jf""“’% MW 505

M.I.T. LABORATORY FOR COMPUTER SCIENCE December 13, 1979
Computer Systems Research Division Request for Comments No. 179

DESIGN OF DISTRIBUTED SYSTEMS SUPPORTING LOCAL AUTONOMY

by David D. Clark and Liba Svobodova

This is an invited paper that will be presented at COMCON Spring '80 in
San Francisco, February 1980.

DESIGN OF DISTRIBUTED SYSTEMS SUPPORTING LOCAL AUTONOMY

by David D. Clark and Liba Svobodova

The subject of this papef is distributed systems in which the individual
nodes, while cooperating in a standardized manner, maintain a fair degree of
autonomy with respect to their management and internal organization. Such
- systems closely model the structure and operations of most real world
organizations; we believe that they will be the most widely used form of
distributed systems. A research project that includes development of a
distributed computing system with these properties is currently underway at
the Laboratory for Computer Science at M.I.T. [1].

Many advantages that have been claimed for distributed systems, such as
improved reliability and incremental growth, are not easily achieved in
practice. The feasibility of such goals and the manner in which they can be
achieved depend on the fundamental assumptions about the purpose and function
of the system, Our intention is to show how the requirement of autonomy

influences the architecture of a distributed computing system and the

resulting capabilities of the system.

Motivation
The first important step towards building a distributed system 1is to

understand the real motivation for and the nature of the distribution. A

1. This research was sponsored by the Advanced Research Projects Agency of
the Department of Defense and was monitored by the Office of Naval Research
under Contract No. N0O0Ql4-75-C-0661.

common opinion 4is that the main motivation is cost: one can get more
computing cycles per dollar if one buys lots of small machines father than one
large machine, if one is willing_to,ignore the cost of glueing the small
machines together so that the intended application can run on them. While
this observation may prove true in certain cases, we feel that it is not the
fundamental motivation for a distributed system. Rather, the fundamental
issue is that computer systems should reflect the structure and needs of the
problem to which they are being applied. The justification for distributed
systems is that many applications are naturally distributed; it is the
centralized computer facility that 1s often only the artifact of economic
forces,

Consider the application of information management as practiced in
business or govermment, the application often called office automation.
Clearly, the non-computer version of office work is distributed. Employers do
not force all their employees to share one large desk, or use one huge room
full of filing cabinets. Yet, more important than the physical equipment is
the management of stored information. The manner in which individuals chose
to organize and manage the information under their control is largely up to
them. By storing this information in their own desk or filing cabinet, they
are assured that they can have access to it whenever they need it, that the
information is being organized in a way which suits their needs and is being
protected with the right level of security, and so on. We believe that once
the acquisition cost of small computers fell sufficiently low, their
proliferation has been substantially motivated by this sort of reasoning [2].
If a computer is allocated solely to one person, or to a collection of people
with an identical responsibility, then the users of that computer can be

assured that the machine will not be taken down for preventive maintenance at

the precise moment when they must produce a high priority report, that the
information stored on the computer has been backed up to the degree required
for their needs, that they will not be preempted from the machine due to high
load at the wrong moment, and so on. Perhaps most fundamentally, they can
have substantial assurance that nobody can arbitrarily interrogate the
information in that computer,

Returning to the example of information stored within one’s personal
desk, it 1is clear that one of the functions of that information is to enable
employees to answer questions related to some aspect of the organization, as
required by their jobs. However, it is equally clear that a supervisor does
not obtain answers to those questions by arbitrarily opening desks and
searching through the information stored there. Generally, jne’s desk is
considered one’s private domain. It is each individual’s job to interpret the
stored information and provide the appropriate answers, in whatever manner he
sees fit, This 1is a critical need, well understood outside the computer
world, but often ignored 1in the architecture of traditional data base
management systems controlled by a central administrator.

A collection of dedicated computers could be interconnected and
integrated to form a distributed computing system with such properties.
Since individual computers will have to direct a variety of requests to other
computers in the course of performing their duties, the format and content of
these requests and responses must be recognized and acknowledged if the system
as a whole is to fulfill its global function. However, the manner in which
each computer is programmed to respond to the appropriate requests should be
under the control of the person responsible for managing the information used
to generate the response. In concrete terms, this means that there should not

be centralized data base administrator that determines the format for the

stored information and access to that information for all of the computers
composing a distributed system. This duty should be potentially delegated to
the individual managers of the various computers.

We use the word autonomy to characterize this ability of each node to
administer its own resources: the processing and release of the 1local
information, and the allocation of the 1local hardware resources. Such
autonomy is not an attribute inherent to all distributed systems. Most
proposed distributed systems strive to give the application programmers an
image of a monolithic central system. Such systems are perhaps best
characterized as loosely coupled multiprocessor systems (i.e., multiprocessor
systems in which processors do not share memory). We do not deny the value of

such systems, but we will not consider them in this paper.

Distributed System Architecture

We will now describe a distributed system architecture that follows
directly from the philosophy presented in the preceding section. This
architecture is intended to support a variety of applications, not just the
previous example of office automation. For this reason, we will attempt to
keep a strong distinction between the application and the operating system,
which is application independent.

We postulate that a system designed in accordance with our philosophy
will have three classes of components: the computing nodes, special servers,
and a communication substrate. Our goal is to produce an operating system for
the computing nodes that works with the communication substrate and the
servers to provide a coherent environment for the creation of application

software, We will argue that there are certain functions, often described as

part of a distributed system, that can only be provided as part of the
application programs; the requirement of autonomy makes it unreasonable to
provide these functions in the operating system.

In the particular research project we are now conducting, we are assuming
that the computing nodes are dedicated to individuals, that they are "personal
computers". Of course, such computers could be allocated to groups of people,
rather than individuals, provided that those people have identical
responsibilities and requirements, for example a group of clerks that perform
an identical function. However, in this paper we shall assume that these
machines are personal computers, since that is the most extreme, and therefore
from our point of view the most interesting, representation of the system.
The servers are specialized machines that will perform particular services for
the community as a whole, Possible services include archival storage,
specialized printing, specialized computing, and access to foreign computer
and communication facilities. The third component is the communication
substrate, which will permit the exchange of messages between the various
personal computers and servers. The communication substrate may also include
some special machines for directory maintenance, message spooling, and
monitoring and diagnosis of the physical communication 1lines, but these
"servers'" are invisible to the application programmer. The system does not
include a centrali facility for management of information as one of its
principal components, Based on the arguments made earlier, information
management 1is the responsibility of the personal computers., However,
individual applications could support a common shared data base as a special
server,

The most basic constraint that the assumption of autonomy places on an

application built for our system is that each piece of information has one and

only one home, the computer of the person responsible for that information.
This approach is in marked contrast to other distributed systems in which
several nodes can share control of any particular piece of application data
[3,4,5,6]. The schemes needed to accomplish this are very complicated, but
above all, they are incompatible with our philosophy: they completely
compromise the control which the owner of the information has over its release
or modification. The assumption that information has only one home haé a
pleasing simplicity, but there are a number of issues that must be considered
if a system based on this assumption is to be successful. In the following

sections we will consider efficiency, reliability, transaction integrity, and

expandability.

Efficiency

An often claimed advantage of distributed systems is that information can
be brought close to the person requiring 1it, thus making his queries and
updates proceed very rapidly. Has our fundamental assumption compromised our
ability to achieve this goal? We believe not, for two reasons. First, the
information one manipulates most often is the information one owns, and that
by definition 1s in one’s personal machine. Second, most of the information
requests involving data not locally stored are not update requests but
retrieval requests, and needed information can be locally stored to enhance
the speed of retrieval requests with no compromise to our philosophical
assumptions. However, if we do locally store information in order to speed
our ability to query it, we must not model it as an exact copy of the remotely
stored master version of the information. 1In fact, we have no idea what

the remote representation is. All the local machine can know is the result of

attempts to query the remote information. Thus, the 1locally stored
information must be viewed as a distinct entity, a different version. The
application programs must always’ understand when they are manipulating the
locally stored version and when they are manipulating the information itself.

Consider a simple example. Most people obtain from their bank a monthly
statement that contains their checking account balance. This balance is then
locally stored, and locally manipulated by the owner of the account to reflect
checks cashed or deposits made. Every owner of a checking account understands
that when one adds or subtracts to this local copy of the bank balance, that
these operations do not manipulate the version of the balance maintained by
the bank. In fact, it is critical that the local version is distinct because
operations are often performed on it that cause it to have a value which
intentionally differs from the balance stored by the bank. Additions and
subtractions to the local version are usually made immediately, while the bank
only modifies its version when the transaction has cleared at the bank. Thus,
the two balances will often differ: the owner of the account has only loose
control over this difference.

Returning to the computer world, we believe that this idea of a single
master copy of the information itself, combined with distinct entities that
are locally stored versions of the information, is fundamentally the correct
way to manage the information in a distributed system. It will be necessary
only infrequently to coordinate with the master copy, and almost all of the
transactions performed by a user will involve versions stored at the personal

machine. Thus, we believe that a system built according to our philosophy can

be very efficient.

Reliability

Another claim often cited for distributed systems is that because there
are several machines in the configuration, physically separated and therefore
unlikely to crash simultaneously, the overall reliability of the system should
be higher than in a single, centralized site where any single crash disables
the entire system. The reliability claim 1is based on two observations.
First, both functions and data can be replicated on independent hardware.
Second, propagation of low level errors is restricted by physical separation
of processes and resources. However, physical distribution and decentralized
control present new reliability problems, and the requirement of autonomy
restricts replication of data.

The notion of reliability is often simplified to mean accessibility of
physical resources and information needed to perform the tasks of the system
users, Such a simplification is incorrect and misleading. The most crucial
reliability problem in an information processing system is the prevention of
information loss. A distributed system offers a new mechanism for dealing
with protection against information loss due to damage of a storage device: it
is possible to use other nodes on the distributed system to store backup
copies of important information, so that this information can be retrieved
after a catastrophic crash of an individual node. This kind of replication of
information in a distributed system should not be confused with the
replication of information for the purpose of enhancing the speed of queries
or allowing updaté of the information to be performed at several sites. In
many distributed syétem proposals, these two distinct functions of information
replication, efficiency enhancement and reliability enhancement, have become
so tangled that it is difficult to convince oneself that the enhancement goals

were indeed achieved. 1In particular, in the schemes where multiple copies are

~ used to enhance both efficiency and reliability simultaneously, these copies
must be kept mutually consistent. To do this reliably in face of node
failures and especially communication failures that may leave the system
partitioned into subsystems that cannot communicate with each other, requires
very complex protocols. The overhead of these protocols may be very high,
thus thwarting the efficiency enhancement promised by the multiple copy
scheme. Partitioning 1is a particularly unpleasant problem: copies of the
replicated information may end wup in different partitions, and 1if each
partition continues updating the information, the copies will diverge. Making
all the copies consistent again when the system is recombined is a hard
problem. Although for some update patterns there may exist an inexpensive
solution, the only general solution is to undo some of the updates. Thus at
most one partition should be allowed to make updates. The nodes in the other
partition must either wait, or resort to a scheme similar to that proposed in
the section on efficiency, that is, view the information as a "local" version
for that partition, a version that may be obsolete.

In contrast, in our system the remotely stored backup copies iof
information are also under the complete control of the home node. In fact,
~the information replicated for reliability might be stored in an encrypted

form, so that it be usable only by the home node. Thus every piece of
- information has only one home where it can be updated, the computer of the
person responsible for the information. This means that a failure of the
personal computer or its detachment from the network makes this information
unavailabie to the rest of the system. We believe, however, that the proper
solution is to ensure that the individual nodes are available both to their
direct users and to the rest of the system. Thus the requirement for the

nodes is that they should fail only very rarely and their time to repair

- 10 -

should be very short. The communication network should support multiple links
between nodes so that the system remains fully connected even if some of the
links fail. 1If partitions and failures of the communication ‘network and
failures of individual nodes can be limited in durationm, then individual nodes
can survive a period of inaccessibility of some information or even a complete
isolation by manipulating only the locally stored versions, and remembering
only the transactions that must ultimately be enacted when the master copy
again becomes accessible.

The experience with the ARPANET indicates that it is indeed possible to
build robust communication networks such that partitioning is very rare. For
the 1individual nodes, the following strategy is suggested., If the system is
indeed composed of a large number of small machines, it is quite reasonable to
imagine having on hand enough physical spare machines that a failed machine is
simply and quickly replaced by a new machine that is initialized where the old
one left off by gransfering the storage devices to it. However, for some
special nodes, in particular some shared servers, it may be necessary to
provide better assurance of continuous service. If a server maintains
information that changes unpredictably and rapidly, replicating the server
leads to the multiple copy problem discussed earlier. Thus, the appropriate
approach, in our opinion, is to design such servers to be highly reliable, by
replicating critical components internally. Examples of such highly reliable
configurations can be found in [7,8]}. However, for other types of servers,
replication may be the right solution [9].

It may scem that we have eliminated most of the difficult "reliability"
problems relcvant to distributed systems as discussed in the literature.
Unfortunately, it is not the case. The most difficult reliability problems

arise in the actual modification of information on a storage device and in the

- 11 -

communication protocols [10]. The most fundamental problem is how to store
and maintain, within each individual node, the current state of wupdates,
connections to other nodes, and suspended transactions in such a way that this
information survives a crash qf the node: in other words, the nodes must be
recoverable in the context of their function in the system. Also, it should
be understood that some information used by the communication substrate ﬁay
need to be replicated in order to make the substrate reliable, However, it is
expeéted that this will be a simpler problem than the fully general case

needed to support arbitrary distributed applications.

Coherent Transactions

A fundamental requirement of a data management system is the ability to
transform a data base from one consistent state to another consistent state in
a reliable manner. This means that the data base must not end up permanently
in some intermediate inconsistent form. For example, consider a transaction
that transfers funds from one bank account to another. When such a
transaction terminates, it should not be possible that one account has been
credited but the other not debited. The term generally used to describe such

a transaction is atomic update. An atomic update either succeeds or fails,

but if it succeeds it succeeds completely. Fairly sophisticated mechanisms
have been designed for data management systems to ensure that two atomic
updates neither slow each other down unnecessarily nor prevent the successful
completion of each other [11]. 1In a distributed system, an atomic update may
involve information in several nodes. Thus, it is necessary to provide some
mechanism for coordinating nodes so that an action performed by one node is

completed if and only if the related actions in some other nodes can also be

-12 -

completed,

The distributed atomic update is the focus of a great amount of research
in distributed éystems presently, and our approach to this problem is
unresolved at the moment, In principle, distributed atomic update is in
confliét with our fundamental assumption of autonomy. A nodé that is asked to
participate in a distributed atomic update must, for the moment, abandon its
autonomy to the coordinator of the update. In every algorithm designed for
distributed update, there is a crucial moment at which a failure of the
coordinator of the update leaves the participating nodes unable to either
abort the update or complete it; they must wait for the coordinator to
recover, During this interval, all access to the information in question is
denied. The only alternative to possibly indefinite waiting is to destroy the
atomicity of the update and leave the data base in a potentially inconsistent
state, Thus it is necessary to ensure that the probability of a failure of
the coordinator is very low, and if the coordinator does fail, it will recover
in a reasonably short time. Several schemes described in the literature
suggested replication of the coordinator [12,13] - unfortunately, this
substantially complicates an already complex algorithm. Other schemes
advocate marking the information as tentative and disclosing it before the
update is committed [14,15]. This may necessitate a cascaded back out should
the update be aborted by the coordinator.

Thus, even if we accept the necessity to support distributed atomic
update, we advocate that it should be limited only to those cases where it is

absolutely necessary. Distributed applications should be carefully analyzed

to determine whether the consistency of the wunderlying database cannot be
ensured by some other means. We believe that examination of the real world

will confirm the conclusion that it is adequate to use distributed atomic

- 13 -

update only as special case. The operating system should provide mechanisms
that simplify implementation of distributed atomic transactions, but should
not enforce such atomicity automatically. However, this approach carries
with it a price. If some transactions that update a distributed data base are
not programmed to be atomic, it may not be possible or easy to introduce new
transactions for that data base that require distributed atomic update on
different collections of data. Basically, this ‘puts the burden on the
application system designers: they have to decide if it is necessary to make
distributed updates atomic, not just because of the present but also the

future needs.

Extensibility

An obvious virtue of distributed systems is that it should be possible to
make the system larger by adding another machine without redesigning all of
the existing application code. This assumption is true, within 1limits. If
one is simply adding a new instance of a given function, for example
increasing the work force in an office that performs a particular task, then a
distributed system ought to incorporate this new component with no
modification, providing that the initial structure of the application included
fairly flexible assumptions about the physical location at which a particular
function is performed. The system we are designing will include a name lookup
service, which will provide a mapping between the name and the address of a
function within the system. Machines invoking a function must be prepared to
discover that the address used in a previous invocation is no longer valid, so
that they must refer to the name lookup server to find the new location. The

necessity for tolerating failures of this sort constrains the design of

- 14 -

network protocols, since the name from which the current address was derived
must always be available.

The more complicated problem arises when a new function is added to a
distributed system. This is not simple expansion, but is sometimes confused
with it. Addition of a new function to an existing system may require some
existing function with which the new one must interact to be restructured and
redesigned. This problem is independent of whether the system is distributed

or centralized.

Protection

The philosophical assumption made at the start of this paper impacts
strongly on the protection requirements that our system must enforce. Since a
given personal computer is used only by one person, or by a closely
cooperating group of people, there is no need to implement mechanisms inside a
given machine that protect the computation of one user from the hostile
advances of any other program in the same machine. This makes the building of
the operating system for the personal computer a much simpler task, since the

only protection requirement imposed inside a given node is that the user is
protected from his own folly. Of course, folly comes in several flavors. We
have already alluded to the necessity of providing a mechanism for protecting
information against physical destruction, It is also necessary to protect
application information and the operating system from destruction due to the
execution of faulty programs. Certain hardware checks may be required for
this protection, or it may be possible to do a satisfactory job by a careful
analysis of the program at compile time. This is an interesting research

problem in its own right, not strictly related to the issue of distribution of

- 15 -

the system.

Between two machines, however, the protection problem is more
substantial. We choose to assume that the communication subsystem itself is
not secure, so that it is the responsibility of each node itself, rather than
the communication subsystem, to ensure that a transaction request coming from
outside 1is indeed coming from a legitimate source and that the information
received from outside is consistent with the state of the node. As we will
show below, this particular assumption leaves us much greater flexibility in
the eventual architecture of our system. This assumption is also compatible
~with the basic idea of the autonomy of the individual node. It should be
possible for individual nodes to determine the identity of the person making a
request and to decide whether or not to honor that request based on the
identity of the correspondent. Architecturally, this implies that it must be
possible to determine the identity of the origin for any request. In the
system which we are building, an integral part of the architecture will be a
specialized server whose function is to authenticate the originator of a
request. The technique that we intend to use for this is encryption, based on
keys distributed by the authentication server [16]. The authentication
server, when invoked by the originator of a request, will send a unique key to
each end of the potential communication, along with information that specifies
the identity of each end. When the request originator then uses this key to
communicate with the other end, the fact that each can decode the messages of
the other assures each that the other is what it claims to be. Thus, our
assumptions about protection have a basic impact on the form of our
communication protocols, since they 1mply the existence of encryption

mechanisms integrated into these protocols.

- 16 -

Operating System for Distributed Processing

Given the foregoing discussion, what must the features be of an operating
system for a personal computer, if that personal computer is to be a part of a
cooperating collection of autonomous nodes? Clearly, the first requirement is
that a compatible set of communication protocols must be integrated into each
operating system. In particular, there can be no autonomy in regard to
addressing and authentication. Machines deviating from the communication
standard must simply be excluded from any future conversation. We also intend
to specify high level standards for the format of requests and replies and the
representation of information to be transmitted between nodes. However, the
implementation of these protocols may vary from node to node. Each node is
assumed to have its own operating system that has full control of the
allocation of the 1local resources. The possibility of load sharing where a
job of one user is directed by the operating system to another machine in the
network that has a lighter load is incompatible with our model of distributed
systems,

The next requirement for the operating system is a negative requirement.
The operating system must not attempt to fool the application programs as to
whether application information is local or remote. The application program
will wish to know explicitly whether or not information it is using is remote,
because a variety of failures may occur in the remote case that would not
occur if the referenced information were local, The node managiﬁg the foreign
information may be down, or it may simply refuse to honor the request. ‘If we
are to have a system that is indeed reliable and robust, then the failure of
other nodes must not cause a failure of the local node. But this in turn
means that it is necessary to provide an alternative action 1in those cases

where the remote request fails. For example, the alternative may be to use a

-17 -

potentially out of date local copy, or to derive the desired information in
some other way. 1In general, we believe that the alternative actions cannot be
designed as part of the operating system, but must be designed by the
application builder as part of every remote request. To avoid burdening the
application builder with building needless error recovery code when the action
being performed is entirely local to the machine, it 1s necessary that he
understand when an action being programmed potentially generates a remote
request., This assumption is in marked contrast to many proposed distributed
system architectures, whose avowed goal is to hide from the application the
distributed nature of the underlying communications substrate. It 1is our
belief that hiding the distributed nature from the application can only lead
to a greatly reduced robustness of the application as a whole. We wish to
point out, though, that the requirements laid out in the preceding discussion
do not prevent the application builder from hiding the distributed nature of
the system from the end user.

The operating system muft also make it possible to build applications in
which the end user can modify the manner in which information is stored and
organized, and the way in which information is utilized to generate responses
to requests from himself and from other nodes. 1In other words, the user must
be able to exercise his autonomy. At the same time, we do not wish to require
that every user be a programmer. Thus, the application development system
must make it possible for the end user to express his desires about the way
the machine is organized in a manner that is easy to understand and implement.
This last problem, which is very difficult and substantial, is separable from
the problem of system distribution. Our most significant step toward this
goal 1is an ongoing project that involves development of a programming system

that will interface closely with the operating system and provide powerful

- 18 -

abstractions for modeling distributed applications [1,17].

Conclusion

The purpose of this paper has been to state a particular philosophy about
the architecture of distributed systems, and then to explore, at the first
level, the implications of this philosophy for the structure of the system.
The philosophy we have expounded 1is not the only one possible. As we
suggested, it is also possible to build distributed systems that resemble
loosely coupled multiprocessors. If one foregoes the possibility of autonomy,
then certain problems in the system become easier to solve. For example,
distributed atomic update no longer raises as substantial a problem, and one
has a wider spectrum of solutions available to enhance reliability and
efficiency. We are interested in the architecture outlined in this paper not
because it makes problems easier or harder, but because we believe that
systems built according to our philosophy have ’more general applicability.
It is always possible to find a group of people who are willing to abandon
autonomy with respect to each other, but to build a system that incorporates
this mutual cooperation forever limits the scope of the distributed system to
that group of people. Our architecture, in contrast, can expand to encompass
any desired collection of individuals. It 1is possible to imagine a
distributed system built according to our rules expanding so that it connects
together not Jjust the employees of one company, but cooperating enterprises.
Coordination between purchasing agents in one company and buyers in another
company could be regulated within the context of our distributed systém. The
only requirement is that these people be constrained to exchange between -each

other only certain requests; a natural constraint intrinsic to the

- 19 -

architecture we propose. It would even be possible to conceive of competing
companies communicating with each other through such a network, because the
constraints on what can be exchanged are sufficiently well defined that the
electrical interconnection of the two systems does not automatically imply
paths for the leakage of information except in a manner mutually agreeable to
both companies.

Ultimately, the real justification of our architecture 1lies in its
ability to meet the needs of the real world. One of the most severe problems
of data base management systems 1s that the information they contain is
invalid, incorrect, or otherwise corrupted. The best safeguard against
corrupted data is io make the system and the data in it genuinely useful to
all the participants in the system, so that all particip§nts see a personal
benefit in keeping the data accurate. Our focus on the issue of autonomy,
therefore, 1is critical because we see it contributing to the general

acceptability and utility of the system, without which no system can succeed.

Acknowledgement

We wish to acknowledge the contributions of all the participants in our
distributed system project at M.I.T. Although some of them may not agree with
all of the points made in this paper, the paper would not have been possible
without the many stimulating discussions and arguments that we have had with

them, We appreciate the suggestions of those who read the draft of this

paper.

- 20 -

References

1.

10.

11.

12.

Svobodova, L., Liskov, B., Clark, D., "Distributed Computer Systems:
Structure and Semantics," Technical Report No. 215, Laboratory for
Computer Science, M,I.T., Cambridge, Massachusetts, March 1979,

D’0Oliviera, C.R., "An Analysis of Computer Decentralization,” Technical
Memo No. 90, Laboratory for Computer Science, M.I.T., Cambridge,
Massachusetts, October 1977,

Alsberg, P.A., Day, J.D., "A Principle for Resilient Sharing of
Distributed Resources," Proc. of the International Conference on
Software Engineering, San Francisco, California, October 1976, pp.
562-570.

Bernstein, P.A., Rothnie, J.B., Goodman, N., Papadimitriou, "The
Concurrency Control Mechanism in SDD~l1: A System for Distributed
Databases (The Fully Redundant Case),”"” IEEE Trans. on Software
Engineering, Vol. SE4-No. 3 (May 1978), pp. 154-168.

Garcia~-Molina, H., "Performance of Update Algorithms for Replicated Data
in a Distributed Database," Technical Report No. STAN-CS-79-744,
Department of Computer Science, Stanford University, Stanford,
California, June 1979.

Thomas, R.H., "A Majority Consensus Approach to Concurrency Control,"
ACM Transactions on Database Systems, Vol. 4, No. 2 (June 1979), pp.
180~-209.

Bartlett, J.F., "A “Non-Stop’ Operating System,” IEEE Hawaii
International Conference of System Sciences, January 1978, pp. 103-117.

Foster, J.D., "The Development of a Concept for Distributive
Processing,”" COMPCON Spring 1976, February 1976, pp.

Levin, R., Schroeder, M.D., "Transport of Electronic Messages Through a
Network,” Technical Report CSL-79-4, Xerox Palo Alto Research Center,
Palo Alto, California, April 1979.

Lampson, B.W., Sturgis, H.E., '"Crash Recovery on a Distributed Data
Storage System," Xerox Palo Alto Research Center, Palo Alto, California,
April 1979 (to appear in CACM).

Eswaren, K.P., Gray, J.N., Lorie, R.A., Traiger, I.L., '"The Notion of
Consistency and Predicate Locks in a Database System,”" CACM, Vol. 19,
No. 11, (November 1976), pp. 624~633.

Reed, D.P., "Naming and Synchronization in a Decentralized Computef
System,” Technical Report No. 205, Laboratory for Computer Science,
M.I.T., Cambridge, Massachusetts, October 1978.

13.

14.

15.

16.

17.

- 21 -

Hammer, M., Shipman, D., "Reliability Mechanisms for SDD-1: A System
for Distributed Databases," Technical Report, Computer Corporation of
America and M.I.T., Cambridge, Massachusetts, July 1979 (Draft).

Takagi, A., "Concurrent and Reliable Updates of Distributed Datasbases,"
Technical Memo, Laboratory for Computer Science, M.I.T., Cambridge,
Massachusetts 1979.

Montgomery, W.A., "Robust Concurrency Control for a Distributed
Information System," Technical Report No. 207, Laboratory for Computer
Science, M.I.T., Cambridge, Massachusetts, December 1978.

Needham, R.M., Schroeder, M.D., "Using‘Encryption for Authentication in
Large Networks of Computers,” Comm. of the ACM, Vol. 21, No. 12
(December 1978), pp. 993-999.

Liskov, B., "Primitives for Distributed Computing," 7th ACM Symposium on
Operating Systems Principles, December 1979.

