M.LT. LABORATORY FOR COMPUTER SCIENCE December 27, 1979
Computer Systems Research Division Request for Comments No. 180

Programs for Distributed Computing:
An Interim Report of an Experiment

by Irene Greif

This paper is a report of progress and plans as of August 1979 of an experiment with
implementations of applications programs. The focus is on relevance to language design
especially in support of communications protocols, conversational continuity and sharing
of data via circulation of forms. A more detailed report of recent work on the calendar
application is forthcoming.

This note 15 an informal working paper of the M.LT. Laboratory for Computer Science,
Computer Systems Research Division. It should not be reproduced without the author’s
permission and it should not be referenced in other publications.

2l AL

1. lmro_duction

Computer systems that reflect the structure of the organization that they serve are likely to
consist of networks of cooperating but autonomous nodes -- personal computers, departmental
computers, branch computers. For some functions the nodes will choose to cooperate closely.
However, each will have the capacity to protect itself, e.g. by refusing to serve certain requests
or' even by disconnecting itself from the system. Programs for individual nodes will have to
be robust, able to tolerate network failure and capable of taking responsibility for resuming

conversations after local failures.

This paper is a report on our experience with design of a language for distributed systems
application programs. Since there are few examples of such programs, experimentation will -
play an essential role in the design. To this end we have been implementing applications
programs, trying to focus on a variety of language issues. We report here on the approaches
we are taking to studying communication protocols, facilities for maintéining ﬁonversations.

and the sharing of information via message passing.

Section 2 is a description of the application area. In section 3 we describe the language we
have been using and its relation to two other languages for distributed computing, and then
discuss some language issues which can be addressed by programming in this language.

Section 4 contains a brief report on the completed implementations.

2. The Application

This section contains a description of the calendar application domain and discussions of a

few system specification alternatives.
2.1 Calendars

A distributed calendar system is fairly.typical of the sorts of subsystems that will make up the
fully automated office and is also a good source of interesting communication patterns. We
will implement both personal calendars and semi-public calendars such as the schedule for
some resource. We assume that personal calendars exist on individuals’ personal computers,
that they may not always be available, and that there is no shared data base of information
about people’s schedules. It is in this last assumption that we differ from other calendar
systems, even those for distributed environments such as that of [Gifford, 1979). The

implication of this assumption is that all communication must be done via message passing.

Calendars will have fairly simple user interfaces and will offer a variety of services from the
simple recording of one's personal appointments to the arranging of meetings that involve
coordination among many people and resources. ‘An example of the potential complexity of
th;a communication is found in our laboratory when a conference room must be reserved for a
seminar. The seminar must be scheduled at a time convenient for the host and speaker, the
room must be available for the length of the talk plus some additional time for refreshments.
The coffee pot must be reserved and arrangements made for it to be set up at the appropriate
time. Conflicts with other seminars in other rooms must be prevented, announcements of a

variéty of sorts must be sent out, blackboards must be cleaned, and so on.

2.2 Forms

There are a wide range of applications which can be viewed in terms of the model of an
office that operates by the circulation of forms. The form serves both as a communication
medium and as a storage medium. To provide this view, the user interface should consist of

procedures for filling in forms.

There are several ways in which forms can be worked into the design of a calendar system.
The most straightforward use of forms is to closely mimic their use in offices. The forms are
passive data structures which are circulated. In the calendar application they might be

reservation of cancellation request forms. The calendar would then be a processor of forms.

Forms may have associated procedures which are used for guidance in filling out the form.
Such a pracedure could, for example, implicitly fill in additional fields based on an answer to
one question. Also, some routing and additional communication could be initiated as the form
is filled in. For examplethe calendar itself can be thought of as a form. Then when one
writes "meeting with John Doe" in the "August 13 at 4pm" field, some communication with

John Doe’s calendar should be initiated.

A personal calendar can be designed as a user interface for filling in a variety of forms, such
as forms for requesting the scheduling of meetings, cancellation of appoiritments, etc.
Alternatively, the user might fill in his own "active” form that contacts his personal calendar
and possibly other ;:alendars according to how it is filled in. We will implement both kinds of
calendar system, since the implementations of each will use different‘communication protocols

and data structures.

2.3 Reliability

For a variety of reasons, a message may not reach its destination. Therefore, when an
expected response is not received after a reasonable delay, one might try to retransmit. In the
initial design we have placed much of the responsibility for retransmission on the person who -
uses the calendar. The programs do have to provide reliable back-up storage (referred to as
stable storage), so that the calendar can file copies of its outstanding requests in stable storage.
The calendar provides an operation which allows the user to check the status of a request. If
insufficient progress has been made, the user can either retransmit or abort. The calendar
display helps by flagging appointments which are unconfirmed. This design will be adequate
if the underlying system is relatively reliable. In a later version, intended for use on hardware
that is known to be unreliable, the specification will include stronger reliability requirements.
In that version we will learn more about language support for communication protocols (cf.

section 3.4).

2.4 The Data Base

Each calendar maintains its own private data base which includes appointments, reminders,
and outstanding requests. Completed transactions are recorded in the data base in stable

storage.

3. Language Issues

We describe first the programming language which we are using and then go on to introduce
the notion of a form as a programming aid. The subsequent sections pose some questions

about language issues.
3.1 The Experimental Language

The programming language is a fairly simple extension of the sequential language CLU. We
have adopted several of the early design decisions of the Extended CLU project [Liskov,

1979a], but have diverged somewhat from the current proposals of that group.

An application will be implemented as a group of guardians each of which is a single process
with its own address space. Guardians have ports, one of which is created when the guardian
itself is created. There are primitives for sending and receiving messages. Messages are sent
to ports and timeouts are associated with receive statements. Ports have type determined by
the kinds of messages they can receive. A message has a header, which is an identifier (e.g.
request or confirmation) and is otherwise similar to a record in that it consists of labelled

components of fixed type. Messages can contain objects of any type, including user defined

types.

Our language is also similar to PLITS [Feldman, 1979) which is an Algol-like language with
send and receive statements. We have used CLU as a base language for its data abstraction
facilities, but otherwise agree with the PLITS philosophy which implies that an experimental

language should be a simple one, subject to modification after it has been used.

3.2 Forms as Messages

-7-

Specifying that a calendar have a user interface for filling in fofms does not necessarily imply
that forms will actually be transmitted in the implementation. Messages may consist of values
extracted from forms, thereby reducing the amount of information transmitted. However, this
apparent savings in size of messages may be at the cost of prog}am complexity. We have

found that it is often more difficult to properly interpret these shorter messages.

A simple example arises in the case of a single "secretary” program which is communicating A
with a resource calendar to make several reservations. Eaéh request can include a reply port,
to which the answers OK or FULL will be sent. Then by maintaining a record of the
correspondence between ports and requests, the secretary can interpret a reply according to tﬁe
port on which it is received. If instead of OK or FULL the resource calendar returned a copy
of the request marked CONFIRMED or UNAVAILABLE the secretary could receive all
messages on one port and refer to the contents of the reply itself for details of the request. In
longer conversations and other communication patterns, the savings in program complexity

increases.

Implementations in which all messages contain forms have proved to be simpler in many
respects than alternative programs that did not observe this discipline.

3.3 Conversations

Problem: Can one guardian maintain several conversations at once? How can

understandable code for such a guardian be written?

A guardiaﬁ can participate in more than one ‘conversation at once, but keeping the
conversations separate may prove difficult. Mechanisms for identifying a conversation include
the use of multiple ports on which to receive messages (so that there is one port per
conversation) and transaction keys [Feldman, 1979] that can be included in each message. To
continue a conversation, there must be a record of the state of the conversation. This state
can be represented by the values of local variables plus the program counter of a sequential
program, hence suggestions such as multiple processes within a guardian [Liskov, 1979al.
Alternatively, since the state of a conversation can be stored in a form, conversations can be
conducted in terms of forms. When the messages contain sufficient information, conversations
can be programmed clearly without modifying the simple single process guardian language

construct.

3.4 Communication Protocols

Problem: Can we identify patterns of send and receive statements which appear frequently

and should therefore be supported by language constructs?

An example of a communication protocol is a program loop in which a message is
retransmitted until an acknowledgement is received. A language for distributed systems might

provide a “guaranteed acknowledged send" primitive to replace repeated occurrences of this

loop.

We have found several simple protocols in our programs, usually matched pairs of sends and
receives. Complex protocols such as the remote invocation discussed in [Liskov, 1979b]) have
not yet arisen. As we discussed in section 2.3, we have been passing much of the responsibility

for reliability to the user. When we implement a calendar program that is expected to run on

-9-
a very unreliable network, additional protocols will certainly appear.

To summarize, we expect to continue to find more complex protocols, but in initial

implementations have been comfortable programming the simple protocols explicitly.
3.5 Type Declarations

Problem: Will strong typing of messages and/or ports aid or interfere with good program

design?

The most notable problem has been the potential for very long recursive definitions of types.
The difficulty arises from the fact that messages can contain ports, and the type of a port is -
the list of the types of all its messages. The problem is similar to full declaration of the types

of procedures which take procedure arguments.

It is easy to come up with scenarios of long recursive type definitions. Basically, the type
declaration becomes an outline of all possible communication patterns. Writing this outline
may in fact be a useful exercise for a programmer, but it is likely that shorter alternatives will
‘be needed. One feature that would help is a single port type which subsumes all the different

typed ports. Then a message type could be declared simply to include a port.

When using forms, the number of distinct port types is not so great and declarations become
simpler. Within one application, messages usually contain the same form, and are
distinguished only by their headers. Thus a few syntactic aids for listing the headers and
declaring the type of the form would support full type declarations for communication in terms

of forms.

-10-
3.6 Permanent Storage

Problem: How will the programmer indicate which values must be stored in stable storage so

that execution can be resumed after a crash?

In an application in which forms are used, when a form is "filed” it is assumed to be stored
safely. Currently we find that the application level notion of filing a form can double for the
programmer as a tool for recording state. Filing copies of outstanding requests also serves as a

way to save the states of conversations which must be resumed after a crash.

3.7 Synchronization for Sharing Data
Problem: How can a large data base be shared if guardians do not share data?

If guardians can fork internal processes which share data, then a data base could be
implemented within a guardian. Concurrent reads would be performed by parallel processes.

Synchronization would be enforced by a monitor or a similar synchronization primitive.

~

Unfortunately, the introduction of parallelism within a guardian adds enormous complexity to
the language and conflicts with- the simple model of communicating autonomous nodes.
Instead we have been programming guardians that are managers of data. One way to
provide concurrent access the data base is to partition the it into sections that will be mana_gea
by other guardians. All requests for data base operations are received at one port in the

managing guardian and then forwarded to the appropriate guardian.

The final decision on language support for shared data may rest on one’s taste in
programming style. Qur experiment will contribute to the resolution of this question by

prdvidmg a body of programs in which data sharing is managed by guardians.
3.8 Forms Reconsidered
Problem: How should forms be supported in the language?

We are just beginning to explore the uses of forms in programming. We anticipate the need
for syntactic aids for resuming conQersations, so that the programmer can be relieved of
having to extract all the necessary values from the form to updaté local variables. Forms for
the calendar application are not very large, but in applications with larger forms optimization
would be desirable. Perhaps only changes to forms or names of forms should be sent in '

messages.

We are currently using the data abstraction facilities of CLU to define forms. When we
implement calendars which are "active” forms, we will -have to reconsider the question of
whether a form is a data object or a guardian. It is not yet clear how active forms can be
circulated in messages. Also, we must clarify the differences between the kinds of forms that
arise in application design and the forms used as message structures in our programming

language.

To summarize, we consider language support for forms to be a major research topic to be

tackled after we have more experience with the use of forms in programming distributed

applications.

-12 -
4. Current Implementations and Remarks about Final Paper

Several versions of the calendar application have been implemented already. There is a user
interface to a personal calendar which is being used by several people. This calendar has a
simple display, and can be used to make and cancel reservations and to add reminders and
notes to days. A conference room calendar accepts reservations and cancellations when written
on "reservation/cancellation” forms. In one implembentation, personal calendars communicate
via a mixture of passive forms and other unstructured data. We are currently debugging a
second implenientation in which the personal calendars communicate entirely in terms of

forms. Conversations are much simpler in this version.

5.

-13 -

References

Feldman, "J. 1979. High Level .Programming for Distributed
Computing. -CACM 22,6. June 1979. pp. 353-367.

Gifford, D.K. 1979. Violet, an Experimental Decentralized System. To
appear in proceedings of SOSP. Dec. 1979.

Liskov, B. 1979%. Primitives for Distributed Computing. MIT -
Computation Structures Group Memo 175. To appear in proceedings
of SOSP. Dec. 1979.

Liskov, B. 1979b. Remote Invocation Protocols. MIT-DSG Note 45.
July, 1979.

