M.I.T. LABORATORY FOR COMPUTER SCIENCE July 2, 1979

Computer Systems Research Division Request for Comments No. 175

ATOMICITY AND COORDINATION

Term papers by Spring, 1979, 6.845 class members

Attached are six short term papers on the subject of atomic actions,
recovery, and coordination of remote activities, prepared by students
of a graduate seminar held this Spring. Comments may be directed

to the original authors.

J. H. Saltzer

This note is an informal working paper of the M.I.T. Laboratory for
Computer Science, Computer Systems Research Division. It should not
be reproduced without the authors' permission, and it should not be
cited in other publications.

Atomicity and Reliable Data Abstractions

Maurice Herlihy

6.845 Term Paper

M.LT. Dept of E.E. & CS.
17 May 1979

-

Massachusetts Institute of Technology
Laboratory for Computer Science

6845 Term Paper . 17 May 1979
| Atomicity and Reliable Data Abstractions

Maurice Herlihy

1. Summary

This paper examines a number of schemes for implementing atomic actions in distributed systems,
with particular attention given to the degree each supports construction of reliable data

abstractions. Atomic actions associated with reliable data abstractions must have tertain modularity

' properties beyond the usual atomicity properties. Of the schemes presented, only Reed [Reed] and

Takagi [Takagi] provide the ability to construct atomic actions that satisfy these properties;
Montgomery [Montgomery] and Gray [Gray) provide atomic actions that generally fail to satisfy the

required modularity properties.

2. Vocabulary

An atomic action is one "that when it executes, no other operation can see or change the states of '

shared objects that it accesses” [Reed p80].

A transaction is an action that maps a data base with consistency constraints from one consistent

state to another.

A data abstraction is "a named entity wholly characterized by its behavior in response to operations

applied to it." [Reed pl3]

Takagi [Takagi] provides the most complete terminology for object recovery techniques. Given an
atomic action and an object, an object-oriented scheme for recovery is any scheme that can restore
the object to the state it had at the start of the action. Takagi distinguishes recoverable objects,
whose type managers provide recovery, from non-recoverable objects, whose users must provide
recovery. For a given atomic action, a process-oriented scheme determines which objects’ states were

accessed by the action, and invokes the appropriate object-oriented scheme for each one.

17 May 1979 -2- 6845 Term Paper

3. Atomicity and Data Abstraction

At first glance, the concepts of atomicity and type abstraction appear somewhat similar. Both
concepts involve the notion of hiding certain intermediate state information. Nevertheless, this
similarity should not obscure an important difference between the two concepts: type abstraction is a
tool intended to facih‘ra;e construction of complex systems, while atomicity is a requirement of many
such systems. We would like to extend the ease of construction and maintenance associated with
type abstractions to atomic actions by permitting construction of atomic actions in the same

hierarchical manner as construction of data abstractions.

This leads to the definition of a reliable data abstraction: a data abstraction which provides atomic
operations, which may be constructed hierarchically from other data abstractions and other reliable
data abstractions. The hierarchical construction requirement means that a reliable data abstraction
is not the same as a data abstraction with atomic operations. Atomic operations on a data

abstraction must satisfy additional properties to form a reliable data abstraction.

3.1 Recovery Requirements

A failure of a reliable data abstraction operation on a component object must leave the higher level
object in a well-defined state to allow it to take appropriate action. We take Reed’s point of view
[Reed pi6], that if an operation on a reliable data abstraction fails, the effects of the operation
should be completely undone, as this is the simplest way to define the effects of an arbitrary failure

on an abstract state of an object.

All component objects of a reliable data abstraction must have object-oriented schemes to provide
individual recoverability in the event of failure. Such a recovery scheme may be implemented by
creating tentative versions, Takagi's backout cache, Gray's undo log entry, or the failed action may

itself be atomic, with recovery provided at some lower level.

A failure of the higher level operation requires that a reliable data abstraction be able to undo any
of its own incomplete effects, including the effects of successfully completed atomic component
operations. This implies that a reliable data abstraction must provide a process-oriented recovery

scheme for component objects. This recovery might be implemented by a form of dependent

17 May 1979 -3- 6845 Term Paper

commit such as Reed's possibilities, or Gray's two-stage commit protocol.

3.2 Propagation of Changes

The other side of guaranteeing recovery is guaranteeing commit. A decision to commit by a nested
type operation must make the operation's effects visible to the next highest level. For components
with atomic actions, this reduces to forcing commit of successfully completed component operations.
Methods for forcing commit of lower-level operations following commit at a higher level include
Takagi's commit caché. Grey’s redo log entries, and numerous schemes for forcing changes to stable

storage.
3.3 Dependent Commit Requirement

In summary, operations on a reliable data abstraction must satisfy the following requirement:

A successful component operation that is not undone by its containing
operation is eventually committed if and only if the containing operation is
. eventually committed.

‘"The techniques for forcing commit satisfy the "if" clause, and the recovery techniques. satisfy the

“only if” clause.

34 Atomicity

In order to make a reliable data abstraction’s operations atomic, no other module should be able to

observe the state of the object when some component actions have completed, but others have not.

35 Consistency Requirement

The effects of an operation on a reliable data abstraction must be atomic
with respect to other concurrent actions accessing the abstraction’s
component objects.

This can be viewed as a synchronization problem: in the absence of concurrency, recoverability is

17 May 1979 -4- 6845 Term Paper

sufficient to provide atomicity. Note that this requirement is independent of the dependent commit
requirement: atomicity requires that only final states be visible, commit dependency specifies what
those final states may be. '

3.6 Modularity Requirement

Finally, we need to insure the ability to hierarchically construct reliable data abstractions:

The component objects of a reliable data abstraction may be reliable data
abstractions.

In order to satisfy the commit dependency and modularity requirements,.no reliable data abstraction

may unilaterally commit any of its effects. (For simplicity, we are ignoring such secondary issues as
memoization or metering.) The decision to commit must always be passed to a higher level, until
the level from which the atomic action was originally invoked is reached (an application program?).

Reliable data abstractions are thus an example of nested spheres of control [Bjork].

We shall see that the schemes that do not support' reliable data abstractions fail to properly
synchronize nested atomic actions. This leads to the conjecture that the problem of synchronization

is the hardest problem involved in implementing reliable data abstractions.

4. Reed

Reed’s thesis [Reed] presents a scheme whose explicit goal is to provide reliable data abstractions of

the type discussed in this paper.

4.1 Recovery

The dependent commit requirement means only that component objects of a reliable data
abstraction have associated recovery schemes, a weaker requirement than that they be recoverable.
Both Reed and Takagi observe that non-recoverable objects are of limited use in constructing
reliable data abstractions, although they cite different reasons. Reed observes that in a distributed

system of autonomous nodes, the provider of a data abstraction may not trust the abstraction’s users

’,

17 May 1979 -5- 6845 Term Paper

to properly recover the object after a failure. Takagi observes that cascading of backout requires
the type manager to keep track of operations and transactions accessing its objects, a problem that

does not arise in Reed’s scheme.

At the level of pseudo-times and object versions, all Reed's objects are recoverable. Recbverability
is provided by creating tokens, tentative versions of objects, which are thrown out in the event of a
failure. Process-oriented recovery is implemented by possibilities, which keep track of all versions
created by a given atomic action. Once an atomic action commits, all the tokens associated with its

possibility are turned into versions.

5. Atomicity

Ordered pseudo-temporal environments are the mechanisms that provide synchronization. An
operation has exclusive access to an object within a pseudo-temporal environment; If it successfully
completes, an action accessing that object within a later environment will observe all of the changes

made by the previous action; in any other case no changes will be visible.

5.1 Modularity

Dependent possibilities provide the mechanism that permits a successfully completed nested atomic

action to pass the decision to commit to a higher level.

An atomic action may invoke a lower level action without having to be aware of the data it
accesses, and without having to make any kind of special preparation (locking, pre-computation of

conflicts).

The ability to construct pseudo-temporal environments that are subranges of given pseudo-temporal
environments permit us to modularly compose atomic actions into larger atomic actions at each

level.

17 May 1979 -6- 6845 Term Paper

6. Takagi

Takagi provides a scheme for a distributed system intended to maximize concurrent execution of
conflicting atomic actions. Some minor clarifications are needed to support reliable data

abstractions.

6.1 Recovery

Whereas Reed assumes that reliable data abstractions will be composed primarily from other
reliable data abstractions, Takagi explicitly states that different object-oriented recovery schemes are
appropriate at different levels. At a low level, where there is little or no concurrency, and
information flow may be easily monitored, non-recoverable objects will incur less overhead and

require a simpler implementation.

For higher level atomic actions, where objects may be distributed or concurrently accessed, the only
practical place to put recovery information is in the underlying system or type manager, since none
of the individual actions accessing the object are in a position to monitor dependency flow, or to

become involved in recovery issues [p19).

Takagi introduces the notion of backout and commit caches as universal process-oriented recovery
schemes. Backout and commit caches combine features of Gray's write-ahead log protocol and

do-undo-redo paradigm for log records.

6.2 Commit Dependency

Dependent commits are implerﬁented using a form of two-phase commit protocol, with the
complication that complete but uncommitted results are released, and a decision not to commit méy
result in cascading of backout. The dependent commit requirement induces dependencieS among
data abstractions within a hierarchy; Takagi's multiple uncommitted versions introduce
dependencies that cross hierarchy boundaries. Since data abstractions per se concern only relations
within a type hierarchy, multiple uncommitted versions represent a refinement that does not really

affect his system’s ability to support reliable data abstractions.

17 May 1979 -7- 6845 Term Paper

6.3 Atomicity

All read and write requests in Takagi's system bear a timestamp. Access to objects is sequenced in -
timestamp order. Since all of the accesses performed by an atomic action bear the same timestamp,

no other action may observe an intermediate state of any updated object.

We can naively nest atomic actions by allowing nested actions to inherit the timestamp used by the
highest-level action. Although Takagi makes the simplifying assumption [p22] that a transaction
never accesses the same object twice, this assumption seems less credible if we are to nest abstractly
specified operations. Reed solves this same problem by introducing pseudo-temporal environments
as an extension of pseudo-times. Takagi's scheme lends itself to the same approach. By
representing timestamps as lists of integers, the way Reed represents pseudo-times, and by insuring
that the top-level clock increments in discrete “ticks”, we may use the interval between ticks as a
pseudo-temporal environment. Transaction, paraction, next and current operations can be

implemented just as with Reed’s scheme.

64 Modularity

Takagi's timestamp synchronization scheme has the same modularity advantages as Reed’s scheme,
i.e. the ability to hide which data are accessed, and that higher level actions do not need to make

any implementation-specific access preparations for lower levels.

Takagi explains in some detail how implicit dependent commits among multiple uncommitted
versions are implemented (controlling the cascading of backout [p29]), however, he does not specify
how an action may explicitly make its commit dependent on a higher level commit. Two simple

schemes suggest themselves.

One could construct a hierarchical two-phase commit protocol, with each coordinator passing an

"abort” or "ready to commit” message to its superior, until a decision is made at the very top level.

We might also make "prepared”, but uncommitted object versions depend on commit records, using
the machinery developed by Reed. When a subsequent uncommitted version examines the state of
such a dependent version, the associated commit record could be polled. Conversely, when the

commit record is set, it could -inform any dependent versions. -

17 May 1979 -8- 6845 Term Paper

1. Gray

The techniques that Gray outlines in {Gray] do not support reliable data abstractions because the

locking scheme he uses does not correctly synchronize nested objects.

1.1 Recovery

In the absence of a type-specific recovery scheme, Gray provides a do-undo-redo paradigm for log
records as a means to implement recoverable objects. Associated with each action on an object, a
log entry is made with sufficient information to undo or redo the action performed.[p89] This
strategy may be identified with Takagi's backup cache. In the evenf an atomic action encounters
an error, the recovery manager at that node will use the redo entries in the log to restore the state

of any modified objects.

12 Dependent Commit

Two mechanisms are provided to commit (or abort) a sequence of actions: a commit record, which is
used to commit a number of actions performed at a single node, and the two-phase commit protocol, |
which serves to commit a group of actions performed at a number of nodes. Operations on objects
are distinct from the operations that commit transactions: Gray assumes that none of the actions
which commit together or abort together using these mechanisms themselves contain commit or
abort actions. Nevertheless, in the absence of concurrency (a big if), it appears possible to extend
the commit mechanisms to include dependent commit records resembling Reed’s dependent

possibilities.

At a single node, robustness in the face of node crashes is implemented by a reliable, stable log
'(another incarnation of atomic stable storage). A transaction is delimited by a
BEGIN_TRANSACTION log entry, followed either by a COMMIT_TRANSACTION or
ABORT_TRANSACTION entry. The commitment of the actions recorded between the two
entries depends on whether the last is a commit or abort entry. Once a commit entry has been
made, the crash recovery manager uses the redo entries in the log to insure that no results from any
atomic actions that had been committed before the crash are lost. Gray provides a high water

mark strategy to insure that redo entries are idempotent.

17 May 1979 -9- 6845 Term Paper

By introducing a dependent commit record, containing a transaction identifier, indicating that the
contained actions are committed only if the indicated transaction commits, we may derive the same
functionality as Reed’s dependent possibilities for dependent atomic actions that take place at a

single node.

In a distributed transaction, the two-phase commit protocol serves the same purpose as does one of
Reed’s dependent possibilities: it enables the decision whether to commit to be made by a higher
level operation. By nesting commit coordinators as was suggested in the section on Takagi, the

commit dependency requirement is easily satisfied.

1.3 Modularity and Atomicity

+

In the previous paragraph we saw that, by slightly modifying the machinery presented in [Gray),
we can construct recoverable objects, but we shall see that a locking approach to synchronization
completely precludes making operations on such objects atomic in the presence of concurrency. In
order to maintain consistency, all atomic operations on objects must follow a two-phase lock
protocol: no locks are acquired after any previously held locks are released. Furthermore, in order
to permit undoing an action, all locks must be held until the end of the transaction. This prevents
ény sequence of atomic operations from being made atomic since all locks acquired by any operation
on any component object must be acquired at the start of the transaction. Thus no operations that
acquire and release their own locks may be nested within an atomic action. If we attempt to
separate the acquisition and release of locks from the type operations, we hopelessly compromise the

abstraction and modularity of our types.

In summary: in the absence of concurrency, we may nest atomic actions and build reliable data
abstractions. In the presence of concutrency, we may nest objects with atomic operations, but the

two phase lock protocol prohibits any meaningful degree of abstraction.

17 May 1979 -10 - 6845 Term Paper

8. Montgomery

Montgomery's thesis [Montgomery) presents a scheme that does not support reliable data

abstractions chiefly because atomic actions may not be hierarchically constructed.

8.1 Recovery and Modularity

Montgomery actually presents two schemes for implementing a distributed data base. The first
specifies the effects of errors in rather a different way than any of the other schemes examined in
this paper. The second scheme, presented as a refinement of the first, has more conventional error

effects.

Robust sequenced messages and robust sequenced process steps are used to hide the effects of
failures from transactions. Lost messages and node crashes are visible only in so far as their
recovery may cause arbitrarily long delays. For this reason, transactions never fail, they may just

take an unbounded amount of time to complete.

Since no transactions are ever aborted, no node’s work evér needs to be undone, and the
requirement to provide recovery schemes is vacuously fulfilled. The issue of recovery from internal
failures is not addressed. In fact, Montgomery assumes that a node will always be able to come up
with a correct output at the end of its process step. Without the abilify to abort, an unexpected

software error could destroy the atomicity of a transaction.

The completion of a process step may be indefinitely delayed by the failure of another node or by a
communications failure. To avoid this, Montgomery refines his scheme by introducing "abortable
locking”, which allows a node to abort a transaction in which it is participating. In this model, one
node, acting as a transa'ction coordinator, locks each node that will participate in the transaction.
The decision to commit the transaction is reached by a standard two-phase commit protocol. If the
transaction aborts, each participating node undoes its updates by restoring the process state it had
at the start of the'transaction. Again, by nesting the two-phase commit protocol, we can satisfy the

commit dependency requirement.

17 May 1979 _ ' -1 - 6845 Term Paper

8.2 Atomicity

The synchronization and deadlock avoidance aspects of Montgomery's scheme require knowledge of
a transaction’s activity graph - the locations of and dependencies between all the data read and
updated. Message forwarders need to know of cycles in the union of the activity graphs of all the
. transactions using descendant nodes. If abortable locking is being used, the existence of cycles
anywhere in the joint activity graph will require that all descendant nodes be locked, and that they
prepare for a possible abort. Ali the nodes involved in a transaction must be known at the start,
since a common ancestor must be chosen. Making an operation’s activity graph part of its interface
does not correspond to our idea of a data abstraction, as changing such implementation details as -
the focation of data, forces changes in any containing operation. Thus, even when transactions
never abort, Montgomery's scheme does not permit hierarchical construction of reliable data

abstractions.

9. Conclusions

All of the schemes we have examined permit construction of recoverable objects, and, with minor
extensions, permit construction of hierarchies of recoverable objects. Modular construction of

recoverable objects seems to be easily provided.

When no objects are shared by concurrent processes, all the requirements for reliable data
abstractions seem to be met. Gray and Montgomery provide synchronization schemes that require
specifying all the data that an atomic action might access before that action is performed. The
closer the data speciﬁed matches the data actually accessed, the betier the system’s performence.
The activities required to insure atomicity of a number of actions are separate from those actions,
'and the information necessary to perform that synchronization is strongly dependent on specific
details of those actions. In Reed’s and Takagi’s schemes, the synchronization activities performed
by the higher level action (getting a timestamp or creating a pseudo-temporal environment), do not
depend on details of the implementations of component actions. Modular construction of atomic

actions appears to be much more difficult than modular construction of recoverable actions.

17 May 1979 -12- 6845 Term Paper

References

[Bjork] Bjork, L. A, "Recovery Scenario for a DB/DC System,” Proceedings of the ACM
National Conference 28, 1973.

{Gray] Gray, J. G, "Notes on Data Base Operating Systems,” L.B.M. RJ2188 (30001),
February 1978.

[Montgomery] Montgomery, W. A, "Robust Concurrency Control for a Distributed Information
System,” M.LT. Technical Report 207, December 1978.

[Reed] Reed, D. P, "Naming and Synchronization in a Decentralized Computer System,”
M.LT. Technical Report 205, September 1978.

[Tak‘agi] Takagi, A, "Concurrent and Reliable Updates of Distributed Databases,” M.L.T.
Laboratory for Computer Science Request for Comments 167, November 1978,

Characterization of the Effects of Autonomy in

a Decentralized Computing Systen

by Steven Krueger

May 18, 1979

A number of functional and psYchological pressures towards
decentralization of computer systems can be grouped together
under the name of autonomy [d'Oliveira]. The purpose of this
paper is to characterize the effects of autonomy of nodes in
a distributed system into the desired, undesired expected,
and undesired unexpected framework of Lampson and Sturgis
[Lampsoé]. This is an attempt to build a coherent view of

the effects of autonomy as failures.

The characteristic of an autonomous node of a distributed
system is that it is managed by its local users and that
local operations are more important to that management than
network operations; Thus, a network of these nodes resembles
a loose confederacy [Saltzer]. A node may refuse a network
request because it is overloaded, because local work has a
higher priority, for security or privacy, or for arbitrary
administrative reasons. The autonomous node may accept a
request but perform it improperly, due to either failures
in the node or an autonomous decision giving the request

unexpected semantics.

A further consequence of local management is that since
even the acquisition of a node is localy managed, the nodes
will be heterogeneous[Saltzer]. "But, for the network to
function each node must present a uniform interface to the
network. This interface must provide a set of useful requests

and replies with common semantics on all nodes. This much

autonomy must be yielded to gain the benefits of the network.
Thus the network structure of figure 1 is suggested. The
network interface may be physically and logically separate

from the node or it may be incorporated into the node.

Figure 1 Network Structure

If a node sends a request to another node, several events
are possible. TFor the requester, the desired event is that
the semantics of the request are carried out by the destina-
tion node. To the requester any other event is undesired.
The destination may ignore the request, possibly because it
is disconnected from the network. This is the same as a lost
message and is expected. This is a partition of the system.
While disconnected, autonomy demands partial operability of
both the isolated node and the rest of the distributed system
[Montgomery]. On reconnection the system must not be incon-
sistent. In the case of greatest autonomy, no two nodes

would agree to cooperate enough to replicate data, nor would

any node trust another node to keep data for 1it. Since
autonomy implies locality of reference,. partial operability
is achieved. If transactions involving inaccessible data
abort rather than queue requests for the inaccessible nodes,

consistency will be preserved.

Another possible event is that the destination node may
refuse the request and indicate refusal with a reply. This
seems appropriate if the node processes the request and finds
it in violation of some local policy (security for example).

To the requester, this is undesired but expected.

Another possible event is that the request is acted on
but with the wrong semantics. If the reply makes the mis-
understanding apparent then this can be expected (reques% is
READ and reply is READY_TO_COMMIT). If the reply is not
apparently improper, the event 1s unexpected (since it can
not be readily recognized). Acting on a request without
preserving its semantics can also be the result of some un-

detected and hence unexpected failure of the node.

For useful work to be done by the distributed system,
the autonomy of the nodes must be further diminished. £Each
node must either act on a request according to its universally
known semantics, refuse the request, or ignore it. Thus the
loss of semantics of a request is an undesired and unexpected

event whether the result of a node failure or an autonomous

-/

decision. Node failures that affect semantics may be limited to
unexpected failures of the node by making the actions ini-
tiated by the request atomic and verifying the correctness

of these actions.

Then, the events at the destination with their character-
ization to the requester are:
request acted upon desired
request ignored undesired expected
request refused undesired expected
request semantics lost undesired unexpected
It is interesting to note that because of autonomy ail of
these events except for lost semantics can be desired events
for the destination node. Which is the desired event for <
the distributed system on a particular request cannot be
resolved since there is no control or even objective for the
system as a whole. In a system of autonomous nodes, it is
the destination node that decides which event is desirable.
The requester may only try a similar request at another
node (if there is another node that has the resources needed
to act on the request) or abort. The requester handles an

expected event as it would an error.

The objective of this paper is to characterize the
effects of autonomy in a distributed computer system. Some
autonomy must be given up to provide a uniform interface to

the network. The effects of autonomy at a node can be

characterized as events that are desired, undesired expected,

and undesired unexpected as suggested by Lampson and Sturgis

for modeling physical systems. The undesired events should

be handled by the requester as errors.

References

d'0Olivereira, C. R., "An Analysis of Computer Decentraliza-

tion", M. I. T. Laboratory for Computer Science Technical

Memo TM~-90 (October, 1977).

Lampson B. and Sturgis H., "Crash Recovery in a Distributed

Data Storage System", to be published in Comm. of ACM.

Montgomery, W. A., "Robust Concurrency Control for a Distributed
Information System", M. I. T. Laboratory for Computer

Science Technical Report TR-207 (December 1978).

Saltzer J. H., "Research Problems of Decentralized Systems

with Largely Autonomous Nodes", Operating Systems Review

12, 1 (January 1978) pp.43-52.

Comparisons of Notions of

Atomicity and Commit

Alan M. Marcum

May 18, 1979

6.845 -~ Topics in Computer Systems Research
Professor Jerome H. Saltzer

Copyright (:) 1979 by Alan M. Marcum

Comparisons of Notions of Atomicity and Comait

Two central issues in the class discussions of this tera
have been "atomicity"™ and "commit." Most of the papers we
have read have defined what an "atomie™ action is, and what it
means to "commit" an action. In this paper, I shall exaamine
the various notions of atomicity and commit, comparing the

views of the various authors.

The specific authors to be included in this exposition
are Bjork and Davies, Gray, Reed, Montgomery, Takagi, and
Lampson and Sturgis. Each author's viaws will be described in
turn, and then a comparison of the various points will be

made.

Biork and Davies

Bjork and Davies laid much of the early groundwork in
this area. Consequently, many of their ideas are old and
incomplete. Most of the papers on their work are very old
(vintage 1972). Yet, even their recent paper (1978) is

somewhat incomplete.

The Spheres of Control of Bjork and Davies are aimed
primarily at recovery, auditing of updates, and resource
allocation, and not so much with consistency and modularity.
Their notion of atomicity is vague: they define an atomic

process as "processing an operation code at a given level at a

given instant." This seems to be merely a refinement to the
notion of a procedural abstraction, which allows oae level to
view the operatioans of another lzvel as simple, rather than as
complex and compound. Their is no explicit notion of
indivisibility in this definition of atomic process, except as
that implied by the phrase "at a given instant." However,
what is an "instant" at one level may be a very long time at

another.

The concept of commit is much more sharply defined by
Bjork and Davies than is that of atomic process. To commit a
transaction is to cause the transaction to relinquish the
ability to "unilaterally back out." The ability to
"unilaterally back out"™ is to bz able to abort the transaction
without asking any other process or transaction if backing out

is permissibls,

'G 2
[V
<

Gray does not discuss atomic transactions per se. He
does discuss consistency, recovery, scheduling, sequencing,
and data accessing. His primary concern seeams to be
maintaining a consistent data bass in whatever way he can,
where consistency is defined in a quiescent state of the
system, when all transactions have completed. To facilitate
consistency, Gray defines a "coasistency locking protocol," or
"two-phase locking protocol," where a transaction holds all

its locks until commit-point. He then says that this is more

-Da

strict than is needed; 311 that is nesded is that no locks be

set after any lock is released.

There are cases where the less-strict form of the
two-phase locking protocol produces non-atoaic transactionsf
Suppose two transactions, Té6 and T7, are running, and they
access some of the same data. T6 sets various locks
(including one on data object A), computes, relesases the lock
on A. Meanwhile, T7 has been working, and assume that is has
been waiting for T6 to relzase the lock on A. Upon Tb6
releasing the lock, T7 reads A, and passes its value outside

the system.

At this point -- after T6 releases the lock on A, after
T7 reads A and passes its value outside, but before T6
completes -- the system crashes. Because TS never committed,
it will be aborted (UNDOne) rather than completed (REDOne).
Because T7 passed the value of A outside the system, it has
effectively committed. T7 has seen and acted upon an
intermediate result of T6, which is NOT permanent, despite T6

adhering to the two-phase locking protocol.

Commit is the act of making the effects of a transaction
permanent. Upon passing the commit point, the transaction is
guaranteed to be completed. If there is a system failure
between a transaction's commit point and the final completion

of the transaction, the recovery manager will ensure that the

transaction effectively runs to completion (by applying the

REDO log).

Reed

Reed gives a two-part definition of atomic transaction:
(i) it either is completely exescuted or not exscuted at all,
and (ii) none of its intermediate states are visible to other
transactions. Both of these ideas are important, although

they do interact with one another.

Reed also discusses, "with respect to what are
transactions atomic?" A transaction may be atomic respective
of other transactions (corresponding to (i) above), or it may
be atomic respective of system failures (corresponding to (ii)
above), or both. Reed's definition of atomicity includes both

other transactions and systea failures.

Reed's scheme allows transactions to be atomic of their
oWn volition; they need not depend on other transactions
following the sams (or some compatible) atomicity protocol.
Regardless of the "hostility" of other transactions, if

transaction A is supposed to be atomic, it is atomic.

Reed combines the concepts of atomicity and commit into
what he calls "atomic commit." Atomic commit causes some set
of actions to happen "simultaneously" as far as outside (of
the transaction) observers ars concerned. When the
transaction is finished, it commits its results, and they 3ll

become visible at once.

Montgomery

Montgomery's definition of atomic transactions is
aquivalent to part (i) of Reed's definition: =2ither all or
none of the transaction's effects are visible to other
transactions. The commit point in Montgomery's schems is that
point at which the polyvalues of the transaction caa be

avaluated.

Takazi

According to Takagi, an atomic action is indivisible and
instantaneous to its users. This seems to correspond very

closely with Bjork and Davies's definition of atomicity.

Takagi's definition of commit is very concrete. Upon
passing the commit point, a transaction can no longer be
backed out, because upon commit, all the recovery information
(the UNDO information) is deleted. Once the commit poiat is
reached, the transaction will be run -- eventually -- to

completion.

ampson and Sturgis

Lampson and Sturgis define an atomic transaction with

regard to its effects. They assume that all "important"®
transactions -- those for which atomicity is desired --
perform writes to stable (permaneat) storage. The define an

atomic transaction as one all of whose writes are performed,

-5-

or none of whose writes are performed. This definition is one
of atomicity with regard to system failure. They state
further that, in the presence of crashes, all the writes are

completed once any of them is started.

Transactions have two phases: (i) compute, and write an
"intentions" list (indicating what will‘be Written to stable
storage), and (ii) perform the writes recorded in the
intentions list. Commit in the Lampson and Sturgis view is
the last operation that occurs during the first phass of a

transaction.

Comparison

The older papers do not have a well-defined notion of
atomicity; that seems to have developed relatively recently.
They do, however, have clear definitions of commit, and
usually discuss in detail mechanisms for transaction commit.
Atomicity is much better defined in the newer papers. I am
not sure when the concept crystallized; it seems to have been
before Reed's, though after Gray's, reports. The early
version of the Lampson and Sturgis paper describes atomic
transactions, and uses those words. Generally, the newer
papers do not include much description about commit, commit
points, or commit protocols; apparently, commit is now a

wzll-defined concept.

Why have all these authors tried to define these
concepts? Whether they defined the concepts or not, they have
all had as a goal some form of system consistency in the face
of multiple transactions, multiple accessors, conflicting
updates and inquires. Even if atomicity was not well defined,
consistency was. Usually, consistency was defined relative to

soma serial order of execution of the paraliel transactions.

The papers of these authors show a progression of the
theory of atomicity, recoverability, and coasistency. From
Bjork and Davies in 1972 to Reed and Montgomery in 1978 has
been a long time. Lampson and Sturgis alone spent over a year
just re-thinking some of their ideas. Still, the theory is

not coamplete.

Modelling of Distributed Transaction Commit Protocols

by
SUNIL SARIN
May 17, 1979

Term Paper
M..T. Course 6.845 (Spring 1979)
("Atomicity, Recovery, and Coordination®)

Sunil Sarin " -j- - Distributed Commit Protocols

: Table of Contents
1. INTRODUCTION

CONHLEDHWN ==

1.1. Assumptions about the Environment
1.2. Atomic Transactions: Recovery and Synchronization
1.3. Scenario .
2. CONSISTENCY AND CORRECTNESS OF DISTRIBUTED COMMIT PROTOCOLS
2.1. Criteria
2.2. Requirements of a Protocol
., 3. BASIC MODEL FOR DISTRIBUTED COMMIT PROTOCOLS
3.1. State Model)
3.2. Basic Two-Phase Commit 11
3.3. Issues for Discussion and Comparison 13
4. GENERALIZATIONS OF THE MODEL 19
4.1. Extended State Model) 19
4.2. Three-Phase Commit Protocol o 20
4.3, Conversational Transactions _ 22
4.4. Dynamic Transaction Restructuring 24
4.5. Early Data Release 26
5. EXAMPLE DISTRIBUTED COMMIT PROCEDURES _ 27
' 5.1. Gray 27
5.2. Reed 28
5.3. Lampson and Sturgis 32
5.4 Takagi 34
5.5. SDD-1 35
5.6. Montgomery _ 37
6. SUMMARY ‘ 39

FIGURES - 41

Sunil Sarin -1- Distributed Commit Protocols

1. INTRODUCTION

JIn this paper, | consider the problem of atomically committing transactions in a
distributed system. There are several papers in the literature that address this problem
[2, 9, 6, 10, 4, 8] My intention in this paper is to construct a model for describing the
general situation that arises with distributed transactions, such that it is possible to
describe most existing algorithms as "special cases” of the model. By presenting a
uniform model of this kind, | hope to identify the common ideas that appear in almost all
distributed commit protocols and the common problems that many of them face. | also

hope to use the mode! to highlight the important differences among the various protocols.

Sections 2 through 4 of this paper are devoted to motivating and developing the
desired model. In Section 5, | examine specific distributed commit protocols from the
literature from the viewpoint of this model. Section 6 summarizes the results of this
study.

1.1. Assumptions about the Environment

| consider a distributed system to consist of a set of information processing sites
connected together by a communications network. A process is an ongoing computation
or information processing activity that is resident at a fixed home site. Individual sites
may fail at arbitrary times, and when a failed site recovers it does so in a fixed "initial®
state. There are two kinds of processes resident at a given site: (i) volatile processes,
which are destroyed forever, not reappearing on recovery, if their home site fails; and
(ii) recoverable processes, which do not vanish on failure of the home site. When a site
recovers, it executes a recovery procedure that restores all recoverable processes that
existed at the time of failure. Such a recoverable process can then resume its activities
at a point dependent on what "state” information (see below) was saved before the
failure.

Each site in tiwe distributed system has access to a private memory that is not shared
with other sites. A site’s memory has two components: volatile storage, the contents of
which are lost on site failure; and stable storage, the contents of which are preserved in
. the face of the site’s failure. The concept of stable storage is a familiar one [6, 2]
Stable storage is used to hold important files or data, and also to implement recoverable

Sunil Sarin : ‘ -2- Distributed Commit Protocols
processes through the recording of process state information.

| shall assume that, in addition to providing stable storage, a site also provides the
ability to make a collection of writes atomically to stable storage; the collection of writes
is atomic if it is either performed completely and correctly or not performed at all. Such
an atomic write can be implemented using "intentions lists” [5] or any similar mechanism,
and it will not be discussed any further.

The only means of communication between sites in the distributed system is via
messages sent across the communications network. The network is characterized by
variable and unpredictable message delays, and individual links in the network are
subject to failure.

(Note that the ideas in this paper extend to any system that is physically centralized |
but logically "distributed”, e.g,, where there are independent subsystems participating in
transactions. Each such subsystem can be considered to be an abstract "node” (or site)
in an abstract "network”, even though the nodes are physically resident on a single site

and there is no physical communications "network”.)

1.2. Atomic Transactions: Recovery and Synchronization

A transaction is a collection of actions (such as reading and writing of data) on the
distributed system that is intended to be atomic. That is, the partial effects of the
collection of actions should not be visible to other transactions. In this paper, | shall
concentrate on one particular aspect of transaction atomicity, namely recoverability:

either all of a transaction’s effects should take place, or none should.

It should be noted that transaction atomicity requires not only recoverability but .
synchronization as well, to ensure that transactions do not observe each other’s partial
effects. The problems of rei:overability and synchronization are not totally decoupled,
but many recoverability issues are somewhat independent of synchronization; for
example, a synchronization scheme may be "correct” but may allow the possibility of one
transaction waiting indefinitely for another transaction to complete or for a site in the
system to recover. In this paper | shall treat the issue of recoverability only, ignoring
the details of how transactions synchronize, e.g., using /ocking [2], "snapshots™ consistent

Sunil Sarin -3- Distributed Commit Protocols

with transaction timestamps [9, 10], or waiting for updates from specific transaction
"classes” [4]. The only assumption that | shall make about transaction synchronization is
that any of a transaction’s actions may be forced to wait or abort for synchronization

reasons.

1.3. Scenario

The scenario that | assume for distributed transaction processing is illustrated in
Figure 1. Basically, the following agents take part in a distributed transaction:

1. A user U, usually a human beir;g at a terminal.
2. A process C that acts as transaction coordinator.

3. One or more participant processes Pps s P

The processing of a transaction takes place in the following sequence of steps (similar
to the steps described in [5)):

1. The user U enters a start-transaction request at some site in the system.
A coordinator process is allocated to handle the transaction.

2. The user enters a set of actions, and the coordinator sets up participant
processes Py, .., Pp, at all necessary sites, to perform the specified actions.

(It is irrelevant whether the sites involved are specified explicitly by the
user or are chosen by the coordinator in response to a "high-level” request
by the user.)

3. The user enters a commit-transaction request, and the coordinator C
attempts to ensure that the transaction commits. If and when the
coordinator is certain that all of the actions in the transaction will be
"committed”, i.e, completed and made permanent, the coordinator sends an
OK message to the user.

(This above scenario is often slightly modified by having the user combine some or all qf
this requests to perform steps 1, 2, and 3. For example, the user might enter a single
request to start, execute, and commit a transaction, or combine the start-transaction
request with the requests for actions, and so on. These refinements should have little

effect on our discussion.)

The role of the coordinator in this scenario is precisely that, i.e., to coordinate and

Sunil Sarin | ’ -4- Distributed Commit Protocols

control the processing of the transaction. All of the actual "work” involved in the
transaction (reading and Writing of data, computation, etc) is performed by the
participants. (If the transaction requires actions at the home site of the coordinator, the
coordinator will create a separate participant process there.) On the other hand, the
determination of when a transaction has committed (or aborted) is the sole responsibility
of the transaction coordinator.

A distributed transaction may fail to commit for any of several reasons:
synchronization (the presence of conflicting transactions may make it impossible for a -
participant to perform the actions requested of it, or may cause actions already
performed to be aborted); failures of sites or communication links; the expiration of
timeouts, set to protect against failures or excessive delays; or the receipt, by the
coordinator, of an abort-transaction request from the user. If a transaction fails to
commit, it should abort (i.e,, it should appear as if none of the transaction’s actions ever
happened), and the coordinator process should send an ABORTED message to the user.
In section 2, | shall examine what is required of a distributed commit protocol if it is to
ensure that a transaction eventually commits or aborts and is not left in an inconsistent

state in which some of its actions have committed and some have aborted.

2. CONSISTENCY AND CORRECTNESS OF DISTRIBUTED COMMIT PROTOCOLS

In this section | focus on the consistency and correctness of the eventual outcome of a
distributed transaction and the response to the user, namely that a transaction should
eventually either commit or abort, and the user should get a message (OK or ABORTED)
~ consistent with this outcome. | shall defer till later sections the issues of how the user
and/or the transaction coordinator decide that they are satisfied with the actions of the
participants and that the transaction should be committed.

. 2.1. Criteria

The consistency and correctness criteria for a distributed transaction can be stated as
follows (from an old version of Lampson and Sturgis’ paper [5]):
Correct Response: If the uéer gets an OK message, then all participants either have

committed or will commit their actions; if the user gets an ABORTED
message, then all participants will abort their actions.

Sunil Sarin -5- Distributed Commit Protocols

Consistency: It is never the case that one participant in a transaction commits its
actions and another participant aborts its actions.

We note that these two requirements together are not sufficient to ensure that a

transaction will eventually commit or abort. (In [5], Lampson and Sturgis added the

_requirements of progress and termination to capture this idea) | shall defer these

problems for the moment and examine below what kind of protocol is necessary for

consistency and correct response.

2.2. Requirements of a Protocol

Here | present some properties that | believe a distributed transaction commit
protocol must have if it is to satisfy the criteria of consistency and correct response. |
shall present informal arguments in support of my claim that these properties are

essential for distributed transactions in the kind of environment that | assume.

The properties that | believe a protocol must have are quite simple: (i) recoverable
coordinator and participant processes obeying the write-ahead-log protocol; and (ii) the
two-phase requirement, which in turn requires that participants have the ability to
perform tentative actions that may be committed or aborted on command of the

coordinator. These are described in turn below.

I. Recoverable Processes. Clearly, a participant process in a transaction should not
vanish unless it has either committed all of its actions on behalf of the transaction or
aborted all of them. Similarly, the coordinator should not vanish unless it has ensured
that every participant has committed or every participant has aborted (and that the user
receives the appropriate response). In order that this be true even in the presence of
failures, it must be the case that the coordinator and participant processes are
recoverable (i.e., not vanish on failure of their respective home sites), and that they each
have a COMMITTED and an ABORTED state (with the obvious associated actions). If a
process’s home site fails while the process is in its COMMITTED or ABORTED state, then
on recovery of the site the process should complete its actions of committing or aborting.

For the purposes of my "state model” (which is presented in Sections 3 and 4), |
assume that each possible state S, of a recoverable process has associated with it:

- Sunil Sarin -6- Distributed Commit Protocols

- A set of actions A which the process performs when in state Se

= A failure-state Sz which is the state the process should enter on recovery
it its home site crashes. Sy may or may not be the same as S, (it

frequently will be), but in any case it must be one of the possible states of
the process.

When a process is in state S, it may be considered to be executing a procedure
Sc-action which has the general form: '
procedure S.-action:

record state = S, on stable storage

do actions A
except when failure: Sg-action

end
This syntax, based on CLU-like exception conditions [7] has been borrowed ft;om Takagi.
[10]. | have extended Takag’s procedure format somewhat to include the explicit
recording of the process state on stable storage before any of the actions are
performed. This is the write-ahead-log protocol (which Gray introduced for updates to
data [2]) applied to process states. If the process’s site fails, then the recovery
procedure will first retrieve the process state S, from stable storage, and then execute
the associated failure action Sg-action. If this protocol is not followed, the process may
crash after executing some of the actions in A but before its state is recorded; it would
then perform some other failure action (the one associated with the process’s previous

recorded state) on recovery.

Note that if the failure-state corresponding to a given process state Sc is the same
state S, then the actions in A may be executed repeatedly if the process site fails. If A
is "idempotent” (and it often is) then this should be all right. (Lampson and Sturgis [6]

would describe such a procedure S -action as a restartable action)

. Two-Phase Requirement. This requirement is based on the following two

observations:

1. The coordinator cannot correctly commit the transaction before it is certain
that each participant is in a (recoverable) state in which it is capable of
committing its local actions at the request of the coordinator. If this is not
followed, the criterion of correct response may be violated, since the user
may get an OK message (indicating that his transaction committed) but a

Sunil Sarin -7- Distributed Commit Protocols

participant may not be able to commit its local actions. (We note that
certain schemes, such as [9, 6] allow the coordinator or user to commit a
transaction before it is certain that all of the requests to the participants
have been performed and are committable. However, if a coordinator/user
does this, then the unacknowledged requests may or may not get committed;
thus, the user will not know exactly what the transaction is that is being
committed. This is generally undesirable, and | shall not consider it; |
assume that the coordinator and user are well-behaved)

2. Until it is certain that a transaction is committed, a participant must be
capable of aborting its local actions. If this is not followed, the criterion of
consistency may be violated: |f the participant commits its local actions
before learning that the transaction will commit, then a participant
elsewhere may have already aborted (or may eventually abort) its own local
actions.

Since the decision to commit a transaction is centralized at the coordinator, and the
only means of communication between the coordinator and the participants is through
 messages, we can state that: (i) the only way the coordinator can learn that a given
participant is capable of committing its local actions is through a message (which | shall
call the DEPENDENT message, for reasons to be presently made clear) that it receives
from the participant; and (ii) the only way that a participant can learn that the transaction
has committed is through a COMMIT message that it receives from the coordinator. Let

us consider the following three events in the execution of a distributed transaction:

Event | Participant P sends a DEPENDENT message to the coordinator G,

indicating that P is capable of committing its local actions.
Event Ik - The coordinator C sends a COMMIT message to participant P.
Event lll: Participant P receives a COMMIT message from C.

Clearly, Event Il must precede Event il (since one represents the sending of a message
and the other represents the receipt of the same message). Also, due to requirement
(1) above, Event | must precede Event ll, and must therefore precede Event il as well.
Now requirement (2) above states that at all times up to Event lil, P must be capable of
aborting its local actions. Since Event | precedes Event lli, P must be capable of aborting
its local actions at Event | as well (when it sends the DEPENDENT message indicating its
ability to commit). Thus, at Event |, P must be capable of "going either way", i.e,
committing or aborting its local actions. We shall say that at Event | P has performed its

Sunil Sarin -8- Distributed Commit Protocols

local actions on a tentative basis, i.e,, such that it is possible to either commit or abort
them.

From the above, we can conclude that a correct and consistent distributed transaction
commit protocol must proceed in at least two phases:

1. Each participant performs its local actions on a tentative basis and informs
the coordinator thereof.

2. On learning that each participant has performed its local actions on a
tentative basis, the coordinator commits the transaction and instructs each
participant to commit.

The above notion, of performing actions "tentatively”, will be modelled by introducing a
recoverable state for participants called DEPENDENT. | use the name DEPENDENT
because once the participant has informed the coordinator of its ability to "go either
way”, it must await a message from the coordinator as to whether the transaction
committed or aborted. The participant cannot abort its local actions of its own choice,
since the coordinator may at any time send it a COMMIT message and the participant will
have made a decision inconsistent with the coordinator; similarly the participant cannot
commit its local actions of its own choice. Thus, the participant is "dependent” on the

coordinator’s instructions.

Since the DEPENDENT state implies the ability of the participant to commit its local
actions if the coordinator so desires, the participant cannot enter this state unless it has
recorded, on stable storage, sufficient information to be able to commit all of its local
actions. This requirement can be satisfied using REDQ logs [2] or "intentions lists™ [5].
To describe this recording of commit information in the model, | shall say that a
participant writes its intentions before it enters the DEPENDENT state. (Note also that
before and during the DEPENDENT state, a participant must have the ability to abort its
local actions, since it is not yet certain that the transaction will commit. This requirement
can be met using "differential files” or UNDO logs [2])

Sunil Sarin -9- Distributed Commit Protocols

3. BASIC MODEL FOR DISTRIBUTED COMMIT PROTOCOLS

| next present a uniform "state model” for distributed transaction commit protocols.
This model will be presented in two parts: (i) a basic model, which covers just the
consistency and correctness issues raised in Section 2, and (ii) an extended model, which
covers some additional issues not yet discussed. The basic model is the subject of this
section; the extended model will be presented in Section 4.

3.1. State Model
The possible states for the coordinator and for each participant in the basic model are

shown in Figure 2. We note the following about this state model:

+ Each process has a COMMITTED state (abbreviated C-COM or P-COM) and an -

ABORTED state (abbreviated C-ABORT or P-ABORYT), whose associated actions are:
- Coordinator:

C-COM: commit the transaction as a whole; all participants must be made to

commit, and the user should get an OK message
C-ABORT: abort the transaction

- Participant:
P-COM: local actions will be committed
P-ABORT: local actions will be aborted
In the event of a failure in its COMMITTED or ABORTED state, a process will remain in
that state. Thus, the actions above must be idempotent, e.g, repeated actions on data
should have no effect, duplicate messages (such as the OK to the user) should be

harmless, etc.

+ Each process is initially in its START state (C-START or P-START). In the event of
a failure during the START state, a process enters its ABORT state. We note that this is
not strictly necessary for correctness; on recovery, a process could conceivably pick up
where it left off. However, in almost every distributed commit protocol a failure in the
START state causes the automatic aborting of actions performed so far, for reasons of
performance. (An exception to this is Reed’s scheme [9] However, in Reed’s scheme,
every transaction has an associated timeout set, and if a site fails it is unlikely that this e
timeout will not have expired by the time the failed site recovers.)

Sunil Sarin - _10 - Distributed Commit Protocols

* The model includes certain MISSING states for each process. These are not truly
states, but rather pseudo-states (or process situations in [S) that correspond to the
process being no longer in existence. There are two possible MISSING states for a
process, depending on what the process did before vanishing:)

- MISSING-0OK: process committed before vanishing

- MISSING-X: process aborted before vanishing

These pseudo-states can in fact be considered to be real "states™ of a process if the

following constraints are satisfied:

- Once in a MISSING state, a process permanently remains in that state.

- Once in a MISSING state, a process performs no further actions and sends
out no messages.

- If a process A is in a MISSING state, it is not possible for another process B
to determine, within the system, which MISSING state A is in (in fact, it may
not even be possible, in certain systems, for B to determine that A is
missing). Thus, an attempt by B to communicate with A will either never
get any reply, or may get a Process-Missing reply from A’s home site (the
Process-Missing reply carries no other information, such as whether A
committed or aborted before vanishing).

+ The actions that a process takes when in a particular state are highly variable and
dependent on the particular transaction execution and commit algorithm. What | have

tried to capture in Figure 2 are those actions that are universal or almost so.

+ The coordinator passes through state ALL-DEP ("all participants DEPENDENT)
before entering state C-COM, in which the transaction is committed. The ALL-DEP state
has been included to allow for the possibility of the coordinator requesting a final

go-ahead from the user (which the user might refuse) when all of the participants are

DEPENDENT and ready to commit. This option is not provided in many protocols, and in

these the state ALL-DEP does not appear, the coordinator making an immediate transition
into state C-COM (thus committing the transaction), on receiving DEPENDENT messages
from all participants.

* Figure 2 shows the allowable fransitions between the possible states of a process.

-

Sunil Sarin -1l - Distributed Commit Protocols

What is not shown is when these transitions actually occur; this again is highly variable
and will be discussed in this paper. There are two important points about these state
transitions that should be apparent in Figure 2: (i) a process never goes from its
COMMITTED state to its ABORTED state or vice versa; and (i) the only possible
transitions out of COMMITTED and ABORTED are into MISSING-OK and MISSING-X,

respectively.

3.2. Basic Two-Phase Commit

The basic state model of the previous section can be used to describe a "two-phase™

commit protocol. This appears to be the simplest possible type of distributed transaction
commit protocol under our assumptions (about centralized commit decision, etc.), since it
incorporates the bare necessities of the "two-phase” réquirement presented in Section
2.2. In this section, | shall assume that we are dealing with distributed transactions that
have fixed structure, i.e., the coordinator can, at the start of the transaction, completely
determine the participant structure and actions required to implement the user’s request,
and this structure cannot be modified as part of the same transaction (i.e., if some
participant cannot carry out its actions, the coordinator must abort the transaction). |

consider transactions with unpredictable or variable structure in Section 4.

The two-phase commit protocol for fixed-structure transactions is shown in Figure 3.
In accordance with to the two-phase requirement of Section 2.2, the processing of a
participant in a distributed transaction is performed in two phases:

- "Phase 1", in which the participant is not dependent on the coordinator (e.g,
the participant can choose to abort its local actions).

- "Phase 2", in which the participant cannot commit or abort except at the
command of the coordinator.
Thes_e phases have been indicated in Figure 3. For a transaction with fixed structure, a
barticipant receives a single request (which may be composite, i.e, may request a
sequence of actions such as data access, update or transfer) from the coordinator; the
participant enters "Phase 1" and starts to process the requested actions. When the
participant has finished acting on the request, it writes the “intentions™ for its actions
(ensuring that it can commit the actions if the coordinator so desires), and then enters

Sunil Sarin -12 - Distributed Commit Protocols

the DEPENDENT (P-DEP) state (i.e., "Phase 2"). Having done so, the participant sends the

-
coordinator a DEPENDENT message and awaits a COMMIT (or ABORT) message.

Some points about Figure 3 should be noted for understanding:

- The figure only shows a single participant, but there will in general be
several participants each executing an identical protocol. Also, the
coordinator executes its protocol against each participant; at the point
where it awaits a given message from each participant, it only makes the
indicated state transition when it recelves the desired message from all of
the participants.

- The figure only models the normal flow of execution, i.e., when all of the
transaction’s actions can complete and the transaction eventually commits.
Issues of when a transaction aborts are treated in Section 3.3.

- The figure does not include "nonessential” messages that are not a critical
part of the model (an example of such a message would be a "hurry up and
get done” from the coordinator to a participant; such messages are mainly
for speedup, and they appear in some algorithms but not others). Also,
messages relating to transaction aborts have not been shown in Figure 3,
e.g, messages from a participant to the coordinator stating that the former
aborted or was otherwise unable to complete its requested local actions.

- In Figure 3, | have assumed a "broadcast" protocol for the manner in which

~ the coordinator is informed that all of the participants are DEPENDENT and
that the transaction can therefore commit. There are variations possible in
this first phase, such as:
* A chained protocol, in which a single DEPENDENT message is passed from
one participant to the next; when the message reaches the coordinator, it
can be certain that all participants are in the DEPENDENT state. (Gray
refers to this protocol as nested two-phase commit in [2].)
* A hierarchical protocol is sometimes used when a participant in a
transaction can spawn its own subordinate participants, in a manner
transparent to the coordinator (for example, Reed [9] allows "modular

- construction” of transactions from other transactions whose implementation
may not be known). Then, each process is responsible for establishing when
all of its subordinates have reached the DEPENDENT state (it may use a
broadcast or chained protocol, for example); only then can the process itself
enter the DEPENDENT state and inform its superior. (For transactions
whose process structure is not completely known to the coordinator, certain
optimizations on the above are possible, e.g, Montgomery’s distribution of
"completion weights” [8] among the processes allows each process to signal
DEPENDENT directly to the coordinator, and the coordinator is still able to -’
determine when all participants have completed even though it is not

Sunil Sarin | -13- Distributed Commit Protocols

certain who the participants are.)

For simplicity, | shall ignore variations such as the above; our discussion
should not be affected much when applied to commit protocols that use
methods other than the broadcast method for determining when a
transaction is complete and ready to commit.

3.3. Issues for Discussion and Comparison

In this section, | point out some properties of the basic two-phase commit protocol
just described: the degree of resiliency of the protocol, the mechanisms by which a
transaction can be aborted, and the means through which the coordinator and participants
can forget the outcome of a transaction once it has committed or aborted. These
properties (and some more, to be introduced in Section 4) will be referred to in the

discussion and comparison of specific protocols, in Section 5.

Resiliency. A protocol that obeys the tw;)-phase requirement, is certainly "resilient”
in the sense that a transacﬁon will eventually commit or abort even in the presence of
failures. However, in certain phases of the protocol a process A, say, is dependent on
another process B, say, in the sense that A cannot take unilateral action (e.g,, commit or
abort) without B's consent. In such a situation, a failure of B forces A to wait indefinitely
for B's recovery. | shall use the term "resiliency” in a very narrow sense, to describe

the extent to which a protocol is prone to such waits due to process dependencies.

| examine this issue of process waits in the situation where the outcome of the
transaction has not been resolved (to the knowledge of process A in the above); | shall
consider the situation after the resolution of the transaction’s outcome as a separate
~issue presently. For the basic two-phase commit protocol, we observe the following

regarding the dependence of the coordinator and participants on each other:

I. Participant waits. As already stated in the state model, if P is in its DEPENDENT
state it must await the coordinator’s instructions regarding the outcome of the
transaction. This means that the participant cannot unilaterally abort its local actions,
which it might desire to do if, for example, some other transaction makes a conflicting
request. Such conflicting transactions must instead be held up (unless some special

mechanism, e.g, [10, 8], allows such transactions to proceed). This is an undesirable

Sunil Sarin ' -14 - Distributed Commit Protocols

effect, but it is one that seems to be intrinsic to the problem of committing distributed
transactions. One of the strategies commonly used to reduce the time "window" during
which the participant is dependent on the coordinator is to use a “three-phase”™ commit,
which | describe in the next section. There are alternative mechanisms which try to
decentralize the decision (either completely decentralizing it, or doing so only during a
critical time window) as to whether the transaction should commit or abort, thus making
the participants not dependent on any single site; some of these are:
1. If a participant detects a failure of the coordinator, it inquires of the other

participants as to whether or not they committed their actions. This scheme
was described in an older version of the SDD-1 reliability mechanisms [3].

2. A chain of backup coordinators is used; if the coordinator currently in
control of the transaction fails, the next one in the chain takes over. This
scheme is used in SDD-1 [4]. ‘

3. Multiple coordinators are used, with a voting scheme to decide the outcome
of the transaction. This scheme is described in Reed [9].
These mechanisms seem to be fairly general in the sense that they could be applied to
commit protocols in environments other than the ones for which they were originally
designed. The mechanisms can naturally be expected increase resiliency as well as
overhead; however, | am not attempting to model these mechanisms in this paper.

Il. Coordinator waits. Before it can decide to commit the transaction, the coordinator C
is "dependent” on each participant P in the sense that C cannot commit the transaction
until it receives a DEPENDENT message from P stating that P will be able to commit its
local actions if C desires. (Of course, the coordinator can abort the transaction at any
time if it so chooses; this it might do if a participant crashes. The coordinator might also
be able to restructure the transaction, but | do not consider this possibility until Section
4.) Thus, while awaiting DEPENDENT messages from the participants, the coordinator has -
no choice but to continue waiting or to time out and abort. This dependence on the .
coordinator on the participants is an intrinsic property of almost all the distributed
~ commit procedures | am examining, with the important exception of SDD-1 [4]. In SDD-1,
data management sites cannot refuse instructions to update their data; this allows a
coordinator to "spool™ update messages for data managers that are down, and to then go
ahead and commit the transaction. (I shall discuss this further when | examine the SDD-1

Sunil Sarin - 15 - Distributed Commit Protocols

commit protocol in Section 5.

Transaction Aborts. There are several reasons why a distributed transaction may
abort: concurrency control and potential deadlock, site crashes, timeouts triggered by
excessive delays, autonomous decisions by a participant or by the coordinator or user. |
shall not examine these reasons in any detail, but rather concentrate on the issue of how
a decision of one process to abort causes the transaction as a whole to be aborted.
There are essentially two issues to be considered here: (i) communicating a participant’s
abort decision to the coordinator; and (ii) communicating the coordinator’s abort decision
to all of the participants. These are considered in turn below.

|. Local participant aborts. As noted earlier, the participant can only abort its local
actions before it enters the DEPENDENT state. However, before entering the
DEPENDENT state, a participant’s local actions may be aborted for any of several
reasons: a crash of the participant; synchronization reasons, to maintain transaction
atomicity or to avoid a real or potential deadlock; or a timeout on an expected message
from the coordinator. If we continue to assume a fixed transaction structure, then a local
abort at any one participant should cause the transaction as a whole to abort, i.e, the
coordinator must enter the C-ABORT state at some point. | examine here the issue of
how the coordinator is informed of a participant’s abdrting. in general, this is done
implicitly, by the coordinator setting a timeout and aborting the transaction if not all
participants respond (see below). However, this implicit mechanism is often speeded up
by explicit messages from the participant to the coordinator indicating the former’s
inability to satisfy the latter’s requests. Of course, these speedups are useless when
the participant crashes (since the coordinator may wait indefinitely for the participant to
recover and send a message), so some implicit mechanism at the coordinator is always
required. (For reasons associated with “forgetting” transactions, which | examine
presently, it may be desirable for a participant to remain in a recoverable P-ABORT

state until it has sent an ABORTED message to the coordinator.)

Il. Aborts initiated by the coordinator. Before it enters the COMMITTED (C-COM)
state, the coordinator may decide to abort the transaction for any of several reasons: a
participant signals its inability to complete a request; a timeout, if the DEPENDENT

Sunil Sarin , -16 - Distributed Commit Protocols

‘messages from the participants don’t come in for too long a time; the user autonomously
decides to abort and sends an abort-transaction request; or the coordinator crashes.
Once the coordinator decides to abort the transaction (or has to abort aftér a crash,
because it is in state C-ABORT on recovery), its decision must somehow be propagated
to all of the participants. In general, this propagation must be explicit, i.e., ABORT
messages must be sent to the participants, because some participant(s) may already be
in the DEPENDENT state and will be awaiting the coordinator’s instructions. Only in
certain special situations can this be avoided. For example, in the old version of Lampson
and Sturgis’ algorithm [S], the coordinator can simply disappear if it is aborting; a
participant in its DEPENDENT state that does not get a COMMIT message and finds the
coordinator "missing” will infer that the transaction must have aborted, and will also
abort. Also, in "three-phase” commit, which | describe in Section 4, the coordinator can
vanish if it aborts before sending any GET-DEPENDENT messages to the participants,
because it can be certain at that point that no participant is as yet DEPENDENT.

"Forgetting” a Transaction. Here | consider the situation after a transaction has been
committed or aborted, i.e, after the coordinator has entered the C-COM or C-ABORT
state, repsectively. The participants must be instructed to commit or abort their local
actions, and this can be done in two ways:

1. Active: the coordinator sends a COMMIT or ABORT message to each
participant. (This is illustrated in Figure 3.)

2. Passive: each participant inquires of the coordinator whether the transaction
was committed or aborted. (This inquiry, which is not modelled in Figure 3,
is usually triggered by a conflicting request from some other transaction, or
may happen when the participant recovers from a crash.)
Either method can be used by itself (and the "active” method is frequently used as such),
or both can be used in some combination (e.g, in [9]). The issue that | look at here is
when a process (coordinator or participant), after determining the outcome of a
transaction and performing the associated processing, can forget the transaction, i.e., can
vanish and erase all memory of the outcome of the transaction. For example, if only the
"active” method above is used, then the coordinator must persistenly send out a COMMIT
(or ABORT) message to each participant until the participant gives a positive
acknowledgement that is has received and acted on the message; if not, it may happen

Sunil Sarin -17 - . Distributed Commit Protocols

that some participant never receives the message, e.g, if it is down at the time the
coordinator sends out the messages. This fact is illustrated in Figure 3, where the

coordinator waits for COMMIT-ACKs to arrive from all of the participants.‘

If we view the sitdation from the point of view of a participant, however, we see that
- Figure 3 is not quite correct. In particular, it is not really correct for a participant to
vanish after committing its local actions and sending a COMMIT-ACK to the coordinator
(these can be done in any order or in parallel without having any effect on the
argument), because it will not be certain that the coordinator received the COMMIT-ACK.
For example, the coordinator may have crashed after sending out the COMMIT but before
receiving the COMMIT-ACK. On recovery, the coordinator will send another COMMIT but
the participant may have vanished in the meantime and will not reply; the coordinator will
then be in the unhappy situation of forever sending messages with no hope of ever
getting the desired reply. (Even if a "passive” strategy is used, and the coordinator
doesn’t persistenly send COMMIT messages, it will in any case have to stay around

forever and be prepared to respond to an inquiry that will never come.)

To solve the above problem, one might require that the participant not vanish until it
is certain that the coordinator has received the COMMIT-ACK. This idea, however,
merely passes the buck to the coordinator, who must now acknowledge the COMMIT-ACK
and cannot vanish until it is certain that the participant has received this
acknowledgement! This argument can be extended ad infinutum, and we can conclude
that there is no fixed-length protocol of message exchanges (acknowledgements and
acknowledgements of acknowledgements) that will allow both the coordinator and the
participant to correctly vanish. That this is in fact true can be proved very easily:
Suppose there is such a protocol My, My .., M), say, of length n. Let A be the process
that sends the next-to-last message M,,_; it must receive the last message Mp, from the -
other process B, say, before it can vanish. Now suppose A sends out Mj,_; and then
crashes; B, meanwhile, receives M,_, sends back M, and then vanishes without waiting
for an acknowledgement (since M, is the last message in the protocol). Now A is
currently down, and therefore will not receive message M,; on recovery,l therefore, A
will wait forever for M, to arrive, and will never be able to vanish. The protacol

therefore cannot be correct.

Sunil Sarin ' -18 - Distributed Commit Protocols

From the above, we can expect that neither process can ever "forget” a transaction
(the process itself may be allowed to disappear, but is home site must forever maintain a
record of the outcome of the transaction). This seems to be true in general (see [6].
Most distributed commit algorithms have a "post-commit" protocol that involves just two
messages: COMMIT and COMMIT-ACK. With a scheme like this, the coordinator can
forget the transaction once it has received COMMIT-ACKs from all of the participants,
but a participant can never forget the transaction. This is so because the coordinator
may crash after sending a COMMIT and would therefore not receive the participant’s
COMMIT-ACK in response; on recovery of the coordinator, then, the participant will
receive a duplicate COMMIT message. Thus, the participant must always be prepared to
respond to a duplicate COMMIT from the coordinator. The methods that are used to
ensure this are the following:

1. The participant either remembers the transaction forever, or maintains
sufficient information to be able to respond to a duplicate COMMIT or
ABORT message. The latter approach is the one frequently taken, using
monotonically increasing transaction sequence numbers or "timestamps”.
The schemes of SDD-1 [4] and Reed [9] are examples of this approach.

2. The implicit approach. Here the participant is allowed to vanish immediately
once it has sent the COMMIT-ACK to the coordinator and committed its local

~ actions. The coordinator in its turn persistently sends COMMITs to the
participant until either it receives a COMMIT-ACK in reply or it learns that
the participant has vanished. | call this method “implicit" because the
coordinator must infer that the participant correctly completed its actions
and vanished. This method was used, for example, in Lampson and Sturgis’
old algorithm [5], but does not seem to be much in favor currently. This is
probably because the implicit approach has the following problems: (i) the
use of the implicit approach requires that the home site of a vanished
process be capable of generating a Process-Missing reply in response to a
message sent to that process, and this capability is not always provided; (ii)
in order to properly generate a Process-Missing reply, a site must maintain
some memory of processes, in which case the approach becomes little
different from approach (1) above - the participant’s home site may as well
be prepared to send the required COMMIT-ACK when it receives a
duplicate COMMIT.

3. Guaranteed delivery and duplicate suppression, at the network level. Here,
the underlying network ensures that message delivery is robust and
duplicate-free, and the participant process never has to worry about
receiving a duplicate COMMIT message from the coordinator. This is the

Sunil Sarin . -19 - Distributed Commit Protocols

approach Montgomery takes with his "robust sequenced processes™ [8}
(We note that the same problem, of having to "remember” all messages, or
at least the last "sequence number”, has to be solved at the network level
if that is the level at which duplicate messages are eliminated.)

4, GENERALIZATIONS OF THE MODEL

" The state model of Section 3 covers only the basic requirements of consistency and
correctness. However, many distributed transaction commit protocols incorporate more
detail than the "basic” two-phase commit. In this section, | present an "extended” state
model which attempts to capture such detail. This extended model will be used to
identify a broader range of commit protocols, and also to bring up some additional issues
that arise, in particular unpredictable and variable transaction structures and early
release of uncommitted transaction resuits.

4.1. Extended State Model
Here, the "basic” state model of Section 2 is extended slightly (by refining the states

START and DEPENDENT of the processes before transaction commit/abort) to carry more
information about the progress of the transaction. In particular, | introduce a DONE state
for participant processes. A participant will be in its DONE state when it is certain that
there will be no further local actions (other than committing or aborting actions already
"performed”, on a tentative basis) that it must perform on behalf of the transaction. The
purpose of introducing this concept is to model the following:

1. Delaying the dependence of the participants on the coordinator. In its
DEPENDENT state, a participant must await instructions (to commit or abort)
from the coordinator, which means that the participant may have to wait an
indefinite amount of time, e.g, if the coordinator crashes. While this effect
cannot be avoided altogether, its effects can be reduced if a participant
does not enter the DEPENDENT state immediately when its local actions are
complete. This procedure is followed in "three-phase” commit protocols (of
which Lampson and Sturgis’ old algorithm [5] is an example), which we
examine presently.

2. Early release of transaction results. Certain schemes (such as Takagi’s [10]
and Montgomery’s [8]) allow the outputs of not yet committed transactions
to be supplied to other transactions, usually to allow increased concurrency.
For such schemes, the DONE state can be used to indicate the earliest point
in the transaction’s local progress at which a participant can release the

Sunil Sarin - 20 - Distributed Commit Protocols

transaction’s results. (One could conceive of a participant releasing a
transaction’s results even before learning that its local actions are DONE,
but this is unlikely to be often fruitful since the results will be "dirty” and
subject to further modification by the transaction at any time.)

The extended state model is presented in Figure 4. The state of a participant
process before it learns that the transaction is committed or aborted can be described in
terms of two dimensions:

- Whether or not the participant’s focal actions on behalf of the transaction
are DONE.

- Whether or not the participant is DEPENDENT on the' coordinator, in ‘the

sense that it must await the coordinator’s instructions on whether to commit

or abort the transaction’s focal actions.
The state of a participant can thus be described as an "ordered pair” of values along
these two dimensions. In Figure 4, | have used the value "-", in the first and second
elements of the pair, to indicate that the participant is not DONE or not DEPENDENT,
respectively. The state of the coordinator can similarly be described along two
dimensions: whether or not it knows that all participants are DONE, and whether or not it
“knows that all participants are DEPENDENT.

We note that the extended state model of Figure 4 is intended to be very general;
not all of the states that appear in the model actually manifest themselves in all of the
commit protocols that | am examining. We shall see, for example, that in "three-phase”
commit, every participant’s DONE state precedes its DEPENDENT state; the state
<-,P-DEP> (DEPENDENT but not yet DONE) does not appear in this kind of protocol.
However, there are other possible protocols, involving "conversational® transactions
(Section 4.3), in which a participant can be DEPENDENT but not yet DONE.

4.2. Three-Phase Commit Protocol
In three-phase commit (Figure 5), the coordinator and participants go through an extra

round of message exchanges before the participants enter the DEPENDENT state and
await the coordinator’s instructions. The request for processing that the coordinator
sends to a participant (I am still assuming a "fixed" transaction structure here) asks for a

DONE message to be sent in reply on completion of the participant’s local processing.

Sunil Sarin -21 - Distributed Commit Protocols

Only when it is certain that all participants are DONE does the coordinator request them
to enter the DEPENDENT state. The three "phases” that a participant goes through, prior
to committing or aborting the transaction, are the following:
- "Phase 0" in state P-START (which is the same state as <-,-> in Figure 4).
This phase ends when the participant completes the requested local

processing, on a "volatile" basis (i.e, such that the participant can abort
them at any time), and enters "Phase 1".

- "Phase 1" in state <P-DONE,->. The participant has completed its local
processing but is not yet dependent on the coordinator. (This means, for
example, that the participant can choose to abort its local actions if it so
desires) In this phase, the participant sends the coordinator a DONE
message and waits for a GET-DEPENDENT message (which the participant
can refuse if it has unilaterally aborted); on receipt of this message, the
participant records its "intentions” (to ensure that it can commit if the
coordinator says so) and enters "Phase 2". (Note that the participant might
choose to start recording its intentions while awaiting the GET-DEPENDENT,
for faster response; on receiving the GET-DEPENDENT, the participant only
has to save its "state variable" on stable storage.)

- "Phase 2", in state <P-DONEP-DEP>. This is the same as Phase 2 of

"two-phase" commit: the participant sends a DEPENDENT message and must

await the coordinator’s instructions to commit or abort.
The progression of the coordinator through its states is similar. Note that in Figure 5, |
have made room for a "final user OK" when all participants are DONE; if the user is to be
given a final chance to retract his transaction, this seems to be the most appropriate
point, before any participant is DEPENDENT on the coordinator. Then, the coordinator’s
ALL-DEP state (<ALL-DONE,ALL-DEP> actually) coincides with state C-COM, since it is
reasonable for the coordinator to go ahead and commit the transaction once it learns that
all of the participants are DEPENDENT. (Allowing the user a final chance to abort at this
point, after all participants are DEPENDENT, is conceivable but seems pointless.)

The canonical example of a three-phase commit protocol is that of Lampson and
Sturgis’ old algorithm [5]. (The transaction commit procedure in Takagi [10] is also
three-phase, as | shall show in Section 5) The effects of introducing the extra phase in
the protocol are the following:

1. Increased Resiliency. By delaying its entry into the DEPENDENT state, a
participant reduces the time window during which it must await the

Sunil Sarin -22 - Distributed Commit Protocols

coordinator’s instructions. This effect is most prominent when one
participant P; say, completes it local actions much earlier than another P;
say (which often occurs in practise, e.g, if Pj’s processing depends on the
completion of P/s). Then P; will enter the DONE state but will not be
DEPENDENT until the coordinator is certain that Pj is also DONE; if the

coordinator crashes in the meantime (or if there is a conflicting request at
P; and no GET-DEPENDENT message is received in a very long %ime), P; will

be able to unilaterally abort its local actions. The participant P; would not

have this option in two-phase commit, since it would immediately enter the
DEPENDENT state on completion of its local actions.

2. Additional delays, and the cost of sending extra messages, are incurred; this
illustrates the tradeoff that one commonly observes, between resiliency and
overhead.

3. A less important effect than the above is the following: Before entering the
ALL-DONE state, the coordinator can be certain that no participant is yet in
the DEPENDENT state (since no participant becomes DEPENDENT without
the explicit instruction of the coordinator). Then, if the coordinator wishes
to abort the transaction before it has sent any GET-DEPENDENT messages,
it can simply vanish without having to send explicit ABORT messages to the
participants (who will eventually abort their local actions of their own
accord). (This reduced dependence of the coordinator on the participants,
before the ALL-DONE state, might also allow the coordinator more freedom
to "restructure” the transaction, which | discuss presently.) '

4.3. Conversational Transactions

Here | consider a more general kind of transaction structure, in which the transaction
is described not by a single composite request, entered by the user all at once, but
rather by an arbitrary sequence of actions requested interactively by the user. At some
point during the interaction, the user will request that his actions be committed (or
aborted) as an atomic transaction. The participants in such a transaction receive
requests for actions one at a time, and at any given point may not knéw what further

actions will be requested under the same transaction.

| shall assume that the user in such a conversational transaction is well-behaved that
is, the user does not request a transaction commit untii he has received
acknowledgements that all of his requests have in fact been acted on. (If the user is not
well-behaved, then the outstanding unacknowledged requests may or may not get
performed depending on the timing of specific messages; | shall not consider this

Sunil Sarin -23 - Distributed Commit Protocols
possibility.)

The range of possible commit protocols for conversational transactions is somewhat
wider than for transactions with fixed structure. | have attempted to give a broad
classification of these protocols (with my own "names” for the protocols) below. (The

state transitions for these classes of protocols are shown in Figure 6.)

1. Strongly Dependent. Here a participant immediately performs each
requested action in DEPENDENT mode. Thus, the participant does not know
at any given time whether or not it is DONE, but must at any time be
prepared to commit (or abort) the actions that it has performed so far.
(Note that the P-DONE state is absent in such a protocol. In fact, the
participant only knows that it is DONVE when it receives instructions to
COMMIT; thus, state P-COM implies P-DONE) This is the simplest possible
protocol for committing conversational transactions (it has but two
"phases"), but it is not extremely resilient since a participant is immediately
DEPENDENT on the coordinator once it performs a requested action. (The
basic scheme of Reed [9] and Lampson and Sturgis’ new algorithm [6] are of
this form; these authors, however, do allow for more resilient protocols to
be implemented by the user or application).

2. Standard. In this protocol, a participant performs all requested actions on a
volatile basis at first, and only enters the DEPENDENT state when the
coordinator sends it an explicit GET-DEPENDENT message (at which point
the participant also knows that it is DONE). This protocol does provide
increased resiliency, since a participant only enters the DEPENDENT state
when the coordinator is certain that all actions to be performed on behalf of
the transaction are DONE; until then, the participant has the freedom to
unilaterally abort. This protocol can be called "two-and-a-half" phase, since
the coordinator goes' through three phases (initial, ALL-DONE, and finally
ALL-DEP/COMMIT) but a participant goes through only two (initial, and
<P-DONE,P-DEP>).

3. Extended. This is almost the same as "standard”, except that a participant’s
DONE and DEPENDENT states are separated. This protocol is truly
three-phase, since both coordinator and participant go through three phases.
In terms of resiliency, the extended protocol has very little more to offer
than the standard protocol above. The extended protocol is useful,
however, in situations where a transaction’s results can be released before
they are committed. The scheme of Takagi [10] is an example of such an
extended protocol.

(In all of the above, the coordinator enters state ALL-DONE when the user declares

Sunil Sarin -24 - Distributed Commit Protocols

that there are no further actions to be performed under the transaction; a
"well-behaved" coordinator will also not enter the ALL-DONE state until it has received
acknowledgehents of all the requests made under the transaction. Note that when the
coordinator is ALL-DONE, the participants themselves may not be aware that they are
‘ADONE, e.g, in the "strongly dependent” protocol) In Section 5, | shall look at some
example distributed commit protocols that fit the categories described above.

4.4. Dynamic Transaction Restructuring

Here | consider the possibility of the coordinator (or the user) restructuring .a
transaction, i.e,, retracting some actions and starting some other ones (such as performing
the desired actions on an alternate copy of the data in question). There are various
reasons why this might -be done: some participant signals that it is unable to perform the
actions requested of it, or that it has aborted its local actions; some participant is down
or is very slow in responding to the requests sent to it; the user may change his mind
about an action that he requested. When the coordinator wishes to restructure a

transaction, it must ensure that the undesired participant actions get properly aborted.

The transaction restructuring problem can therefore be reduced to that of the
coordinator selectively aborting a given participant P, say, while trying to commit a
restructured transaction consisting of the actions of the other participants; it is this
simplified problem that | examine here. The safest procedure for the coordinator to
follow would be to persistently send an ABORT message to participant P until an
acknowledgement is received, and only then to commit the transaction (by entering the
- C-COM state and sending COMMIT messages to the other participants). This method has

_a major drawback, namely that the transaction must wait an indefinite amount of time if

. the undesired participant P is down. The approaches that can be taken to remedy this -
are the following:

1. Disallow any such restructuring. This, essentially, is the approach taken in

[9, 8, 6] In Reed’s scheme [9], for example, once a "token" has been

created under a given transaction (a "possibility” represented by a "commit

record"), it is not possible for that individual token alone to be aborted; it is

only possible for the transaction as a whole, with all of its tokens, to be

aborted (or committed). (Note that certain kinds of restructuring are indeed
possible under Reed’s scheme, if tokens are first created under "dependent

Sunil Sarin | -25- Distributed Commit Protocols

possibilities”; | shall examine such strategies in Section 5.)

2. Allow limited restructuring, only during the time interval that the coordinator
is certain that no participant has performed its actions in DEPENDENT mode.
This is only possible under "three-phase” commit protocols (in two-phase
commit, the coordinator has no control over when a participant becomes
DEPENDENT). Thus, in three-phase commit (Figure 5), the coordinator
and/or the user can choose to restructure the transaction any time before
the GET-DEPENDENT messages are sent out to the participants, i.e, before
state ALL-DONE. (Using this strategy, the coordinator need not even send
an ABORT message to a participant that it wishes to abort; since the
participant cannot be in the DEPENDENT state, its local actions must be
volatile and will eventually be aborted anyway.) -

3. Allow arbitrary restructuring at any time, so long as the coordinator does
not send both a COMMIT and an ABORT to the same participant. This
strategy is not followed in any of the schemes | am examining, but it is
conceivable. For example, in Takagi’s scheme [10] one could conceive of
the coordinator having a "commit P;" and an “abort P;" in the transaction
"commit cache". Such a scheme is dangerous, however. It would not work,
for example, if the participants could query a “commit record” that
contained no information other than whether the transaction as a whole
committed or aborted; thus if participant Pj (who should abort) does not
receive the ABORT message above, it may later get a "commit™ response to
its inquiry. (Similar problems arise if participants can inquire of each other
as to the outcome of the transaction) In order for the strategy to work
correctly, the coordinator would have to retain enough information about the
transaction to be able to give different responses to inquiries from different
participants. This hardly seems worth the trouble, since the benefits that
might derive from allowing arbitrary transaction restructuring are
questionable.

We note that the subject of discussion here is one that most sources in the literature do
not mention explicitly. However, it appears that some form of transaction restructuring
is often useful, and what | have tried to do here is indicate the available options and the
problems associated with each. It appears that "arbitrary” restructuring of the kind
desribed above is hardly worth the trouble, but that "limited” restructuring seems
reasonable and not dangerous. Limited restructuring can be implemented, for example,

using Reed’s "dependent possibilities” [9].

Sunil Sarin - 26 - Distributed Commit Protocols

45. Early Data Release

Here | consider the issue of when a participant can release the results of a transaction

to other transactions. The discussion will be couched in terms of data objects that the
transaction updates and that other transactions may want to read (or further update).
The possible approaches that can be taken are the following:

1. Don’t release the results until certain that the transaction has committed (or
aborted).

2. Allow "early” release of a transaction’s results in a controlled fashion, only
"when the participant is certain that the transaction will perform no further
actions on the data object in question.

3. Allow "early” release of a transaction’s results at any time.

Strategy (1) has been followed in almost all schemes until recently [2, 9, 6, 4] Under
this strategy, uncommitted transaction results are never released, so that problems of
cascaded backout are avoided; the strategy is simple, and warrants no further discussion.
Early data release, however, can provide increased concurrency, as pointed out by
Takagi [10] and by Davies [1]. in order to maintain consistency (transaction atomicity) in

the face of early data release, additional system overhead has to be incurred, e.g, to

"~ keep track of dependencies among uncommitted transactions. In this connection, strategy

(3) is unlikely to be productive, since if a transaction’s results are released before it is
established that they are "done", then the results will be "dirty" and subject to
modification at any time; transactions that read such dirty data will most likely have to
abort. (At best, the other transactions may be able to "recompute” if there is some way
that they could be "informed" of changes to their inputs. This possibili‘ty is briefly
alluded to by Davies, but no specifics are given; clearly, the system overhead required is

even greater than with strategy (2).)

| shall therefore exclude strategy (3) from our consideration, and examine- early

release of transaction results under strategy (2), i.e, when the participant process is

.//g

certain that the transaction’s actions on the data object are complete. The concept of
early data release can be captured in the model, using the DONE participant state. (in
actual fact, it would be more correct to associate a DONE state with each object that the

transaction acts on; this is what Takagi’s scheme does in effect. However, the idea is the

Sunil Sarin -27 - Distributed Commit Protocols

same, whether we consider the participant’s composite actions on behalf of the
transaction to be DONE or whether we consider the transaction’s actions on individual
objects to be DONE) The schemes of Takagi [10] and Montgomery [8] are the only ones
| am aware of that provide early data release of the kind being considefed here, and
they represent two different approaches to the problem:

1. Conditional release of uncommitted results (Takagi). Here, a transaction T
is allowed to read the uncommitted outputs of transaction T; under the
condition that if T; eventually aborts, T, will also abort.

2. Polyvalues (Montgomery). Here, if transaction T is DONE (with respect to
a given data object or participant process), transaction 7, will be given a
pair of values, representing the inputs that it would get if T; committed and
T; aborted, respectively. T can then compute the results that it would

output under all possible situations (it may itself install polyvalues into the
database, but in general it would not complete unless its outputs to the real
world turned out to be the same under all possible situations). This scheme

allows T to proceed without fear of "cascaded backout”, because its own
completion is not dependent on T; eventually committing.
Of themselves, the above mechanisms are not of interest for this paper. However, they
do have an impact on the transaction commit protocol, and | shall look at this issue when | -
examine Takagi’s and Montgomery’s schemes in Section 5.

5. EXAMPLE DISTRIBUTED COMMIT PROCEDURES '

In this section, | consider several distributed commit protocols described in the
literature, namely those of [2, 9, 6, 10, 4, 8] | shall try to see how these schemes fit
into my general model for such protocols, and examine some of the issues raised earlier,

such as "forgetting” transactions, resiliency, and, where applicable, "early data release”.

5.1. Gray

Gray’s description of "two-phase commit” [2] is sketchy at best. For example, he
does not address the issue of how the coordinator determines that it is satisfied with the
actions of the participants (i.e., that the participants are DONE), and when a coordinator
starts requesting "votes” from the participants. Also, Gray does not completely address
the issue of when a transaction can be "forgotten”. He does say that the coordinator
persistenly sends COMMITs (or ABORTs) until it has received acknowledgements from all

Sunil Sarin - 28 - Distributed Commit Protocols

of the participants, at which point it can vanish. However, Gray does not look at the
problem from the participant’s viewpoint, i.e,, the fact that a participant cannot vanish
after committing and sending an acknowledgement to the coordinator, since the
coordinator may be down and may later send a duplicate COMMIT (or ABORT). As was
pointed out in Section 3.3, the participant must be able to respond to such a duplicate
COMMIT. (The -participant’s home site might be able to do so by examining its "log", and
this would be all right even though it is slow; Gray does not discuss this possibility at
all.) '

if we ignore the above problems, we see that the basic features of Gray’s scheme do
fit easily. into the model:
- When the participant "forces” (i.e., writes on stable storage) its "AGREE™

record, it enters what | have called the DEPENDENT state, since it must now
obey the coordinator’s instructions to commit or abort.

- The coordinator commits the transaction when it forces its
"PHASE12-COMMIT" record; it enters the C-COM state at this point. As
noted in the "two-phase” requirement (Section 2.2), the coordinator can
only do this when it is certain that all participants have forced their
"AGREE" records, i.e., are in the DEPENDENT state.

As noted above, the description of Gray’s scheme is lacking in detail, so we shall not

discuss it any further.

5.2. Reed

 The most striking feature about Reed’s scheme [9] is its flexibility: The user or
application can choose whatever kind of protocol it wishes to follow for deciding when to
commit or abort a transaction, and the system ensures that undesirable effects don’t
happen no matter what the user does. Thus, for example, the system sets a timeout on
every transaction ("possibility", actually), which protects against undesirable user process
behavior such as looping forever, disappearing without issuing a commit or abort
. instruction, etc. In Reed’s scheme, the setting up of coordinator and participant
processes, and the means by which they communicate and cooperate, is completely
invisible to the system. However, the system takes the responsibility for ensuring that
the requests of the user processes are correctly and consistently processed; thus, the

Sunil Sarin -29 - Distributed Commit Protocols

system allocates a "commit record” for a transaction, and is responsible for propagating
the outcome of the transaction to all of its actions and for determining when the

transaction can be forgotten (i.e, when the commit record can be reclaimed).

In examining Reed’s scheme, | shall first see how the "kernel” of the scheme fits the
model, and then examine how some of the features (mainly "dependent possibilities™) can
be used to implement the classes of protocols that | have described. (I shall for the most
part ignore the “pseudo-temporal environment™ mechanism, since its purpose is for
transaction synchronization and it has little to do with recoverability.) Using just the basic
features of Reed’s scheme, a user wishing to execute a transaction would run under a
“possibility” that has a "commit record”, and would create just a single process, the
coordinator, to execute the transaction. (I assume that the coordinator and the commit
record are located at the same site, for simplicity.) The coordinator would send requests
for actions on objects to the "object managers” of the objects in question. (These
object managers, who may be resident on various sites, are effectively the "participants”
in the transaction) If a particular request involved updating an object, a "token” would
be created that would refer to the commit record associated with the transaction (or
possibility). At some point, the coordinator would execute a complete or abort request,
which would be reflected in the state of the commit record; the tokens created by the
. transaction would then become valid "versions” (or aborted versions). This naive use of
Reed’s mechanism corrésponds to the "strongly dependent” commit protocol (Figure 6):

- Once a token is created under a given transaction, it is effectively in the
DEPENDENT state, since the token can only be committed or aborted on
instruction of the transaction’s commit record The token cannot be
selectively aborted by a user process (or for concurrency control reasons,

or as a result of failures other than a timeout on the commit record); it only
gets aborted if the transaction as a whole aborts.

- The concept of a DONE state (for an object that the transaction acts on)
does not appear; a participant (object manager) only knows there will be no
further actions on the object when it learns that the transaction has
committed (or aborted).

- If the coordinator is not "well-behaved” (i.e, executes a complete request
before gettting acknowledgements of all token requests), then the
unacknowledged requests may or may not get performed.

Sunil Sarin -30 - Distributed Commit Protocols

Reed’s mechanisms can be used in a much more disciplined way than the above,
through the use of dependent possibilities. In particular, | propose the following setup
for a distributed transaction: The coordinator sets up a participant process at each site
that will be involved in the transaction, and each such participant executes under a
separate dependent possibility (i.e, a possibility that is dependent on the possibility
under which the transaction as a whole is running). The coordinator and the participants
follow some kind of protocol to decide when: (i) a given participant should commit its
dependent possibility, thus making its actions (tokens created, etc.) directly dependent on
the parent possibility; (ii) the coordinator should commit the transaction, by committing
the parent possibility. In Reed’s scheme the user is free to use any kind of protocol,
meaningful or not, for making the above decisions; | show below how this structure can
be used to implement the classes of protocols described in Sections 3 and 4. If we
assume a fixed transaction structure (in which the coordinator sends each participant a
single, perhaps composite, request, and waits for a notice of completion), the two- and
three-phase commit protocols can be implemented as follows:

1. Two-Phase Commit. Here, each participant executes a procedure of the
following form: '

possi := possibilitySdependent()
were possi do ; under a dependent possibility
; perform actions requested
; (create-token, etc.)
- end
possibilityScomplete(possi) ; enter DEPENDENT state
send(coordinator,"DEPENDENT") ; inform coordinator

2. Three-Phase Commit. The participant procedure is extended somewhat:

possi ;= possibility$dependent()

were possi do ; under a dependent possibility

; perform actions requested

; (create-token, etc.)

end ; enter DONE state
send(coordinator, "DONE") ; inform coordinator

; await reply GET-DEPENDENT, on receiving:
possibilityScomplete(possi) ; enter DEPENDENT state
send(coordinator, "DEPENDENT") ; inform coordinator

We note that in the above protocols, there is a clear separation between the

-’

Sunil Sarin , -31 - Distributed Commit Protocols

responsibilities of the user (or application) and those of the system. Thus, the concept
of when a given participant is OONE is entirely an artifact of the user, and is never
visible to the system. On the other hand, when a process (presumably the coordinator)
~ wishes to commit the parent possibility of the transaction, it simply executes the
command possibilityScomplete; the system takes care of committing all of the actions
taken (tokens created) under the possibility, wherever they may be located. (This is
why, in the above procedures, | have not shown the final phase of the transaction, when

the coordinator enters the C-COM state and informs the participants thereof.)

The above protocols were shown for transactions with fixed structure only. For
conversational transactions, the various types of protocols described in Section 4.3 can

be implemented in a very similar way.

Dynamic Transaction Restructuring. Certain kinds of transaction restructuring can be
done if "dependent possibilities” are used (as in the above protocols). For example,
while a participant in the three-phase commit protocol above is awaiting a
GET-DEPENDENT message from the coordinator, it may instead receive an instruction to
abort its local dependent possibility. Note, however, that arbitrary transaction
restructuring, that involves the "selective aborting” of individual actions, is not possible
once the actions in question become directly dependent on the parent possibility of the
transaction.

"Forgetting” Transaciions. The "commit record"” associated with a transaction
(possibility) can be reclaimed once it has established that all tokens dependent on it have.
"encached” the final outcome of the transaction; the commit record sends a state.
message to the object manager in charge of the token, and receives a no-ref message in
response. As indicated in Section 3.3, the latter message may be lost, and the object
manager may receive duplicate state messages from the commit record; to ensure that
the latter can be reclaimed, the object manager will always acknowledge with a no-ref
reply, even if the token in question has been aborted or erased because it is out of
date. Thus, the object managers "remember” sufficient information to enable them to
respond to duplicate commit or abort instructions from the commit record.

Increasing Resiliency. Reed allows for a possibility to be implemented using muitiple

Sunil Sarin -32- Distributed Commit Protocols

- commit records at several sites, with a voting scheme to decide the final outcome
(complete or abort) of the possibility. This scheme has the effect of making participant
processes (object managers that have had "tokens" created under the possibilitiy) not
dependent on any single site. This increased resiliency is, naturally, offset by the
increased overhead involved with collecting the votes, etc, and reclaiming the commit

records once the final outcome has been decided.

5.3. Lampson and Sturgis

There aré really two schemes that have been put forward by this pair of authors
[5, 6] The more recent one [6] seems to be the more general one and is the one | shall
focus on; however, | shall also examine some of the features of the older algorithm [5].
The context that Lampson and Sturgis assume is one in which all transactions are
conversational, i.e., the user enters requests for actions one by one, and at some point

decides that he is satisfied and requests that his transaction be committed.

The basic scheme of [6] is very similar to Reed’s basic scheme (i.e., without
"dependent possibilities”). Thus, each Write action executed by a participant (server)
process becomes "strongly dependent" (since the "intentions” get written immediately
and cannot be erased except on command of the coordinator). This "strongly-dependent”
- protocol does not provide much resiliency, as was pointed out in Section 4.3, and
Lampson and Sturgis propose some variations on their basic scheme. In particular, they
suggest that a participant could defer acting on Write requests (and writing the
associated intentions) until the coordinator sends a "GetReady" request. This begins to
resemble the "three-phase” protocol, but isn’t quite the same. In particular, Lampson and °
Sturgis do not seem to allow the execution of Write actions on a "volatile™ basis, without
being dependent on the coordinator; thus, the concept of a participant being DONE but
not DEPENDENT is not apparent. It is at this point that the schemes of Lampson and
Sturgis and Reed differ; Lampson and Sturgis do not provide the full power that can be
obtained with Reed’s "dependent possibilities".

We note that the older protocol of Lampson and Sturgis [5] is truly three-phase: a
participant does go through a DONE state (or "Prepared’, in Lampson and Sturgis’
terminology) in which it is not yet DEPENDENT on the coordinator (i.e., not "Ready”. (In

Sunil Sarin -33- Distributed Commit Protocols

the DONE state, the participant does not write its intentions until the coordinator sends a |
"GétReady" (GET-DEPENDENT in my model) message, but this could be improved
somewhat by having the participant write the intentions while awaiting the coordinator’s
GetReady message, on receipt of which all the participant has to do is set its state to
"Ready"” (DEPENDENT).)

"Forgetting” Transactions. This issue does not seem to be explicitly addressed by
Lampson and Sturgis; there seems to be an implication in [6] that neither the coordinator
nor the participants can ever "forget” a transaction. (Note that the actual processes
involved in the transaction'need not stay around forever; it is necessary, however, for
their home sites to forever retain a record of the transaction) However, we note that
the older version of Lampson and Sturgis’ scheme [5] does allow both the coordinator
and the participants to forget a transaction. This is done using the “implicit™ approach
that was mentioned in Section 3.3:

- If after committing, the coordinator finds a given participant missing, it can

assume that the participant must have committed before vanishing, and the
coordinator itself can therefore vanish.

- To abort the transaction, the coordinator can just vanish without sending

any ABORT messages. A participant that finds the coordinator missing will

then .abort its local actions, since it can assume that if the coordinator

vanished without persistently sending COMMIT messages, it must have

aborted the transaction.
The ability of the coordinator and participants to do the above depends heavily on the
idea of the sender of a message obtaining a "Process-Missing™ reply from the home site
of a vanished destination process; if the sites in the system were not equipped to give
such a response, the above ideas would not be applicable. (Note that a Process-Missing
reply is in effect some kind of communication from the vanished process, and the sending
process makes certain inferences from this communication that allows it to take the
actions described above. The situation is very different when a sending process finds
the destination site down or does not receive any reply for a very long time; in such a
situation, the sending process cannot assume that the destination process vanished, and
therefore cannot take the actions described above. Thus, a participant in the

DEPENDENT state is in fact dependent on the coordinator, and cannot unilaterally abort; it

Sunil Sarin -34 - Distributed Commit Protocols

must await a message from the coordinator or a Process-Missing indication from the
. coordinator’s home site.)

5.4. Takagi

Takagi’s distributed transaction management scheme [10] is characterized by the idea
of "early release” of uncommitted transaction results. | shall not discuss the details of
this idea, except insofar as it affects the transacton commit procedure. To see how
Takagi’s scheme fits the model, let us consider a participant process in a transaction, in
particular a data manager responsible for an entity (data item, data object) that the
transaction updates. The participant goes through three phases with respect to the
. transaction:

- Phase 0. When the transaction has accessed the entity but has not updated
it, i.e,, the entity version for the transaction is "dirty"

- Phase 1: When the transaction has updated the entity, i.e, the
corresponding version is "dependent”.

- Phase 22 When the entity version is "prepared” for commitment.

It should be clear that this corresponds almost exactly to the "extended three-phase”
commit protocol for conversational transactions (Figure 6); Takagi’s states "dirty",
“dependent’, and "prepared” correspond to the START, DONE, and DEPENDENT states,
respectively, in my model. (Note that the term "dependent” in used with different
meanings in the two schemes - Takagi’s "dependent” refers to the point where the
transaction’s output can be released to other transactions, while my DEPENDENT refers
to the point where the participant must obey the coordinator’s instructions to commit or
abort.)

(The éorrespondence between Takagi’s protocol and my extended three-phase
protocol (Figure 6) may not be immediately obvious. In particular, there is no GET-DONE
message from the coordinator to the participant in Takagi’s scheme, that tells the
participant that the transaction will make no further changes to the objects accessed.
However, the DONE state of the participant is implicit in Takagi’s assumptions about the
transactions in the system, namely that a transaction’s accesses to a given entity will

either consist of a single "read-only” access, or a "read-for-update” foliowed by a

Sunil Sarin -35- Distributed Commit Protocols

"write" access. Thus, when the participant receives a "write" request from the
transaction coordinator, there is an implicit GET-DONE in the request that allows the
participant to infer that the transaction will not update the entity any further and that |
the new entity version can therefore be released to other transactions. | believe that
Takagi’s restrictions are not really fundamental to his idea of early data release and
control of cascaded backout; it should be possible to relax his restrictions and allow a
transaction to make multiple accesses to the same entity. Then, Takagi’s ideas could be
used in exactly the same way if the transaction coordinator "piggy-backed” a GET-DONE
request with the last access that the transaction made to an entity (if the coordinator
does not yet know whether or not a given access is the last one, it could send a
. separate GET-DONE later). A participant process would then know when the
transaction’s outputs are not subject to further change and are therefore ready for

release to other transactions.)

" Early Data Release. Takagi’s scheme of early data release, and the cascaded backout
that goes with it, places an imporfant constraint on the commit protocol. In particular,
since the DEPENDENT state implies that the participant will obey only the coordinator’s
instructions (to commit or abort), a participant in a transaction cannot enter the
DEPENDENT state (i.e., make the entity version "prepared’) so long as the transaction is
subject to cascaded backout. Thus, if transaction T, reads the results of transaction Tr
then T, cannot enter the DEPENDENT state until T; commits. In Takagi’s scheme, this is
reflected in the procedure that a participant follows when it receives a ‘prepare”
message (GET-DEPENDENT in my model) from the coordinator of transaction 7x The
participant does not enter the "prepared” state (DEPENDENT in my model), and inform
the coordinator thereof, until it has learned that the transactions on which Té depends,
T} in this example, have committed.

5.5. SDD-1

The main feature of the SDD-1 design [4] is that its model of transaction execution is
very different from that which | have been assuming so far. In particular, the
"participant” sites involved in reading a transaction’s inputs and computing its outputs
need not be the same as the sites at which the outputs (updates to data) will actually be

installed. Transaction execution thus takes place in two disjoint stages: (1) reading the

Sunil Sarin - 36 - Distributed Commit Protocols

inputs (which involves synchronization) and computing the outputs of the transaction, and
(2) committing the oulputs, i.e., installing updates to data and delivering requested data
to the user. The first stage essentially corresponds to "Phase 0" of the three-phase
commit protocol; when this stage is over, the transaction is DONE in the sense that all of

its results are known. -

The second stage of transaction execution, committing the results, is the one that |
examine here. This stage essentially covers phases "1" and "2" of the three-phase
protocol: An initial UPDATE message informs a participant (data manager) of the values
for data update, and is like my GET-DEPENDENT since the participant must then await
the final COMMIT (or ABORT) message. However, there is a major difference here, in the
assumptions about the environment, between the SDD-1 commit protocol and most
others. In particular, data managers holding data to be updated by a transaction (the
"participants” in the transaction commit) cannot refuse to install the updates (i.e., cannot
“unilaterally abort"). This allows the transaction coordinator to "force™ a given data
manager into the DEPENDENT state (which it does when it sends the initial UPDATE
message), so that the participant must await a COMMIT or ABORT message. Even if the
participant is down while the coordinator is attempting to commit, the initial UPDATE
message for the participant can be "spooled”; the participant on recovery must first read
all of its spooled messages, at which point it will be dependent on the coordinator. Thus,
in the SDD-1 commit protocol, the coordinator is not dependent on the participants’
cooperation in order to commit a transaction’s results. (Note that this only applies to the
commit procedure, after the transaction has read its inputs and computed its resuits.
" Before the commit procedure begins, a transaction is dependent on the availability of its

input data and on éatisfying its synchronization requirements.)

 Increased Resiliency. To take care of coordinator crashes while a participant is in the

DEPENDENT state, the basic commit protocol is extended in SDD-1 by using backup
coordinators and adding an extra phase of message exchanges (which ensures agreement
between the current coordinator and all of the backups). (In an older version of the
SDD-1 commit protocol [3], a participant that found the coordinator down would inquire
of the other participants whether or not they had committed their results. This solution

was ultimately rejected because the mechanisms necessary for achieving agreement

Sunil Sarin -37 - Distributed Commit_ Protocols

ambng the various participants (especially when the only participant(s) that committed
has also crashed and therefore will not respond to inquiries) are somewhat more complex

~ and involve longer delays than the use of "backup” coordinators.)

5.6. Montgomery
The scheme of Montgomery [8] uses a hierarchical network structure to provide

transaction atomicity with reduced locking reqirements. The ideas that are of interest to
us here are the use of polyvalues and the associated distributed commit protocol. | shall
focus first on what Montgomery calls predictable transactions, or, in my terms,
transactions with fixed structure. In Montgomery’s commit protocol, each participant (or
at least the ones that update data) goes through two phases of processing:

1. A "lock phase”, during which the participant can abort its local actions. This

phase ends when the participant completes its local processing and sends a
"ready” message to the coordinator.

”

2. A "wait phase”, during which the participant must await a "complete” or
"abort" message from the coordinator regarding the outcome of the
transaction. During the wait phase, the participant knows that it will not
have to perform any further processing on behalf of the transaction.

It should be clear that this procedure corresponds to the "two-phase” protocol for
transactions with fixed structure (illustrated in Figure 3): The "lock phase” is "Phase 17,
before the participant’s DEPENDENT state, while the "wait phase” is "Phase 2", when the

participant is DEPENDENT on the coordinator (and also knows that it is DONE).

Early Data Release. The feature that distinguishes Mongomery’s procedure from most
other distributed transaction management schemes is that a participant can release a
transaction’s results before learning (from the coordinator) whether the transaction
committed or aborted. This "early release” takes the form of polyvalues, which describe
the possible valugs of a data object under each possible combination of outcomes
(commit or abort) of the pending transactions on which the polyvalue depends. During
the DEPENDENT state, a participant also knows that its actions on behalf of the
" transaction are DONE, and it therefore knows what values the data updated by the
transaction will have if the transaction eventual‘ly commits; since the participant retains

the old values of the data, it can construct polyvalues which other transactions can read.

" Sunil Sarin - 38 - Distributed Commit Protocols

Then, when a transaction T say, reads the polyvalue output of transaction T;, its own
completion is not dependent on Ty’s finally completing or aborting. Thus, the problem
- that appeared in Takagi’s scheme [10], that T> could not enter the DEPENDENT state
until 7; committed (because of the possibility of cascaded backout), does not appear in

Montgomery’s scheme.

Regarding early data release and the DONE state, Montgomery’s treatment of
unpredictable transactions is fairly interesting. Montgomery uses "completion weights" to
éllow a transaction coordinator to determine when an unpredictable transaction’s actions
are complete (i.e, all participants are DEPENDENT) and can be committed, even though
the coordinator did not know in advance exactly who the participant processes were.
Now in an unpredictable transaction, a participant process immediately enters the
DEPENDENT state when it performs an action (such as an update), but never knows for
certain that it is DONE until it receives a commit (or abort) message from the coordinator.
(The protocol is thus “strongly dependent” (Figure 6)) Now Montgomery allows a
participant in such a transaction to release the results of the transaction (in the form of
polyvalues) at any time, which means that the transaction’s outputs are released before
the participant is certain that it is DONE. | claimed in Section 4.5 that this is generally a
bad idea (since the results are "dirty"), but Montgomery has an interesting way of getting
around the problem. The participant releasing the polyvalue has no idea whether or not
it is DONE, but the coordinator will at some point know whether or not it requires
further processing from the participant that release the polyvalue; at this point, there
are two possibilities: '

1. The coordinator does not require further processing from the participant.
Then, the participant is in fact DONE, and the "completion weight" scheme

will allow the coordinator to commit the transaction (barring failures and
other undesirable events elsewhere).

2. The coordinator does require further processing from the participant, in
which case it will send further requests to the participant. However, the
participant, having released the outputs of the transaction, will refuse any
such requests, and the coordinator will ultimately have to abort the
transaction since it cannot accumulate the required completion weight. (The
fact that the transaction will eventually abort does not affect any other
transactions that read its output data, since these transactions will also
have been supplied the "old" value of this data as part of the polyvalue))

~/

Sunil Sarin -39 - Distributed Commit Protocols

In effect, what the participant does when it releases data before knowing that it is DONE
is to "freeze" the data into the DONE state; then, if the coordinator finds this
unsatisfactory, it is forced to abort the transaction.

"Forgetting” Transactions. We note that the use of polyvalues makes the problem of
forgetting a transaction somewhat more complicated, since not only must the participants
in a transaction be informed of the transaction’s outcome, but so must also the processes
(data managers) that were given polyvalues that refer to the transaction. Montgomery’s
solution to this problem is fairly simple: In the same way that the coordinator is
responsible for informing each participant of a transaction’s outcome, each data manager
is responsible for informing each other data manager to which it supplied polyvalues.
This simply distributes the responsibility for propagating the outcome of a transaction.
(The problem described in Section 3.3, of a process receiving duplicate commit or abort
messages for a given transaction, is handled in Montgomery’s scheme at the network
level, by providiné robust' sequenced processes with no duplicate messages.)

- 6. SUMMARY .

I have attempted in this paper‘to present some kind of uniform mode! for describing
~ distributed transaction commit protocols. The model was used to identify certain classes
of commit protocols (such as "two-phase™ and "three-phase”), with different resiliency
and other properties, and individual schemes from the literature were matched with the
identified classes. In most cases, it was found that the scheme being examined fitted a |
single. protocol class. However, the scheme of Reed [9] was shown to provide
considerable flexibility by allowing the user to enforce any class of protocol for
determining when to commit a transaction, with Reed’s system providing the underlying
support needed to ensure that the final decision to commit or abort was correctly and
consistently enforced. (The scheme of Lampson and Sturgis [6] also provides this
support, but it does not allow for the broad range of protocols that Reed’s scheme does.)

| examined several issues that arise in connection with distributed transactions, in
particular: the resiliency of the various protocol classes, and existing methods for
improving resiliency; how dynamic transaction restructuring might be performed and the
problems associated with it. | also examined how differing assumptions about the

Sunil Sarin - 40 - Distributed Commit Protocols -

environment affected individual protocols, for example early release of data in [10, 8],
and the inability of data managers to refuse update commands in SDD-1 [4].

Most importantly, | attempted to formalize certain recurring themes that appear in the
vast literature on the subject, namely:

1. The two-phase requirement for distributed transaction commit protocols: a
semi-formal argument was presented indicating why this requirement is
essential. Also, the basic resiliency problem that arises in consequence of
the two-phase requirement was identified: Once a participant has signalled
to the coordinator its ability to commit (i.e, that it is in the DEPENDENT
state), it must await the coordinator’s instructions to commit or abort, and is
therefore susceptible to a failure of the coordinator’s home site. Some
proposed methods for alleviating this problem were briefly mentioned.

2. "Forgetting” transactions: It was established that it is not in general possible
for both the coordinator and the participants to erase all memory of a
transaction once it has been committed or aborted. With a few exceptions
(such as [9)), this problem has not received much attention in the literature;
the kinds of techniques commonly used to deal with it were briefly
described.

Sunil Sarin - 41 - Distributed Commit Protocols

FIGURES

Figure 1: SCENARIO FOR DISTRIBUTED TRANSATION PROCESSING.

P
U cC
user coordinator
Pn

- participants

Sunil Sarin

. Figure 2: BASIC STATE MODEL.

Participant:

STATE

P-START .
(failure-state P-ABORT)
P-DEP

P-COM
P-ABORT
P-MISSING-0K
P-MISSING-X

allowable transitions:
P-START — P-DEP

P-ABORT

Coordinator:

STATE
C-START

(failure-state C-ABORT)
ALL-DEP

(failure-state C-ABORT)
.C-COM

C-ABORT
C-MISSING-0K
C-MISSING-X

allowable transitions:

-42-

Distributed Commit Protocols

ACTIONS

varies

send DEPENDENT message;

await COMMIT/ABORT

commit local actions; inform coordinator
abort local actions; inform coordinator
none '

none

P-COM ——————— P-MISSING-0K

> P-MISSING-X

ACTIONS
varies
get final user OK

send COMMITs to participants,
send OK to user

send ABORYTSs, etc.

none

none

C-START ——» ALL-DEP —————> C-COM —————> C-MISSING-0K

C-ABORT

> C-MISSING-X

Sunil Sarin - 43 -

Figure 3: TWO-PHASE COMMIT PROTOCOL.

Coordinator

C-START

l

set up participants;
request processing;
await DEPENDENTs

e DEPENDENT _ _ _
ALE-DEP
final.user oK
C—C‘EJM
L___' _____ commr__ _ _
await COMMIT-ACK's
| COMMIT-ACK

C-MISSING-0K|

Distributed Commit Protocols

Participant

P-START

("Phase 17)
perform & complete
local processing;
record "intentions”

4 ("Phase 2")
await COMMIT/ABORT

commit local actions

l

P-MISSING-OK

Sunil Sarin - 44 - Distributed Commit Protocols

. Figure 4: EXTENDED STATE MODEL.

Participant:
STATE FAILURE-STATE
<=-> P-ABORT
(or P-START)
<P-DONE,-> P-ABORT
<-,P-DEP> <-,P-DEP>
<P-DONE,P-DEP> <P-DONE,P-DEP>

P-COM,P-ABORT,P-MISSING-0K,
P-MISSING-X: see Figure 2

Coordinator:

STATE A FAILURE-STATE
<==> C-ABORT

(or C-START)
<ALL-DONE,-> C-ABORT
<-,ALL-DEP> . C-ABORT

<ALL-DONE,ALL-DEP> C-ABORT

- C-COM,C-ABORT,C-MISSING-0K,
C-MISSING-X: see Figure 2

Sunil Sarin - 45 - Distributed Commit Protocols

Figure 5: THREE-PHASE COMMIT PROTOCOL.

Coordinator | Participant
C-START
P-START
set up participants; ("Phase 0%)
request processing; perform & complete
await DONEs local processing
¥
<P-DONE,->
______ DonE _____~_l ("Phase 17)
<ALL-DONE,-> await GET-DEP
final user OK
______ GET-DEP_ _ _ __ __
record "intentions”
await DEPENDENTs ' L
<P-DONE,P-DEP>
e _ DEPENDENT ("Phase 27)
await COMMIT/ABORT
Y
Cc-CoOM
COMMIT
Pon e - — - — — —— e ———— —
await COMMIT-ACKs P-COM
COMMIT-ACK l
é ____________________
commit local actions

C-MISSING-0K P-MISSING-0K

Sunil Sarin - 46 - Distributed Commit Protocols

Figure 6: COMMIT PROTOCOLS FOR CONVERSATIONAL TRANSACTIONS. |

1. Strongly Dependent.

participant:
P-START (<-,->) ——— perform request — . .-
s o= <,P-DEP> ————> receive COMMIT — - - -
o« P-COM ———— commit local actions

coordinator:
C-START (<=-,->) —— user requests commit (assuming ALL-DONE) —>- --
-+.—» C-COM —— > send COMMITs

2. Standard:

participant:
P-START ————> perform requests, receive GET-DEP — - - -
.+ = <P-DONE,P-DEP> ~—> receive COMMIT —> + - -
+ —= P-COM :

coordinator: .
C-START —————» get ACKs of requests — -
. . . —> <ALL-DONE,-> —> user requests commit, send GET-DEPs,
receive DEPENDENTs —> - - -
« —» C-COM ———> send COMMITs

3. Extended:

participant:
P-START ————» perform requests, receive GET-DONE —» - - -
. v+ —a> <P-DONE,-> ——> send DONE, receive GET-DEP ——>- . - -
. —» <P-DONE,P-DEP> —> receive COMMIT ——> + - -
DERST Y P_COM .

coordinator:
C-START get ACKs of requests, user OK;

send GET-DONEs, receive DONES ~—> - - -

. —» <ALL-DONE,-> ——> send GET-DEPs, receive DEPENDENTS ~—> « - -

«.v —>» C-COM —————> send COMMITs

Sunil Sarin -47 - Distributed Commit Protocols

[1]

[2]

(3]

(4]

(5]

(6]

(7]

(el

(9]

- [10]

References

Davies, C. T.
Recovery Semantics for a DB/DC System.

In Proc. ACM National Conference, 1973.

Gray, J. N.
Notes on Data Base Operating Systems.
In R. Bayer, R. Graham, and G. Seegmuller, editors, Operating Systems: An

Advanced Course, Springer-Verlag Lecture Notes on Computer Science, Vol.
60, 1978.

Hammer, M., and Shipman, D. W.
An Overview of Reliability Mechanisms for a Distributed Data Base System.
In Proc. IEEE COMPCON Spring 1978.

Hammer, M., and Shipman, D. W.
Resiliency Mechanisms in SDD-1: A System for Distributed Databases.
Computer Corporation of America Technical Report in preparation.

Lampson, B., and Sturgis, H.
Crash Recovery in a Distributed Data Storage System.
Xerox Palo Alto Research Center, November 1976.

Lampson, B, and Sturgis, H.
Crash Recovery in a Distributed Data Storage System.
to appear in Communications of the ACM.

Liskov, B. H,, and Snyder, A
Structured Exception Handling.

M.L.T. Laboratory for Computer Science Computation Structures Group Memo 155,
December 1977.

Montgomery, W. A.

Robust Concurrency Control for a Distributed Information System.

M.LT. Laboratory for Computer Science Technical Report TR-207, December
1978.

Reed, D. P. ‘

Naming and Synchronization in a Decentralized Computer System.

M..T. Laboratory for Computer Science Technical Report TR-205, September
1978.

Takagi, A.
Concurrent and Reliable Updates of Distributed Databases.

M.L.T. Laboratory for Computer Science Computer Systems Research RFC-167,
November 1978.

Crash Resistance and Recovery in NAMOS

by Andrew Mendelsohn

Professor Saltzer
6.845
May 22, 1979

Introduction . -2- Section |

1. Introduction

During the past semester, the Computer Systems Research Seminar has examined a number
of papers describing mechanisms for obtaining atomic transactions in a distributed system.
The majority of these papers focus most of their attention on the consistency and information
hiding aspects of their mechanism, while giving only a very high-level, Imnd-\.vaving sort of
argument concerning the performance of their mechanism in the face of failures. Lampson
and Sturgis [1] authored the only paper that described its system primarily from the viewpoint
of failurc resistance and recovery and that provided a rigorous description of its behavior in
the face of a fairly well-defined set of failures. In addition, what really sets their paperi apart
from all others, is that the effects of failure are specified and coped with at all levels of their
system.

In this paper, we will attempt to describe Reed's system [2] using the methodology developed
by Lampson and Sturgis. More than wost, Reed is fairly careful in addressing the issues of
failure: however, the thesis' sheer volume tends to cause the tidbits of information relevant to
failure recovery to be scattered throughout the thesis. No coherent argument for the crash
resistance of the full system is given. In this paper, we will attempt to construct such an
argument by pulling together all the relevant information provided by Reed and filling in any
loose ends that we may discover.

After completing this exercise, we will attempt to compare the lattice of abstraction required
by Reed with that needed by Lampson and Sturgis. In particular, we would like to examine the
validity of the statement Lampson gave in our seminar to the effect that the notion of
compatible actions is lurking behind the correctness of all distributed systems and that othe'r
workers in the field have not mentioned this concept, simply because they have not thought
deeply enough about the problem. Finally, we will comment on the relationship between Reed’s

+ and Lampson and Sturgis’ atomic commit and transaction mechanisms.

The Physical System -3- Section 2

2. The Physical System

Recd’s physical system consists of a set of autonomous nodes (each of which behaves like a
single system in itself) connected by some communications medium. The few details he gives
us are very much in line with the physical system model given by Lampson and Sturgis, and
hence for rigor we will assume their model as the bottom level of Reed’s system. In their model,
each node may have a. data stor:ige system and a processor. The processor consists of a
collection of processes and some shared state. The processor may access the data storage system
in units of a page. Additionally, the processors may exchange blocks of data over a

communications system. Finally, the failure modes of the processof, disk, and communications

system arc elaborately specificd. The reader is referred to [1) for further details of their model.

The Ob ject-oriented System -4- Section 3

3. The Object-oriented System

This level of Reed's system is rather different from Lampson’s stable system. Lampson
allows individual nodes to randomly access pages and invoke actions at other nodes. This is too
unconstrained for Reed's world of autonomous nodes and hence a more structured

ob ject-oriented model is used.
3.1 Stable Objects

The goal of the stable object abstraction is to provide stable, long term storage of ob jects at
a single node. These objeccts are required for the implementation of commit records, known
histories, and version values in the NAMOS level of the system. For the sake of conpleteness,
we will outline a straightforward implementation of objects that can be built on top of
Lampson and Sturgis’ stable storage. [l].

We will support the usual notion of an object where each ob ject has some fixed type, and all
operations on the object are performed through invocations of its type manager. Each ob ject
has a name which consists of its type and an index into a universal object context. The
context is simply an array stored in a known location in stable storage. Each array cnfry
contains an address of a page in stable storage that is the root of the indexed object’s
representation. A root page can be gencralized to a rooted tree of pages if need be, but we will
ignore this added complication in what follows. Each root page contains an array of names of
lower-fevel ob jects that forms the representation ;)f the top-level ob ject.

This level of the systemn makes no general guaranteeS about the atomicity of operations on
the objects it provides. Side-effect-free operations are by nature atomic as are operations that
require only one stable put to a “visible" object (as opposed to a temporary object only
reachable from volatile storage). Fortunately, it turns out that the NAMOS level m;-ly has two
simple update operations to objects that are required to be atomic: a change in state of a
commit record and a deletion or insertion of a version into a known history. In both these
cascs, the updates can be done with a single atomic stable put to a visible ob ject.

There is one final nicety needed here. Operations on ob jects that create and possibly return
new ob jects may leave arocund unreachable stable pages and unused stable ob jects (the invisible
objects of above) if a failure occurs during the course of their execution. This is no real

problem, though. as the unused ob jects can be garbage collected by scanning the NAMOS-level

Section 3.1

1+ 4
v

Stable Objects -

known histories and all objects reachable from the histories. The unused pages can in turn be
garbage collected by scanning the stable page representations of all reachable objects. There is
no prohient of multi-node garbage collection since, objects at this level can not be referenced

from outside their home node.
3.2 Monitored Stable Objects

This level of tlm'system also provides monitors to mediate operations to shared, mutable
objects. Each monitor has a lock in volatile storage. Monitor operations that are atomic will be
denoted by a heading of the form

<opname> = atomic proc(....) .
To avoid deadlock, we disallow nested monitor calls (i.e. no process can hold more than one
lock), and any wait done during a monitor call forces the waiting process to temporarily release
the monitor fock.

In his thesis, Reed suggests a simple locking scheme for providing atomic actions on
mutable objects. In this scheme, the object to be modified is locked and then copied to
whatever level necessary. All required changes are made to the copy. Finally, the copy is
atomically substituted for the original as the lock is released. This operation, though, will not
always be atomic under the object model: if more than one of the lower level ob jects contained
in the locked object must be mutated, then a crash occurring before all the ob jects are mutated
will leave some changed and some not. Since the atomic stable page put seems to be adequate
for our purposes, we will not go inte this any further.

Our approach also differs somewhat from that of Reed in our use of the term stable storage.
Reed’s notion of stable storage admits the possibility that in the event of a crash during an
update, the state of the updated storage may be detectably lost. Since his weaker form of stable
storage is required to be reliable in the long-term, under Lampson and Sturgis’ physical storage
model, it can only be implemented by some form of replication. lence, we can see no benefit

from using this type of stable storage.

Message System -6- Section 3.3

3.3 Message System A :

Only minimal message passing facilities are needed for the implementation of the next
level's internode communication protocols. The message system will provide a simple form of
“remote procedure call capability, but unlike Lampson and Sturgis’ system, remote procedure
calls need not be used to the exclusion of other possible protocols.

The form of remote précedures required is very weak and is more appropriately described as
a capability for reliably sending request messages and then wmatching them with their
responses. This can be casily implemented by tagging messages requiring such matching with
unique identifiers. The UID's must of course be unique in spite of processor crashes, but any
message system data structures required for matching messages may be volatile.

When we wish to denote a request/reply message pairing in our programs, we will use a

special form of syntax. For the requestor, we will write

send <msgname> (<arglists)
<msg> := awaitreplyl)
This syntax alse indicates that the send may be retransmitted if the reply does not arrive
y
promptly.
We will assume all remote request servers are embodied as special message handler
processes. These processes will be denoted by the following canonical form:

foo = message_handler
uhile true do
case.anai tmessage of
<msgtypel> => ... sendreply <msg>(<arglist>) ...
<msglypeZ> => ... :
end
end

There is no requirement that the message handler respond to every request it receives, nor is
there any retransmission mechanism for replies. Lost replies will be recovered from by

retransmission of the request.

NAMOS -7- Section 4

4. NAMOS

In this scction we show how to implement pseudo time, known histories, and possiblilities.
Following the format of [1}, we will give informal CLU-like code that implements these ob jects.
We diverge from real GLU in that)we use monitors and scalar types, 2)we consider variant
records (oncof's) to be mutable, and 3)we allow message system calls of the form mentioned in
the last section. Our code is somewhat informal in that we do not define clusters (type
managers) for all lower level objects used, but instead operate directly on the objects’

representations.
4.1 Pseudo Time

Pscudo time is straightforward to implement, and as long as it is monotonically increasing
with time, it cannot affect system correctness. It suffices to say that it requires a stable,
_monotonically increasing clock source.

A pseudo temporal environment is likewise trivial to implement, and so there is no point
giving code describing its operations. A pseudo temporal environment may be stored in a cell
in volatile storage.

From the viewpoint of crash resisitance and recovery, pseudo time and pseudo temporal
environments are uninteresiing. Pseudo temporal environments are volatile and pseudo time is

recovered by resysnchronization with some outside source.
4.2 Known Histories

In appendix I, we givc code that implements the linked-list representation of known
historics suggested by Reed. A known history is represented by a single header object which .
points to a linked list of version objects. Each known history is also protected by.a monitor.
The update operations do, at times, require more than one stable put to modify a known
history: however, the known history object is always left in a correct and consistent state after
eéch such put. Hence all known history operations are impervious to processor f#ilure.

A few minor points about the implementation should be noted. When a process enters a
known history wonitor but finds that it must wait for the completion of a token before jt can
proceed, it must release the monitor and wait. Therefore, when the process is awakened after

the token is aborted or completed, there is no guarantee that any of the process’ local state that

Known llistories ' -8- Section 4.2

refers to the known history is of any use. So the process must start over from the beginning of
the monitor again.

To avoid a similar problem, new tokens are created without waiting for the go-ahead (a
permit-create wessage) from their commit records.

Known history (ob jectref) mounitors are invokable only from from the version reference
manager at the known history’s home node. The version reference manager, however, can be
invoked by remote requests to perform lookups and defines on versions. We will not give code
for the version reference manager here, but will briefly outline how it can be implemented.

The version reference manager processes requests to perform lookups and defines on
versions by spawning processes that call the try to lookup and try to define entrics of the
appropriate known history monitor. The manager also processes state messages, which are
requests to encache the state of a commit record in a token, by calling the appropriate set state
moaitor entry and then sending a no-ref message back to the requesting commit record if the
state is successfully encached. Since the only kind of object reference meaningful across nodes
is a version reference, a value returned by a lookup request or passed by a define request must
be purged of all local object references before it can be sent between nodes. The standard
solution to this problem is to encode all local objects in some standélrd intermediate
representation hefore transmitting them across nodes. The matching decode operation is then
performed at the receiving node. Version references will, of course, pass through the encode

and decode operations intact,
4.3 Possibilities

An implementation of possibilities is given in appendix II. We use a single monitor for all
commit records of a given node. The commit records are stored in a stable set. In order to
glmw more clearly the message passing coordinated by this monitor, we have taken the liberty
of using the message handler syntax (see section 3.3), rather than the usual procedure-oriented
syntax, to describe its activities.

We have implemented Reed's optimized form of single site commit record. All tokens that
send permit_create messages to the commit record are remembered in a volatile set at the
commit record site. When the commit record completes or aborts, it sends encache state
messages to all tokens in this set. When the commit record receives no_ref responses from all

*

the commit records in the set, it is deleted from its node’s stable conimit record set.

Possihilities , -9.- Section 4.3

An inspection of the code for possibilitics indicates that all moniter operations leave cach
commit record in a consistent state in spite of failures. This asswines that we are using a set
representation such as Lampson and Sturgis’ stable sets, where the npcra(ionS insert, delete, and
retrieve arc atonic.

Since we are mainly interested in comparing Reed’s scheme with Lampson and Sturgis', we

will not bother looking into multi-site commit records or dependent possibilities in this paper.
4.4 Transactions

Finally atomic transactions are obtainable with the following:
inpteStransaction do
possi := possibility8create(7)
nere possi do
<statements>
cnd
possibilityScomplete(possi)
end

This code guarantees to make <statements> atomic with respect to both failures and other
transactions, assuming that no other possibilities or pseudo temporal environments are

employed within <statements>.

Observations -10- Section b

5. Observations

Now that we have gone through with this rather tedious construction, what can we learn
from it> For a start, we can now construct a lattice of abstractions for the system with some

degree of confidence that we have not left out anything of importance.
5.1 Lattice of Abstractions

We have constructed an abstraction lattice for Reed's system and it is pictured in appendix
IL. A casual glance at the lattice tells us that Reed’s system is 6f about the same order of
complexity as that of Lampson and Sturgis. A little closer inspection reveals that other than
the physical level of the two systems, the only abstractions wsed in both systems are stable
storage, monitors (Reed's thesis uses locks), unique ideutifiers, and stable sets (for a single node).

Moving from the bottom up, the first major divergence between the two systems occurs in
the abstraction built on top of physical communications. Recd believes that the physical
distribution of the system can never be successfully hidden, and that this fact of fife must
inevitably be visible all the way up to the user interface. In addition, based on the "end-to-end
argument,” he sces little point in providing more than basic message passing in imblementing
the upper fevels of his system. On the other hand, Lampson and Sturgis’ goal is to build an
abstract system that looks to be centralized and non-distributed. Out of this basic philosophical
difference. comes Lampson and Sturgis' remote procedure calls and Reed's priniilive message
system.

Lampson's remote procedures syntactically look exactly like normal procedure calls:
however, true 'to Reed’s beliefs, the fact that the remote calls are really implemented on top of a
distributed system warps their semauntics. Only remote procedures that are restartable act
semantically like normal pracedure calls. All inter-node communication in Lampson’s system
(above the i;a.se level) is done through remote procedure calis.

Reed, however, implemented his message system so that the decision of what message
passing protocol is to be used is left to the next level of his system. The next level has the
option of using a remote-procedure-call-like wmechanism if need be: however, it may also
construct arhitrary protocols to accomplish a given task, Application dependent knowledge can
be used in place of low-level mechanisns (e.g., duplicate message suppression).

As a final comment on communications, Reed'’s message system does not seem to require any

Lattice of Abstractions -1l - Section 5.1

"initial connection extablishment” between a pair of processors after one of the pair crashes.
This contradicts the belief of Lampson and Sturgis stated in [I] that in effect says that such a
protocol is necessary for a distributed system to work properly.

A second major difference between the two lattices is that Lampson and Sturgis build up
their lattice by constructing higger and bigger atomic actions, while Recd does not. Rather,
Reed's construction (at least under our implementation) goes from atowmic stable pages to
non-atomic stahle objects, to non-atomic monitored stable objects, to atomic commit records,
non-atomic known histories, and atomic stable sets, and finally to atomic transactions. Reed's
system is building bigger and bigger operations on the shared data that maintain data
consistency in the face of failure, rather than atomicity.

A third difference between the two lattices is the absence of the process save/restart
capability in Reed's system. The anly place this is needed to ensure correctness of Lampson
and Sturgis' system is in the implementation of their two-phase commit protocol. It seems to
be used primarily for efficiency reasons, as‘ a passive scheme similar to Reed’s basic wmethod
would certainly suffice. More will be said about this later.

Another motivation for Lampson and Sturgis’ "save process state” capability is that it should |
be extremely nseful at the application level of their system. This same statement is not as
obviously true in Reed’s system, as a transaction restarted in mid-stream stands a good chance
of being forced to abort because of an out-of-date pseudo temporal environment.

Finally, processor crashes and communication unreliability make the notion of restartable
actions necessary in both systems. Since all shared data in Reed's system is protected by

monitors and the monitor operations are always guaranteed to leave their objects in a consistent
. state in spite of processor crashes, it appears that one need not worry about compatibility of
actions as in Lampson and Sturgis’ system. Since there is no restarting of "saved’ proccesses
after processor crashes, arguments about the correctness of Reed's system seem to only require

that the integrity of its data structures is maintained between the crashes.

5.2 Crash Recovery in Namos

The processor crash recovery algorithm in Namos is as follows:
1. Cleanup stable storage as in [1]. _
2. (optional) Garbage collcct unused local objects and stable pages unreachable from

used local ob jects.

Crash Recavery in Namos : -12. | Section 5.2

3. Rebuild all necessary volatile data structures (e.g. message system data structures,

~/

monitor locks).

4. Initialize standard system processes and procedures (e.g. message system processes,
known history monitors, commit record monitors).

5. Resynchronize the pseudo time clock (e.g., with WWV).

6. Start accepting remote requests.
5.3 Atomic Transaction and Commit Mechanisms

The closer one looks at the atomic transaction mechanisms provided by Reed, and Lampsdn
and Sturgis, the more they look the same. If Lampson and Sturgis used pseudo-time to order
their transactions (something similar to Takagi), rather than ordering them by "first come, first
serve,” and if Reed restricted cach known history to at most one old version and one token, then
their two transaction schemes would be equivalent (commit schemes being equal). The commit
schemes themselves are also remarkably similar. This has two major implications:

I. 1t should be straightforward to add "dcpendent'; (@ la Reed) intentions lists to
Lampson and Sturgis’ scheme to get a distributed locking mechanism that allows modular 7
compositon of operations.

2. Reed’s commit scheme can be used in place of Lampson and Sturgis’ thereby
eliminating those mysterious entities called compatible actions.

For practical purposes, however, we might in fact want to instead use Lampson and Sturgis’
atomic commit mechanism in Recd's system, since it is much more cfficient in terms of
messages and delay than Reed’s mechanism (at least for the single site commit record case).

Using the terminology of Reed’s system, the Lampson and Sturgis mechanism translates to
the following:

A commit record create request is sent by the transaction to some possibly remote node. The
node creates a stable set that will be used to keep a record of all nodes (not all tokens as done by
Reed) which contain tokens that depend on the commit record. The commit record state is set
to waiting. and the commit record’s name is returned to the requestor. At any given node N,
when the first attempt is made to create a token, T, at that node that is dependcnt on a given
commit record, C, a stable set is created at N that will be used to hold the names of all tokens
dependent on the commit record. The toaken, T, is then put in the stable set and a message ‘is <

sent to the commit record’s home, instructing the commit record, C, to put the node, N, in its set

Atomic Transaction and Commit Mechanisms - 13 - Section 5.3 '

%

of nodes. Further token requests sent to node N that are dependent on C only require insertion
of the token into the node N's set of tokens dependent on C. The commit record is
committed/aborted by sending a message to its home node. Upon receipt at the node, the
commit record's state is atomically set. Commit messages are then sent to all nodes containing
tokens dependent on the commit record. When these messages are all acknowledged. the stable
set of nodes may be deleted. At the nodes with dependent tokens, the commit state is encached
in stable storage and all dependent tokens are committed/aborted.

As can be seen from this description, Lampson and Sturgis' commit mechanism is basically
an optimized version of Reed's. It cuts down on the number of required messages by lallowing
the commit record to only notify a given node containing dependent tokens once of its state
and by 2)allewing a node with possibly m‘any dependent tokens to only notify the commit
record once of their collective existence. The second clause implies that once a node knows
about a given commit record, future requests to create tokens dependent on that record need not

query the commit record.

Conclusion : - 14 - Section 6

6. Conclusion

Our intent in writing this paper was to develop a complete picture of.the lower-level
abstractions required hy Reed's system. We were especially attuned to issues concerning crash
resistance. By going through much of the nitty-gritty details of actually programming a subset
of his full system, we feel that we have uncovered most of the relevant facts in this arca. We
were also able to determine a complcte lattice of abstractions for Reed's system and to provide a
simple procedure for providing processor crash recovery. Finally, we compared various aspects
of Reed'’s and Lampson’s systems and noted some differences and strong resemblances between

the two systems,

Appendix -15- Section 7

7. Appendix

Appendix I: Known History Monitor

commit_state = (uaiting, aborted, completed)

version = recordlval: any, start, end: pseudot,
possi: possibility,
state: commit_state,
next: histlink]

% objectref is areference to a knoun history _
objectref = monitor is create, delete, try_to_define, try_to_lookup, set_state;

“histlink = oneof [next: version, empty: nulll

rep = recordl{tcreate, tdelete: pseudot
link: histlink]

create = proc{pt: pseudot) returnsicvt)
% disallou creation pending a possibility - seems ridiculous
return (rep8{tcreate: pt, tdelete: -1,
link: histlink8(empty: nil}))
end create

delete = proclor: cvt, pt: psecudot) signals(bad_delete)
% trivial, abunch of special case checks
end delete

try_to_define = proc{vr: versionref, val: any, possi: possibility)
signals(non_existent_state,redefinition, forgotten_state)
% Try to create a token
% Assume versions never deleted so "forgotten_state” impossible
previink: histlink
or: objectref, pt: pseudot := versionref8decompose (vr)
restart: previink := find_pliace_in_history{vr)
except wuhen non_existent_state: signal non_existent_state
tagcase previink
tag next{v: version) % v gets version pointed to by previink
ifv.state = uwaiting then
% check for duplicate request
if vistart=pt and v.val=val and v.possi=-posgi
then return end. *
send test{possi,vr)
state(p: possibility,vref: versionref,

Appendix - 16 - ‘Section 7

s: commit_state) := auwaitreply()
set_statelvr, 3)
send no_ref (possi,vr) % nowuait send
golorestart
% else state is completed
elseif v.end >= pt then signal redefinition end
% else fall through to create token
tag empty: % fall through to create token
end '
% atomically insert token
previink.next := version$(val: val, start: pt, end: -1,
state: waiting, next: copyl (previink))
send create_ref (possi, vr)
permit_create(p: possibility, vr: versionref, ok: boolean)
1= auaitrepliyl)
if ~ok then set _state(vr, aborted); send no_ref{possi,vr)
signal bad_possibility end
end try_to_define

try_to_lookup = proci{vr: versionref, possi: possibility) returns{any)
signals(noncxistent_state, forgotten_state)
% similar to but simpler than try_to_define
end iry_to_define

find_place_in_history = proc(vr: versionref) returnsthist!ink)
signals{non_existent_state)
% Returns the link which points to the version wuhose start and
% end times bracket pt or uhose start time comes closest to but not
% not after pt
orl: objectref, pt: pseudot := versionref$8decompose{vr)
or: rep := dounforl)
if pt<or.tcreateor {or.tdelete ~= -1 and or. tdelete < pt) then
signal non_existent_state end
tink: histlink :=or.link
while true do
tagcase link
tag next {v: version):
ifv.state = abor ted then splice_out{}link)
elseif v.atart <= pt thenreturn(link) end
else link := v.next
tag empty: returnliink)
end
end
end find_place_in_history

set_state = proclvr: versionref, s: commit_state) returns(commit_state)
or: objectref, pt: pseudot := versionref8decompose (vr)
tink: histiink := find_place_in_historylvr)

Appendix - 17- Section 7

except when non_existent_state: return{aborted)
tagcase link
tag next (v: version):
ifv.state = waiting then
v.state := 8
if s =aborted then splice_out(link) end
end
return(v.state)
tag empty: returnf{aborted)
end
end set_stale

splice_out = atomic prociprevious: histlink)
previous.next := previous.next.next

end splice_out

end objectref

Appendix T8 Section 7

Appendix 11: Implementation of Commit Records

possibility = monitor is create, create_ref, test, complete, abort, no_ref;

commit _record = record[UID: bignum, stale: commit_state,
timeout: time, tokenset: setlversionrefl]

possibility = bignum

%2initialize local state .
commitset: setlcommit_reccordl’ :~ setlcommit_recordl8create()
% We urite <operation>(commitset, possi) as a shorthand for set operations

% Message dispatch 1oop.
% A message dispatch terminates on a continue statement or wuhen control passes
% to the end of its body.
uhile true do
case auaitmessage of

create(abori_time: time) =>
possis possibility:=uniquelD()
insert{commitset, commit_record8(UID: possi,
state: waiting, timeout: abort_time, tokensct: setlversionrefl8createl())) <

sendreply ok {(possi, true)

create_ref({possi: possibility, vr: versionref) =>
cr: commit_record :=retrieve(commitset,possi)
except when not_found:
sendreply permit_create(possi,vr, false); continue end
ifcr.state=uaiting then
ifcr.timeout > time{) then
insert{cr. tokenset, vr)
sendreply permit_create(possi,vr, true)
continue
‘else sendreply permit_create{possi,vr, false)
abort{possil; continue
end
end
sendreply permit_creale(possi,vr, false)

test(possi: possibility, vr: versionref) =>
cr: commit_record :=retrieve(conmit_set, possi)
except when not_found:
sendreply state (possi, vr, aborted); continue end .
ifcr.state ~= waiting then sendreply state(posasi, vr, cr.state) -’
elseif cr.timeout <= time() then '

Appendix ‘ -19.- Section 7

sendreply statelpossi,vr,aborted)
abort{possi); continue

% clse don’ t reply at all

end

compliete (possi: possibility) =>
cr: commit_record := retrieve(commit_set,possi)
except when not_found:
sendreply status{false); continue end
if cr.state ~= uaiting then sendreply status{cr.state=completed)
elseif cr.timeout <= time() then
sendreply status(ialse)
abort (possi); continue
else cr.state := completed %atomic operation
sendreply status{true)
% encache state
for vr: versionref in setlversionreflf$elements(cr. tokenset) do
send state (possi,vr,completed)
end '
end

abor t (possi: possibility) =
~ % analogous to complctc except commit record mag be removed from
% commit_set without waiting for its state to be encached in all
% dependent tokens
end abort

no_ref(possi: possibility, vr: versionref) =>
cr: commit _record :=retrievelconmit_set,possi)
except when not_found: exit %i.e. donothing
delete(cr. tokenset, vr) :
i f emptylcr. tokenset) then deiete(commit_set, possi)
end no_ref
end possibility

Appendix -20 - « Section 7

Appendix 111: Alattice of Abstractions for Reed's System

Trangactions {(non-modular)

KnounHistories

Pseudo Temporal Environment Possibilities

Pse\udo Time

Stable Set ‘
\ ‘

/

Message System

Unique 10's”

Monitored Objects

Stable Objects

Stable Storage

AN

Communications Clock Processors Disk Storage

Appendix -2 - . Section 7

REFERENCES

{1} Lampson, B., and Sturgis, H. Crash recovery in a distributed data storage
system. Working paper, Xerox PARC, April 27, 1979.

[2] Reed, D.P. Naming and synchronization in a decentralized computer sgstem.
Ph.D. thesis, Massachusetts Institute of Technology, Department of Electrical

Engineer ing and Computer Science, September 1978.

REPLICATION ADDED TO THE HIERARCHICAL PROCESS MODEL

Jeannette M. Wing
6,845 Atomicity, Recovery, and Coordination
May 1979

1. Motivation and Review

Replication of databases both within one site and at several sites in a distributed system
provides enhanced reliability in Montgomery's hierarchical process model [Montgomery]. 1 will
discuss how upon adding replication, the model works under normal conditions and under certain
failure modes. In particular, replication requires additional complexity in synchronizing updates

and handling network partitioning.

Two kinds of databases exist in the process model: the application databases that data
managers access and update, and the process databases! which store the process state and message
queues of a process. Maintaining duplicate application databases offers the advantages of increased
reliability, increased accessibility, more responsive data access, and load sharing. And, maintaining
duplicate process databases leads to a more robust implementation of the concurrency control

mechanism.

Montgomery introduces the hierarchical process model to implement atomic broadcasting. All
processes in the system are organized in a hierarchy. We find at the root and nodes, message
forwarders that relay messages to the appropriate destination ports, and data managers that hold
the data items and can also act as message forwarders. We find at the leaves of the hierarchy,

transaction processes and data managers.

In section 2, T present two ways of adding redundancy to Montgomery's process model. In
section 3, I discuss various failure modes for both models. In section 4, I summarize how replication

fits into Montgomery's scheme.

. Montgomery introduces process databases in discussing robust sequenced processes, He
replicates the local state of a process in implementing simple processes so that a process step is an
atomic update to all copies of the process state.

2. Replication

To achieve a fully redundant hierarchy we can replicate the nodes of the hierarchy. Or, we
might wish to only achieve partial redundancy. We discuss two methods of replicating nodes for a

fully redundant hierarchy and briefly discuss the advantages of achieving partial redundancy.
2.1 The fully redundant case: replicating only the databases

In this method, we expand the hierarchy to have at each node a single process maintaining
multiple copies of its process and ,if a data manager, application databases. Figure 1 illustrates this

where a rectangle represents a process database and a small circle, an application database.

Fig. 1.

/ N\ an

A node with only a process database represents a message forwarder. If the process is a data
manager then not only would the process state and the message queues be replicated but also the
application databases. By maintaining duplicate copies of the process database we are, in essence,
simulating atomic stable storage. This is consistent with Montgomery's suggestion of the need to

store the process in atomic stable storage.

Each process now must provide more functions. A message forwarder no longer simply relays
incoming messages to the appropriate destination ports but it must also maintain its copies of the
process database. As in many multiple copy protocols [Alsberg, Grapa, Kaneko, Stonebraker), the
process serves as a primary and coordinates updates to its databases. . So in adding to the process

the responsibilitics of managing the synchronization of messages among the multiple message

-3-

queues and of managing the consistency of the database copies, we add complexity to the procéss"

set of process step specifications.
2.2 The fully redundant case: replicating the entire node

In this second method of expanding the hierarchy, we replicate each node in its entirety. A
natural and consistent way of organizing these replicated nodes would be in a hierarchy (Figure 2).
Note that now the structure of the hierarchy changes as a function of the branching factor at each

node in the original hierarchy and the number of duplicate copies of a process we make.

- Fig. 2.

.Figure 2 shows that the root node only replicated once so that the branching factor of two
stays the same. We replicate each of the root’s children, however, twice, so that its branching factor,
in effect, doubles and the tree structure becomes a directed acyclic graph (dag). In this case, we
violate Montgomery’s process model since a process may no longer have a unique parent. But the
effect is the same since the parents are essentially identical copies of each other. What difference
this makes depe‘nds on the network topology. Some processes will physically reside at the same site
80 the change in the hierarchical process structure may not require a change in the physical layout

of the network.

We could alternatively maintain the tree structure of the original hierarchy. We could have
multiple nodes of the same replicated processes. That is, two processes may be parents of two
distinct nodes where each of these nodes contains replications of the same process. But this
introduces even more complexity to the update problem since copies of one process are not grouped
together and the number of nodes would grow exponentially. Also, we could organize the
replicéted nodes in a linear chain and still maintain the original hierarchy. But this requires
sending request messages (via forwarding) through all these copies besides sending the coordination
messages (for maintaining consistent copies). Burdening all copies with extra message forwarding is
unnecessary and we could not exploit the advantages of, say, a majority consensus algorithm. T will

not pursue these alternate models.

The root of each sub-hierarchy (circled in blue in Figure 2) acts as the primary in
coordinating updates. The hierarchical structure lends itself to using a protocol dependent on a
primary plus backups (master/slave protocol) using distributed control protocols (timestamps and

majority consensus) [Johnson, Thomas].
The advantages of this second model over the first are that:

I. The second is resilient to a single process failure whereas the first is not.

2. We add less’ functional complexity to the process’ set of step
specifications in the second model that in the first since control is
distributed among the replicated processes and not centralized at one.

In the second method a message forwarder that is a primary receives a message and informs
its copies (backups) that a message was received. Under normal conditions, the processes should all
agree (or the primary can tally votes) on the content of the output and the destination ports. The
primary tells one of the backups to forward the message. If this backup is oniy an ancestor and not
a parent of the process that is to receive the forwarded message, this backup then fowards the
message the message to one of its child, presumably another backup. This continues until we reach
a backup that is a parent of the receiving process. The primary could tell all of its copies to
forward the message‘in which case the destination ports would have to ignore duplicate messages.
(This is unwise since we do not take advantage of the hierarchical structure of each sub-hierarchy.
We might as well have organized the replicated processes in a linear chain.) So optimally only one,

and at worst, logn backups should forward the message to the destination ports where n is the

number of copies of the process in the sub-hierarchy. We achieve communication between the
primary (root node of a sub-hierarchy) and the backups as in the non-replicated process model by
using input and output message queues. We use a second sequence numbering scheme to

distinguish messages among copies from messages among distinct processes.

Note that a data manager can respond to queries immediately. Only for updates do additional

messages have to be sent among the primary and backups.
2.3 The partially redundant case

In practice we might choose to replicate only the top few levels of a hierarchy. This not only
requires fewer redundant copies of databases but also reflects that much traffic may occur at the
higher levels because of the message forwarding mechanism. Because of Montgomery's assumption
of locality of reference the benefits of reliability and accessibility due to replication are amplified if
each site in the physical network maintains copies of the higher levels of the hierarchy. Besides the
- local traffic we cxpect many messages to be forwared upwards in the hierarchy from sending
processes which are not directly related to the receiving processes but related only through an
ancestor. If coordination of message forwarding among replicated nodes contributes only a
negligible amount to overall processing then we increase the reliability of message forwarding and

- the accessibility (for queries) of data via data managers.
3. Failure Detection and Recovery

I will describe the effect of replication on process failure and network partitioning. Network
partitioning raises severe problems when databases are replicated in comparison to those problems
raised when several sites maintain single dedicated databases per site or when a database is

distributed among several sites. 1 further discuss this in section 3.2.

Recall that Montgomery limits the effect of lost, duplicate, and damaged messages by using

robust sequencing, atomic stable storage, replication of local states, and error detecting codes.

3.1 Process failure

If a process fails in the first model suggested for replication then it is treated like a process
that has removed itself from the hierarchy. A parent message forwarder of this dead process must
be able to detect it, reclaim its message queues, and inform the ancestors of the message forwarder
of the dead process. Then the parent can choose to adopt the dead process’ children. At this point

any application databases at the dead process are inaccessible.

If a process fails in the second model suggested for replication then we alter the structure of
the hierarchy. First we treat the dead process as above. If the dead process is the root, then we
elect a copy to be the ncw root of the sub-hierarchy (that is, the hierarchy of a process and its
copies). This can change a dag to a tree. In Figure 2, if one of three copies (say of the leftmost
sub-hierarchy) dies, one of the remaining two is or becomes the parent of the other. When a
process p becomes live and wishes to rejoin the structure the process needs only to send a "request
for adoption” message to some message forwarder f. That message forwarder f checks to see if
other copies of the process p exist and if so, f sends the current root of that sub-hierarchy a message
to adopt p. If no copies of p exist then f can add it to the hierarchy. We delete and add these

processes using the same protocol as for point-to-point communication.

The obvious advantage of the second model is that we can still access application databases
via live copies of data manager processes. In this sense we are resilient up to a certain 7 number of
process failures where n is the smallest number of copies of any one process in the entire hierarchy.
If the copies are physically separate we might expect to be resilient beyond n process failures if not

all of the first n failures are copies of the same process.
3.2 Communication failures

Network partitioning poses problems that are particular to replicated databases. Basically,
partitions must journalize requests and. somehow merge these journals when they rejoin. In a
distributed system where there is no replication but where each site hosts dedicated databases, when
the network pattitions, those sites that can communicate with each other can access each other’s
databases. In a system where there is sharing or where a database is split among many sites, when
the network partitions, users can query and update that portion of the database within the same

partition. We do not need to journalize requests because no inconsistencies can arise. Upon

rejoining partitions in any of these cases we merely increase accessibility of these databases to the

rest of the network.

If the physical communication network is hierarchical or is amenable to a hierarchical
structure then a corresponding process model is homomorphic to the actual network topology.
Knowihg the topology helps in determining what actions to take when the network partitions. The

following discussion assumes a hierarchical network topology.

If a communication failure occurs between two processes in the first model suggested for
replication then the network divides into two hierarchies. Both partitions can continue to service a
request for which there Aexi:;ts a message forwarder within the partition that is the ancestor of all the
destination ports of the request message. This type of communication failure does not affect

replication of the process and the application database in this model as in the second model.

The second model poses trickier problems because we no longer manipulate a strict hierarchy
(tree) but a dag. Thus, a communication failure between two distinct processes or between two

copies of the same process does not necessarily imply we have network partitioning.

First T will consider the complete isolation of one part of a hierarchy from another. This may

require more than one communication link failure.

1. If the root of the isolated part is acting as the primary of a sub-hierarchy
then we treat this case as for the first model. (Each partition services what
it can within its partition.)

2. If the root is not, then it is one of the copies of a process in the other
partition of the hierarchy. In this case we have the classic network
partitioning problem of journalizing requests and merging journals upon
rejoining partitions.

- Next 1 will consider just a single communication failure. There are two cases to consider:

1. Failure between two distinct processes. There are two subcases.

a. The failure occurs between a process and its
unique parent [Figure 3). In this case we treat the
farlure as described for the first model because the
network partitions into two hicrarchies.

b. The failure occurs between a process and one of
its parents [Figure 4] In this case the child
process p can still be reached by one of its other
live parents. When the link is connected again
the dead parent will see the current version of the
child process p.

Fig. 3.

Fig. 4.

-9-

2. Failure between two copies of the same processes. Again, two cases.

a. The failure occurs such that the network
partitions into two hierarchies. We treat this case
as in-(a) above.

b. The failure occurs such that the network does
not partition [Figure 5. This case depicts a side
effect that arises in dags. All processes are
accessible but the root process shown in Figure 5
might not be aware of any changes that its right
child r may make initiated by either of r's
children. How innocuous this is depends on the
application.

Fig. 5.

Network partitioning and single communication link failures raise problems when we add

replication to Montgomery's process model mainly because of the change in the structure of the

process model graph.

4, Summary and Conclusions ‘
4 ~

I described two ways of adding replication to Montgomery's process model. For one, we
replicate locally the process and the application databases; for the other, we replicate the entire

process node which may change a strict hierarchy (tree) into a dag.

For each model 1 discussed what happens when a process fails, when the network partitions,

and when single communication links fail.

I favor the second model of replicating entire proceSs nodes because it provides greater
reliability, that is, resiliency to a single process failure, than the first model. It does, however,

introduce problems with communication link failure that do not appear in the first model.

By adding replication to Montgomery's scheme, we add reliability and improve the robustness
of his concurrency control mechanism at the expense of additional message passing for maintaining

consistency among the copies.

References

[Alsberg] Alsberg, P.A., and J.D. Day, "A Principle for Resilient Sharing of Distributed Resources,”
- Second National Conference on Software Engineering, 76CHI125-4C, pp.562-570.

[Grapa) Grapa,E., "Characterizations of a Distributed Data Base System,” Department of Computer
Science, University of Illinois at Urbana-Champaign, IHlinois-R-76-831, October 1976.

[Johnson] Johnson, P.R. and R.H. Thomas, "The Maintenance of Duplicate Databases,” ARPANET
NWG/RFC #677, January 1975.

{Kaneko)] Kaneko, A, et al, "Logical Clock Synchronization Method for Duplicated Database
Control,” Nippon Electric Company Central Research Laboratories, LR-3854, September 1978.

[Montgome:y] Montgomery, W.A,, "Robust Concurrency Control for a Distributed Information
System, " MIT/L CS/TR -207, December 1978,

[Stonebraker] Stonebraker, M., "Concurrency Control and Consistency of Multiple Copies of Data
in Distributed INGRES," Proc. Third Berkeley Workshop, August 1978.

[Thomas] Thomas, R.H., "A Solution to the Update Problem for Multiple Copy Data Bases Which
Use Distributed Control,” BBN Report #3340, July 1976.

