
database, it makes sense, as explained later in this paper, to make the
mechanisms for partitioned databases somewhat different from those for
replicated databases. 1In particular, for partitioned databases, the ordering
constraints on actions that belong to different transactions need to be
somewhat relaxed, while for replicated databases, the commitment constraints
need to be relaxed. Therefore, the two types of distributed update will be
treated separately. The following section analyzes the protocols for
transactions that operate on a partitioned database. The replicated database

case is discussed in the following section.

Protocols for Partitioned Databases

Transactions that operate on a partitioned database usually are modeled
as having a central coordinator (a transaction manager, abbreviated TM) that
issues requests to a selected set of entities (participants of a transaction)
that manage different pieces of a database (database managers, or DMs). The
updates of objects controlled by different DMs are coordinated by some variant
of a two-phase commit protocol.*

Figure 1 is a model** of what happens in each DM for each tramnsaction in

which the DM participates. First, the TM sends a read request to the DM.

* It should be noted that it is not necessary to arrange the participants of
an atomic transaction in such a two level hierarchy. In particular, two-phase
commit protocols have been developed or at least shown to be possible for a
multi-level hierarchy [REED78], daisy-chain [GRAY78, TRAI78] and even a
general graph [GRAY79].

** In general, the requests sent to DMs in the first phase can be of the form
"perform operation X", where a significant amount of work may need to be domne
by the recipient DM. However, most proposed schemes assume explicit read and
write requests.

-’



This may be followed immediately or later by a write request for the same
object. Although the DM has the new values now, it does not make any
irrevocable changes at this point because it is not yet clear that all
participants will be willing or able to act on their part of the transaction.
If any request cannot be performed, the whole transaction fails. If all
requests succeeded in all involved DMs, the TM sends a prepare message to the
DMs. The prepare message is the end of the first phase. Any DM that replies
with a positive acknowledgement to the prepare message enters the second phase
where it is committed to obey the decision of the TM, that is, it must either
make the requested changes definite if the decision is '"commit" or completely
undo any changes made on the behalf of this transaction if the decision is
"abort". Until it acknowledges the prepare message, each DM is free to
refuse to perform the requested operations or cancel them on its own will.
Each phase has its own problems. The problem of how to schedule actions
that are part of different (concurrent) operations must be resolved during the
first phase. 1In this phase, the individual DMs can proceed independently. In
the second phase, a careful coordination of all participants is necessary to
ensure that either all of them commit or all of them abort their transaction.
In addition, it is necessary to decide when the objects modified by one
transaction can be made visible to other transactions. The choices are:
right after the new values have been received (i.e. after the write request
has been processed), after the prepare request has been received, or when the

commit request is received.

Phase l: Scheduling

The phase 1 activities of concurrent transactions can be coordinated in

several different ways:



1) 1locking: a) centralized [MENA78], b) distributed with centralized
deadlock detection [STON78], and c) distributed [GRAY78],
2) timestamp-based scheduling of accesses [TAKA78, REED78],
3) organization of the database that enforces correct ordering of
messages [MONT78].
Locking schemes, unless some additional sequencing information 1is used, are
all vulnerable to a deadlock. Deadlock detection in a distributed system may
be an expensive proposition, unless locking is centralized (e.g., all requests
for locks go through a centralized controller) in which case locking itself
might be too expensive because of this extra step of having to acquire the
locks.* Stonebraker [STON78] uses a compromise scheme where only the requests
for locks that cannot be granted are reported to a central authority (the
SNOOP) .

Takagi provides the following insight: the schemes that do not use
explicit locking are " . .based on the observation that a consistent schedule
of transactions is merely a (proper) sequencing of actions performed on the
underlying objects..." [TAKA78]. Since these schemes are set up so that the
proper ordering of actions can be resolved by each separate DM individually,
they are free of deadlock. Timestamp-based schedules vary in how they handle
out of order (outdated) requests. One approach is to discard a delayed
(older) request (and consequently the transaction that generated that request)
if a newer request (that is, a request with a higher timestamp) has already
been processed [REED78]. However, this may lead to a "dynamic deadlock' where

the same set of transactions is aborted over and over because those

* Garcia [GARC78] demonstrated that for a replicated database a centralized
locking scheme performs. better than a fully distributed scheme based on
timestamps, however, this does not imply that the same will be true for a
partitioned database.



transactions repeatedly outdate each other - this is similar to the collision
problem in contention networks such as Ethernet [METC76]. A different
approach is to discard a newer request in favor of a delayed older request,
given that the transaction that generated this newer request has not yet been
committed [TAKA78]. This solution may lead to a starvation (i.e., a specific
transaction may never succeed since other transactions will always cause it to
abort), but it is free of dypamic deadlock. An extension is to allow multiple
versions of objects to coexist: a delayed read request can be satisfied
without having to abort any other request if the particular version still

exists [TAKA78, REED78]. Finally, Montgomery uses an atomic broadcast

mechanism that guarantees that all DMs receive their requests in the correct
order; that is, "out of order" requests and the associated problems do not

occur in this scheme [MONT78].

Phase 2: Commitment and Recovery

The second phase in a DM, actually, the entire time interval between the
point when the TM issues the prepare request and when the DM receives the
commit or abort request represents a "critical window". It is critical
because if the TM fails before it reaches a decision about the fate of the
transaction and informs the DMs about this decision, all participants must
wait. In some circumstances, this wait period may become unbounded, as it was
shown for example by Montgomery [MONT78].

Even if there is no danger that the wait may be indefinite, it may have
serious consequences on the performance of the system, since the objects
modified by the transaction cannot be used by other transactions until the DMs
have received the commit message. The inclusion of another stage, the

explicit request to "prepare', is sometimes viewed as a way of shortening the



critical window;* the prepare request could be sent with (be implicit in) the
write request.

However, rather than narrowing the critical window, a better approach is
to make it less critical. This criticality is a result of assigning the
responsibility for making and executing the final decision to a single
component. One solution to this problem is to replicate this component. This
approach is used by Reed [REED78] where the state of a transaction is
maintained in a commit record, a data structure that can be replicated in
several nodes. Each DM can determine the state of the transaction by
inspecting enough copies of the commit record to obtain a predetermined number
of votes. Hammer [HAMM79] also utilizes multiple instances of the
coordinator, but the coordinator is replicated using a master/backup
arrangement similar to that proposed by Alsberg [ALSB76]. Using this
arrangement, the master is responsible for making the decision and delivering
the commit (or abort) messages to the DMs, but if it fails, one of the backups
will become a new master and complete this phase.

Takagi and Montgomery took a radically different approach. They both

rejected the requirement that the objects used in a transaction are not

available until the DMs know the outcome of the transaction. Essentially,
assuming that each object can be written only once in a single transaction,
the new contents can be made available (conditionally) immediately after the
write request has been processed.

Not only does this approach make the performance of the system less
vulnerable to failures, it can also improve performance in the absence of

failures, since it allows a higher degree of concurrency. However, it leads

* This approach is used in [LAMP76 and TAKA78]. Gray in his notes calls it a
three-phase commit protocol [GRAY78].
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to the problem of cascading of backout.* That is, if transaction Ti fails
after some other transaction ijhas read (and possibly modified) some objects
modified by Ti, both Ti and Tj have to be backed out. Of course, the output
of Tj could have been read by Tk, thus having to backout also Tk, etc.
However, assuming that failures are rare, this approach may still be
preferable, given that mechanisms exist for proper handling of dependent
transactions. Two conditions have to be satisfied:

1) during a backout of each individual transaction, the transaction
does not need to "reacquire" (in an exclusive mode) any of the
objects that it has read or modified in order to undo the changes,
and

2) it is possible to remember (or to reconstruct) all information flow
among concurrent transactions.

The first condition is necessary in order to avoid a possibly
unresolveable deadlock, that is, a deadlock that cannot be resolved by backing
out selected transactions, since backout may cause another deadlock. 1In such
a case the only recovery possible might be resetting the entire system into
some earlier consistent state. The second condition follows from the
discussion above. An interesting insight emerges from Takagi‘s work: to be
able to successfully manage cascading of backout, the recovery schemes ought

to be object-oriented. Object-oriented recovery means that all the

information needed to restore an object to some previous value is associated
with the object (provided by the manager of the object) rather than with the
individual transactions. Since concurrent transactions do not know of each

other and their dependencies, it is difficult to properly backout a set of

* This is called the domino effect in the work of the Newcastle group
[RAND78] .
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dependent transactions if the recovery data is maintained by individual
transactions. It should be pointed out, however, that transaction-oriented
recovery works fine if objects modified by a transaction are not released
until the end of the second phase.

It is interesting to compare the approaches used by Montgomery and
Takagi. Both maintéin "multiple uncommitted versions" of objects together
with information of how each version depends on other versions (indirectly,
both schemes also provide information about how each version depends on
(versions of) other objects). A new version of an object is created when the
controlling DM receives the new value for the object; this action does not
destroy the old value of the object (that is, the old version). A version
represents the (possible) state of the object. In addition to having a value,
a version has a time attribute that specifies its range of validity. The
range of validity of a particular version is the time interval in the history
of the object during which the object was in the state represented by that
version. A version is only tentative until the transaction that created it is
committed. If the transaction fails, the version is simply discarded. 1If a
version is discarded, that part of the object history is erased. Now if
another transaction can read an uncommitted version Vx and create its own
version Vy of the same or another object such that the value or even the
existence of Vy depends on Vx, it is necessary to remember that Vy is
dependent on Vx, since if Vx is discarded, Vy must be discarded also.

In Montgomery’s scheme, a request to read an object that currently has
several uncommitted versions will return a set of all possible values that the
outstanding (not yet committed) transactions could produce. This set is
called a polyvalue. Thus, when an object is made visible but before the

transaction that modified it is completed (committed or aborted) both the old
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and the new value (each of which themselves may already be a polyvalue because
the outcome of some earlier transaction has not yet been resolved) are
presented to the next transaction. If this next transaction needs a precise
answer, it will have to wait. If it is sufficient to know that all values
possible as of that time are within an acceptable range, the transaction can
calculate new values for each polyvalue component, and if the answer is
satisfactory, it may even commit. In this scheme, if one transaction is
aborted, no other transactions ever have to be backed out; the only thing that
has to be done is to throw away some irrelevant information, thus reducing the
polyvalue set. In this sense, the scheme is symmetric for the two possible.
outcomes of a transaction ~ this pruning has to be done both for the commit
and the abort decision. That is, this scheme, unlike Takagi’s scheme, does
not make any assumption about the probability of success. More important, it
allows transactions to be committed before the earlier transactions that
modified the same objects have been committed (or aborted).

Takagi’s scheme is more conservative. Here a transaction cannot commit
until all the transactions on which it depends have committed. 1If any such
earlier transaction is aborted, all dependent transactions must be backed out.
Takagi assumes that failures are rare, that is, once a new version is created,
it is very likely that it will be committed; put in different words, with high
probability it is the right value that the next transaction should see. Thus,
a read request returns the value of the newest version.

Interestingly, Reed also employs multiple versions in his schene,
however, his emphasis are on supporting multiple committed versions. An
uncommitted version (token) can be re;d within the same transaction that
created it, but not by other transactions. Thus, no cascading of backout

occurs. A transaction is backed out merely by deleting its uncommitted
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versions of modified objects. The fact that several committed versions are
maintained and that the validity of each version is specified in pseudo-time
(an artificial, system~wide monotonically increasing measure of system
progress) means that it is possible to get consistent snapshots of the past
states of the databases. This ability consequently means that although
committed transactions cannot be undone individually, it is possible to back
out the entire system to a specific past state.

All the schemes that use multiple versions require two kinds of
mechanisms:

1) The existing versions of a particular object must be grouped
together (for example, by using a descriptor table [TAKA78] or a
linked list [REED78]) and managed in such a way that the users see
only a single object.

2) It is necessary to be able to determine whether or not a version is
still dependent on the outcome of some transaction and which
transaction it is.

In Takagi’s scheme, these two kinds of mechanisms are merged in the descriptor

table and the operations that manipulate the table. The result is a

recoverable object that allows a high degree of concurrency. Each recoverable

object, in addition to the operations that read and manipulate the state of

the object, has two operations defined on it:

commit: commits the changes made by the transaction that invokes the commit
operation, (and only those changes),

undo: restores the state of the object to that in which the object was
immediately prior to the processing done by the tramnsaction that

invokes the undo operation.
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The notion of recoverable vs non-recoverable objects is not new; it appears in
the work of Anderson, et al. [ANDE76, ANDE78} and Verhofstad {VERH77].
However, Takagi’s definition explicitly brings up the issue of concurrency
allowed on recoverable and non-recoverable objects. Reed presents two
separate mechanisms, one for creating new versions and incorporating them into
the object’s history, and a second mechanism, called dependent possibility,
for keeping track of version dependencies. Although in the original scheme
the latter mechanism is used only to control commitment (or backout) of nested
transactions,* such a mechanism could also be used to keep track of

information flow between otherwise independent concurrent transactions.

Protocols for Replicated Databases

In the beginning of this paper, the problem of a distributed update was
divided into two categories. Thus far, the discussion has concentrated on the
first one, that is, update of a partitioned database. However, for
reliability reasons, the critical components of a system need to be
replicated. An example of the need to replicate a critical component was seen
in connection with the function of the TM in the two-phase commit protocol for
a partitioned database. The state of such a replicated component can be
viewed as a replicated database.

As some people involved in development of commercial computer systems
believe, the problem of supporting multiple images of an object in a
distributed system is more important than the problem of a partitioned
database. This observation has two arguments as its basis. First, it is

questionable whether the consistency constraints that span node boundaries

* Transactions can be built of smaller transactions, but the versions produced
by component transactions cannot be committed until the containing transaction
is committed.
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must be maintained at all times. It may be sufficient to ensure consistency
of daily reports; temporary inconsistencies that arise during the day may have
no effect on the correct operation of the system, due to the nature of the
application. Reliability is a much more compelling requirement. Second,
maintaining a replicated database seems to be a harder problem than the
partitioned database case. On the other hand, it is often not clear that
multiple images need be maintained at separate nodes; making a single node
superreliable (a multiprocessor configuration) and making sure that it is also
always accessible from all the interested parties in the network (by providing
alternate communication paths) may possibly be a better solution.

However, there is another important reason for supporting multiple images
of objects on different nodes, and that is better performance.* Both of these
reasons can be merged into a single goal: the purpose of replication is to
increase availability.

Now how is the problem of updating a replicated database different from
that for a partitioned database? Conceptually, one might start by observing
that a replicated database merely presents a particular example of a

consistency constraint, so a two-phase commit protocol could be used to
coordinate the update of the existing images. But this approach, while it
assures mutual consistency of the images, succeeds in missing a principal
point of replicating the database; availability of the database even if some

nodes are not operating or accessible. The two-phase commit protocols require

* Actually, one of the main reasons behind a partitioned database is also

increased performance. Information should be close to where it is most

frequently used; this eliminates the delays that would be experienced if the
information had to be acquired from a distant node, especially if the distant

node were inoperational or inaccessible. It is hoped that updates that

require participation of several nodes will be infrequent. However, even an N—
infrequent update that cannot be completed may delay everybody.
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simultaneous availability of all the images in order to accomplish an update.
Thus, a more sophisticated scheme must be invented. In particular, what is
needed is a scheme where only a fraction of the images must be simultaneously
available to be able to proceed with an update. Alsberg’s n-resiliency
protocol, which requires participation of n images, belongs to this category
[ALSB76]. 1If this approach is taken, it is necessary to ensure that once an
update is committed, all images eventually will be updated. Thus, the last
part of the two-phase commit protocol, that is, informing all participants
about the outcome of a transaction, becomes more involved.

The usual two-phase commit protocol guarantees that all DMs see all the
transactions that they ought to see. In the n-resiliency protocols, some DMs*
may miss one or several transactions. Since in a replicated database the
results of each transaction can always be found out from those images which
actually saw the transaction, this is not a problem as long as each image can
reliably detect if it has missed something. None of the timestamp-based
schemes for transaction scheduling described in the previous section is
sufficient to deal with this problem. One possibility is to associate
globally unique sequence numbers rather than timestamps with transactions and
schedule transactions strictly according to their numbers; that is, before an
operation requested by transaction k can be processed by a particular image,
that image must have seen all of the transactions k-i, i=1, 2...k-1.
Unfortunately, such a scheme requires a central component such as an
eventcount [REED77] that assigns these numbers to individual transactions. A
central component always poses a reliability problem. So, this component also

would have to be replicated, and its updating coordinated, using again some

* In this case, DMs are managers of individual iamges.
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n-resiliency protocol.* Finally, to prevent inconsistencies in case of network
partitioning, n must be greater than or equal to the majority of the existing
images. Such a majority-based two-phase commit protocol was developed by
Garcia [GARC78B].

Montgomery’s scheme [MONT78] deserves special attention since it does not
require any modification to work for a replicated database. Also, it can be
easily extended to combine partitioning with replication, that is, some (or
all) parts of the database can be replicated. First, his hierarchical network
guarantees that all messages are eventually delivered and delivered in the
correct order. Furthermore, his scheme does not require a majority vote
before a replicated object can be updated, because it is impossible to perform
the update unless the request to do so can be sent to all the images. This
does not mean, however, that the request must be received by all images before
other transactions can read the new value; it only means that the mechanics of
the network will guarantee that the update request is processed by all images
before any future request that starts on the same or a higher level of the
hierarchy can be processed. A later transaction that involves only a few low
levels of the hierarchy can possibly be executed before the update of the
replicated object is completed. Unfortunately, the hierarchical organization,
while it produces the right kind of ordering for transactions involving both
partitioned and replicated database, does not lead to a naturally robust
system. It may also suffer of poor performance if a large percentage of

requests must go through many levels of the hierarchy.

* Garcia developed a more elegant solution: the function of the sequence
number generator is associated with one of the images, and since at least n
images know the last sequence number, they provide the necessary backup
[GARC78B] .
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Building Atomic Transactions

The preceding sections surveyed a variety of schemes developed to ensure
atomicity of operations in the face of uncertainties that arise in a
distributed (decentralized) system. The next natural question to ask is: how
does one choose from these different schemes? Do we know enough about the
distributed update problem to be able to choose? Are the individual schemes
sufficiently complete, or what else has to be done (known) to ensure that
operations will indeed behave "atomically" in a real system?

First, it should be realized that each individual scheme for building
atomic transaction that has been reviewed in this paper consists of several
concepts and mechanisms that are potentially separable. In particular, the
individual mechanisms may have more general use than what is implied by the
context in which they were defined and could be applied, either directly or
with some small modification, in other schemes. Several enhancements of the
reviewed schemes through mechanism introduced in other schemes could be
envisioned, for example, the combination of multiple committed and multiple
uncommitted versions as suggested earlier. However, based on the studies of
the various proposed schemes and, in particular, of the assumptions underlying
those schemes, it seems that some of the approaches might be overly
conservative and unbalanced in their relative emphasis on different classes of
problems. An essential step towards making a significant progress in this

area is to get a better understanding of the importance, frequency and

severity of the specific problems that the individual schemes for atomic
updates attempt to solve. This section describes several issues that in my

opinion deserve careful thought.
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1. Defining Transactions in Terms of Operations on Abstract Objects

Although the authors of some of the schemes for distributed updates

define transaction as (partially ordered) set of operations on abstract

objects, without exception, the details of their schemes are worked out for

the most general, and most primitive case: the permitted operations on

involved objects are read and write.

Since operations on abstract objects

eventually have to map into reads and writes on the storage representation of

the basic objects, such general mechanisms may seem appropriate. However, at

such a very low level, two simplifications are highly probable:

1) the objects involved in an atomic operation are all on the same

physical node, and

2) atomic operations of this type are not interleaved (i.e., they are

executed strictly sequentially).

On the other hand, it might be possible to take advantage of the

semantics of transactions that operates on abstract objects. For example,

rather than performing (atomically) the following sequence of operations:

i. read the value of account X from node Ni,

ii. add $100.00 to this value at

node Nj,

iii. write the new value into account X at node Ni,

a single request "increment account X at node Ni, by $100.00" can be sent by

node Nj. 1If the first approach is taken, not only the number of messages that

need to be exchanged between Ni and Nj

is larger, but if another transaction

tried to increment the same account concurrently, the second read would be

delayed, pending (at least) completion
if the second read request had a lower
increment operation that performed the

scheme, if the second read request had

of the write part. In Takagi’s scheme,
timestamp than the first one, the
first read would be aborted. In Reed’s

a higher timestamp than the first one

20
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but arrived before the write request of the first increment operation, again
that increment operation that performed the first read would be aborted. If
the second approach is taken, the two increment operations could actually be
performed in any order, that is, an outdated request to increment the account
does not need to be aborted and does not abort the later requests. Of course,
it is still necessary to synchronize the reads and writes on the storage
representation of the account. However, since the individual read and write
requests do not involve sending of messages, it is easier to ensure that they
are applied in the right sequence. Takagi extended the definition of
conflicts and consistent schedules of concurrent transactions as presented in
[ESWA76] (and used as a basis in most of the schemes for distributed updates)
to a more general case: two transactions Tl and T2 conflict if Tl performs
action al on object X and T2 action a2 on the same object and al and a2 are
not permutable [TAKA78). Two increment operations on a bank account are
permutable; thus, no ordering needs to be imposed on transactions with respect
to these operations.* If synchronization constraints can be specified in terms
of operations on abstract objects,** determining which operations are
permutable is a simple extension.

Thus, in a distributed system the requests that are sent in messages to
individual participants of a transaction should represent as high level

operations as possible, which in turn means that as much work as possible

* Two increment operations are permutable with respect to the final result,
but not with respect to time. That is, if the state of the system must
reflect the exact history of requests, these operations would not be
permutable.

** Synchronization of accesses to an abstract object ought to be specified in
terms of the operations defined on the object; some research of this nature
has been done in connection with the development of languages that support
abstractions [LAVE78].
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should be carried locally, by the individual participants (Montgomery’s model
comes close to this one in that the new values of objects can be computed
locally by individual data managers [MONT78]). But this view ought to be
carried even further. Abstractly, a transaction is an operation on a single
(abstract) object. And this abstract object can be composed also of abstract
objects. In reality, the transaction translates into reads and writes on
basic objects. However, the individual abstract objects should be recoverable
separately and independently, not just as a part of the topmost transaction.
This leads naturally to a hierarchical nesting of transactions (atomic
operations), that is, each use of an abstract object is an atomic operation.
This means that the reads and writes on the basic objects ought to be grouped
to reflect the nesting of atomic operations. The mechanism developed by Reed
[REED78] supports such hierarcﬁical nesting; it provides a truly general
support for implementation of atomic operations on any level of abstraction.
Takagi forcefully argues for object-oriented rather than
transaction-oriented recovery, that is, associating the recovery data with
part of the object. Since the knowledge of the current use of the object is
concentrated at the object itself, it is possible to permit concurrent
accesses on a finer level than it would be possible otherwise. This is
certainly a worthwhile goal. Reed’s mechanism provides object-oriented
recovery. It does not exploit fully the potential for concurrency since it
does not allow transactions to see uncommitted versions unless it is the
transaction that created the version, but as discussed earlier, such an

extension is possible.

22



2. Availability: Reliability vs Performance

Earlier it was said that the purpose of replication is to increase
availability, where availability means both that:

1) if a pérticular node fails or becomes inaccessible, another node
will assume the responsibility for providing the services that were
provided by the failed node, and

2) performance can be improved if a particular service is provided
locally or if there is a contention for a specific service, the
contenders can be referred to different images of the service.

The first case can be classified as a reliability problem, the second as a
performance problem. My thesis is that these two aspects of availability
should be clearly understood, since, taken separately, they will lead to
different solutions to handling replicated databases. Certainly, for
reliability purposes it is not necessary to allow an unconstrained access to
all images, that is, allow both read and update requests from multiple
concurrent users. On the other hand, if multiple images are used mainly to
improve performance, it may be inappropriate to insist on maintaining mutual
consistency. An arrangement that guarantees mutual consistency, while
intended to increase not just reliability but also performance may actually
constrain availability because of the synchronization overhead.

For many applications, it may not be necessary to support multiple images
that are always mutually consistent, that is, it may be sufficient to support
coexistence of several versions of an object. However, it is still desirable
to be able to view the set of existing versions as one logical object, such
that it is possible to determine which of two images is a newer version, if a
particular image is the current (newest) version, it two images are the same

version, etc. The scheme developed by Reed presents such a view [REED78]; in
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this scheme, an object is represented by a history of the states it has had
since its creation - each change of state results in a creation of a new
version. A version is a read-only entity; thus, versions can be freely copied
without having to worry about coordination of update activities on these
copies. A flexible means for access specification and control for these
different versions was developed by Wyleczuk [WYLE79]. This scheme uses time

based capabilities that specify access to a particular version (existing or

future version) or the most current version (dynamically changing binding).

3. Forward Recovery

Practically all proposed schemes for implementation of atomic operations
employ backward recovery as the way to deal with failures (and scheduling
anomalies) encountered in the course of executing such an operation. Backward
recovery must be supported, at least as a means for dealing with situations
where an intended atomic operation cannot be carried out to completion because
the initiator decides to abort it. However, reliability is more than
preservation of consistency. In particular, it is the assurance that

operations will be performed. Thus, it might be desirable to keep the system

going in spite of errors and failures; that is, it is desirable to have

facilities for forward recovery.

A forward recovery means that rather than aborting an operation and
returning the objects used by that operation to the state immediately prior to
the beginning of the operation, an attemppt is made to complete the operation
by an alternative means. A replicated database offers a potential for forward
recovery; however, no sound protocols for completing a transaction interrupted

by a failure have yet been developed.
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4. Assumptions About the Underlying System

Most work concerned with reliable distributed update concentrates on the
problem of synchronization: scheduling operations of concurrent transactions,
and coordination of the participants of a transaction such that either all
changes are made or none is made. But upon careful examination, most subtle
and most difficult problems arise in the implementation of these
synchronization and recovery mechanisms.

It is usually assumed that the system provides:

a) atomic stable storage:
- nonvolatile storage that is guaranteed to survive system
crashes,
- write operation is atomic, that is, it either writes
correctly or if it fails, the state of the object that was to
be modified will be the same as it was prior to the invocation
of this operation,
b) atomic message delivery:
either a correct message is delivered or no message is
delivered
The latter implies existence of communication protocols that are able to
detect bad messages, resend lost messages, and discard duplicate messages.
This is a sufficiently well understood ara, and it can be assumed that such
facilities are available. Building atomic stable storage from ordinary
storage devices (i.e. disk) is a non-trivial matter. Basically, it is
necessary to choose a reasonable model of possible failures of the actual
hardware devices and build an abstract device that will mask these failures

(LAMP76] . It is impossible to build a perfect atomic stable storage; there is
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always some non-zero probability that under some circumstances this abstract <
device will fail.

Atomic stable storage is essential to most of the mechanisms needed to
assure atomicity of higher level operations, in particular the recovery
mechanisms such as the backout/commit cache used by Takagi [TAKA78] or the
transaction log described by Gray [GRAY78}. No matter how carefully the
synchronization protocols and recovery mechanisms are specified, in a real
system, they will work correctly only as long as the assumption of the atomic
stable storage can be satisfied. Thus it is important to minimize the
dependence of the synchronization and recovery mechanisms on the existence of
such a device.

Another problem that deserves careful analysis is the problem of system
partitioning. This problem was brought up in the section on protocols for
replicated databases. The problem occurs if the set of existing images is -
divided into two or more sets (partitions) such that only the images in each
partition can communicate. In the spirit of trying to provide service as long
as possible, one of the partitions may be allowed to continue. To ensure that
under completely decentralized control at most one partition will continue, it
is required that such partition must contain the majority of the existing
images. To ensure that at least one of the images in such a partition is the
most recent version of the database, it is necessary to have a majority vote
for any update of the replicated database. Thus, the threat of partitioning
leads to very complex and costly update and recovery protocols. It seems that
this is a problem that ought to be addressed at a lower level, in the design

of the communication network.
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Other subjects: The problem of duplicate requests the problem of timeouts (to

be completed).
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