M.I.T. Laboratory for Computer Science January 8, 1980

Computer Systems Research Division Request for Comments No. 182

DESIGN OF A DISTRIBUTED DATA STORAGE SYSTEM
by Liba Svobodova

This report introduces an ongoing project that 1involves a design and an
implementation of a distributed data storage system for the users of the local

network at the Laboratory for Computer Science at MIT.

This note is an informal working paper of the M.I.T. Laboratory for Computer
Science, Computer Systems Research Division. It should not be reproduced
without the author”s permission, and it should not be cited in other
publications.



Assumptions and goals

Our target 1is a reliable and secure datal storage system for a
distributed environment consisting of many personal machines and one or more
shared server machines. We are assuming distributed systems of the kind
described in [SVOB 79]. The individual computers in such a system are highly
autonomous. The data objects of any qualified user can be stored either on the
storage device in his personal computer, or maintained by one of the server
machines, but it is not possible to access directly the data objects in other
than one’s own personal machine.

The data storage server is not intended to be used directly by human
users; it defines a functional interface for other programs, called here the
clients. The components of the data storage system that actually store and
retrieve data will be called storage servers. Each personal machine contains
a local data storage server and communicates with one or more external data
storage servers. The '"personal"” machines are dedicated to one user at a
time, but they can be used by different people at different times. In such
cases, a machine is personalized by changing the physical storage devices in
the local server.

The most important reason for having a local server is availability: at
least some work can be done even if the personal computer is completely
detached from the network, or if the communication with other nodes in the
network (in particular, the servers) is broken. In addition, the local storage
servers provide more efficient access, both because of their physical
proximity and because it 18 not necessary to use complex protocols to
guarantee secure access and transfer. It can be also argued that the local
servers provide more privacy, since the owner of the storage device is the

only agent that has access to its contents.

The design goals for the data storage system include:

l. Uniform interface. The read and write operations provided to the data

storage system clients should make the distributed nature of the
system transparent, yet the clients should be able to control, through

appropriate commands, where an object 18 to reside.

1. The terms "data" and "data object" are used throughout this memo as
generic terms for stored information, that is, they include also programs and
other control information. .



2. Support for object oriented languages. The environment of the clients

is assumed to be object-oriented; this means that the data storage
system ought to be able to handle large quantities of rather small
objects. Also, it should provide a realiable support for type-gsafe
languages. However, this latter requirement should not make {t
impossible or difficult to use the data storage system from languages
that do not embody such a strong notion of types.

3. Protection. It must be possible to specify and enforce access
restrictions separately for each object or a group of objects
maintained by an external server. Also, it should be possible to
verify that the object returned to a client is of the type expected by
the client.

4. Atomicity. It must be possible to write a group of objects in a
single atomic operation without regards for the actual physical
location of the individual objects.

5. Reliability. The data storage system must provide stable storage, at
least for some classes of objects. Also, the atomicity of write
operations must be satisfied in spite of failures of the servers and
the communication lines.

6. Simplicity. The system should be sufficiently general to provide
flexible and reliable service for a wide class of applications, yet as
simple as possible. In particular, it is desirable that the shared
server machines support only the minimum necessary set of functions.

Our data storage server will {iffer substantially from the existing file
gystems (servers) for similar enﬁironments that have been described in the
literature [ISRA 78, SWIN 79, PAXT 79]:

1. it integrates the local storage server and the external servers,

2. it i8 object-oriented,

3. the degreee of reliability and protection provided for each individual
object 18 controllable by the clients.

We will experiment ir implementing the model of objects developed by Reed
[REED 78)]. In this model, a data object 1is thought of as a history of the
states assumed by the object since its creation. Physically, each state 1is
represented by a special immutable object called a version. The representation
of the actual data object is an ordered list of the existing versions. A new

version is created each time the object is8 updated. This model serves as the



basis for synchronization of accesses to shared data objects and for

implementation of atomic actions that involve several distinct objects.

Stable storage

The storage system should quarantee that the data objects are stored
reliably: neither the operations requested by the clients nor the internal
operations (management functions) of the servers should ever damage them. 1In
particular, the storage provided by the servers must survive failures of the
hardware components used in the implementation of the servers, including
failures of the storage devices. Such storage 1s called stable storage.
Further, it 1s usually desired that an update operation on a data object in
stable storage should either change the content of the object to the new
desired value, or, if it fails, leave the object content as it was prior to
the invocation of the update operation. That 1is, an object should never be
left in an inconsistent state where the old value has been lost and the new
one is incorrect. Thus the operations on stable storage should be atomic.

Since no physical device provides storage with these properties, the
atomic stable storage must be implemented as an abstraction, using components
with less desirable properties. To be able to use the techniques for
implementation of atomic stable storage described in [LAMP 79}, the following
support 1is required:

i. It must be possible to detect that a physical copy of a stored object
is 1incorrect.
1i. It is necessary to have at least two sets of physical storage (storage
areas) that are completely independent from the point of view of
failures. That is, a fallure in one storage area should neither cause
nor increase the probability of a failure in the other area.
Implementation of stable storage is quite expensive, both in terms of the
amount of memory required and the processor and 1/0 time.l Thus atomic stable
storage 1is usually assumed only for some special objects that are necessary

for successful recovery from processor failures while other objects are only

1. The memory overhead is an extra copﬁ of the object plus additional memory
in the map or directory through which the physical location of the copies is
determined. The processor and 1/0 overhead is the time needed to write the
second copy; this has to be done every time the object is writtem. Read
operations encounter this kind of overhead only if the primary copy is found
to be incorrect, since then the second copy must be read.



periodically backed up in some offline storage. Then a recovery from device

failures will restore an object to some, but not necessarily the 1latest,

correct state. This means that some information may be lost. We postulate that

some user data are so important that such a loss is intolerable and thus for

the relevant data objects the current version, or possibly every version in

the object’s history must be stored in stable storage.

The following assumptions are made about the storage servers:

1.

The external servers have the necessary capabilities to implement
stable storage. These servers also can provide an extensive offline
backup that includes the entire history of the (selected) objects
maintained by the server.

The personal machines are expected to have quite limited amount of
online storage and no offline storage. Also, the online devices may
be less reliable than the devices used in the external servers (to
keep the cost of the personal machines down). It 1is probably safe to
say that even in the local server it will be possible to detect a bad
copy, but it may not be possible to provide two sufficiently large
storage areas that are failure~independent. Thus stable storage can be
reasonably provided only for some special objects. Also, since the

personal machines ordinarily will not have offline storage, local

backup might be impractical.

Classes of stored data

The class of stored data is determined by several aspects: required

protection, stability, availability and shareability. The data storage system

will support the following classes of data:

1.

2.

Local and private local data. Data objects of this class are stored

on the local storage device and are 1naccessible to anybody but the
owner, that is, the current user of the personal (ized) machine. The
local storage server usually will not guarantee that such data will
not be lost or damaged.

Private data in stable storage. Since the personal machines do not

provide stable storage for client’s objects, data of this kind have
to be stored at one of the external server machines. The storage

system has to ensure an owner-exclusive access to such objects.



3. Shareable data. Data objects that are to be directly accessible to
several users must be stored at one of the external server machines.
The storage system must support a secure and safe access to such
objects by a selected changing set of users.

4. Public data. These are read-only data objects that are accessible to
the entire user community. Such data can be maintained by the external
servers less expensively than data of class 3.

If there is more than one external file server in the system, it is quite
possible that each will have different reliability, protection and performance
characteristics. Consequently, there may be several subclasses of classes 2
and 3 that reflect these distinctions in the file servers.

Private objects, both the local ones and those maintained by the external
servers, can be shared at a higher level. That is, some user program which is
the client of the data storage system can make them available to other users,
but the storage system alone cannot do that. For the objects maintained by the
external sérvers, the local storage device will be used as a cache.
Alternatively, the system could support a class "private local data with
external backup": the local server would maintain the data as in class 1, and
an external server would maintain an encrypted copy. It 18 not clear whether

this alternative view presents any advantage.

Protection issues

It is assumed that the data maintained by the external server will be
stored and transfered to and from the server in an encrypted form. This
should minimize the protection mechanisms that must be built into the
external servers. A special component, the authentication server will be
developed to control the distribution of the encryption keys.

The access to shareable data objects could be controlled primarily
through the distribution of the encryption keys, however, such a scheme
presents a number of problems. First, encryption alone is not sufficient to
control write access. Thus the personal machine attempting to update an object
in an external data storage server must present an additional piece of
information to the server to ascertain its write rights. Al ternatively, we
could devise protocols where all write requests are supervised by the

authentication server. In either case, the data storage server must be able to



authenticate the validity of the write requests. Second, since any personal
machine could read any object stored at the external server, some information
could easily leak out; for example, it would be possible to observe changes in
the size of an object. An additional level of protection could be achieved by
restricting the right to invoke an external data storage server. This could be
accomplished by protocols such as those described by Needham and Schroeder;
the authentication server would have to be invoked every time a connection is
to be established between the personal machine and the data storage server.

The key distribution by the authentication server probably will be based
on access control lists. But, since the encryption keys are distributed to
the personal machines, the result is essentially a capability system. The
capabilities (keys) can be revoked only by reencrypting an object under a
different key, and modifying the access control 1list in the authentication
server. The implications of long term encryption of shareable data are not
fully understood yet; this is one area where more research is necessary.

Even if the data in the external server is stored in an encrypted form,
the local server still provides greater privacy:

only the owner can invoke the server, and
only the owner can destroy an object maintained by the server.

Since it may be difficult to protect the local storage devices physically
(that is, protect them from being "borrowed" by an unauthorized person), the
private local data may have to be encrypted too. Bowever, since only the
owner can ever perform any operation on such objects, the key distribution/

revocation problem and the write access problem do not arise here.

Client interface

An 1interesting problem is how to divide the responsibility for data
management betweeen the data storage system and its clients. The data storage
system is not a data base system. Its function is merely to provide reliable
storage and access to uninterpreted objects, vectors of bits. The main issue
concerning the interface is the responsibility for maintaining integrity of
typed objects. This problem has two aspects:

i. ensuring that updates of non-trivial data structures (structures that

consist of several "storage" objects) are atomic,



ii. ensuring that only the proper type manager will be given access to an
object retrieved from the data storage system.
The mechanisms for performing an update on several data objects as an atomic
operation ought to be built into the data storage system, but the decision as
to which objects are to be included in an atomic update must be made by the
client. Thus the interface must include mechanisms through which the clients
can specify such constraints.

The storage system has to interface with the enviromment where objects
are strongly typed. Some magic conversion from an abstract type to the storage
representation (and vice versa) is performed at the interface to the storage
system. It is not clear how much run-time support is needed in this kind of
distributed system to ensure that the objects retrieved by the storage system
are indeed handled by the right type manager. Some protection mechanisms would
have to be built into the personal machines. In particular, if the name used
by the storage system to retrieve an object never appears outside of the type
manager for that object, then the object can be retrieved only by that type
manager. It may be sufficient to impose this restriction through compile-time
type checking, or a mechanism such as the "object viewer" [LUNI 791 could be
used at run time. A more difficult problem 1s how to ensure that the object
retrieved by the storage system is of the correct type. This problem arises
especially when retrieving a foreign object from an external server. One
possibility is to seal objects by encrypting them under a key private to the
type manager. The cost/benefit of this approach must be first investigated.

The client must be able to specify the class of the new object presented
to (created by) the unified storage system, to change the class and to specify
who has access (and what kind of access) to shareable data. In additionm, it
may be desirable to be able to specify that an object is to be replicated by
the storage system for greater availability. With the exception of the
operations that set/change the data class, the client does not have to supply
the class; only the name of the data object should be required. For any
operation, the client should not have to be concerned with the actual physical
location of the object.

Finally, it is necessary to address the problem of naming. The servers
do not understand human-oriented names: all oﬁjects are named by unique
identifiers, which are strictly machine-oriented names. However, the client

interface to the storage system ought to accept higher level names and look up



the appropriate uid, possibly by calling on an external name look-up server.
(Alternatively, the name look-up server could be a client of the storage

system.)

Internals of the storage system

The main components of the proposed data storage system are illustrated
in Figure 1. The part contained in the personal computer has several levels.
At the lowest level is the implementation of the local server. The next level
contains all the necessary functions needed to find, update, recover, and
protect typeless storage objects. Finally, there 1s the "user veneer" where
typed objects are converted into typeless objects. Thus the inplementation of
the storage system interface is concentrated in the personal machine.

The external servers provide little more than stable storage. Their
functional interface is very simple: it provides only operations for creating
and deleting data objects, retrieving their values and updating (creating new
versions of) data objects. The object must be specified by its uid. However, a
novel storage organization and management will have to be developed to support
efficiently Reed’s model of objects.

One of the important research issues in this project is to explore the
problems of supporting modularly composable atomic operations using Reed’s
update semantics. Thus the storage system will incorporate pseudo-times and
possibilities, the mechanisms developed in Reed”s thesis [REED 78]. These
mechanisms are basic to the operation of the whole system; they have to be
built into the servers, and properly set up by the storage system interface.

The average object in the proposed system is going to be quite small.
Retrieving such objects from the external servers and protecting them
individually could be quite expensive. In a system where protection is based
almost entirely on encryption, support of each object as a completely
independently controllable entity requires each object to be encrypted under a
different key. The maintenance of such a large key data base and the
associated access control lists is one problem. The other problem is that,
unless the key for an external object is cached locally, the authentication
server must be involved. For efficiency, it is desirable to group objects that
are likely to be used together and that have the same access constraints.

Such a set can be then encached at the local server with one authentication



O

PERSONAL COMPUTER
TYPED

OBJECT-ORIENTED
WORLD

USER VENEER

- TYPELESS PART
DATA STORAGE OF DATA
SERVER STORAGE SYSTEM

STORAGE
DEVICE

AUTHENT ICATION
SERVER

FIGURE 1: DATA STORAGE SYSTEM AND RELATED SERVERS



- 10 -

step and one retrieval step. This is a natural way to handle private stable
data.

The system ought to be able to accomodate multiple external servers. As
mentioned above, the external servers may have different performance,
reliability and protection characteristics. Other reasons for supporting
multiple servers are the extensibility (in terms of capacity) of the storage
system and increased availability of stored data through replication on
different servers. Since we already will support several different classes of
data, experimenting with a system that utilizes the different characteristics
of the multiple external servers probably would not provide any additional
ingight. However, experimentation with replicated shared objects 1s an

interesting research project.

References

ISRA 78 Israel, J.E., Mitchell, J.G., Sturgis, H.E., "Separating Data from
Function 4in a Distributed File System," Proc. of Second

International Symposium on Operating Systems, IRIA, October 1978.

LAMP 79 Lampson, B.W., Sturgis, Y.E., "Crash Recovery in a Distributed Data
Storage System,"” XEROX Palo Alto Research Center, April 1979.

LUNI 79 Luniewski, A.W., "The Architecture of an Object Based Personal
Computer,"” PhD. Thesis, Dept. of Electrical Engineering and Computer
Science, M.1.T., December 1979.

PAXT 79 Paxton, W.H., "A Client-Based Transaction System to Maintain Data
Integrity,”"” Proc. of Seventh Symposium on Operating Systems

Principles, December 1979, pp. 18-23.

REED 78 Reed, D.P., "Naming and Synchronization 1in a Decentralized Computer
System,”" M.I.T. Laboratory for Computer Science Technical Report
No.205, September 1978.

SVOB 79 Svobodova, L., Liskov, B., Clark, D., "Distributed Computer Systems:

Stucture and Semantics,” M.I.T. Laboratory for Computer Science
Technical Report No.215, March 1979.



- 11 =

SWIN 79 Swinehurt, D., McDaniel, G., Boggs, D., "WFS: A Simple File System
for a Distributed FEnvironment," Proc. of Seventh Symposium on

Operating Systems Principles, December 1978, pp. 9-17.



-12 -

Summary of the design issues

The design of the storage system can be divided 1into several parts. In
addition to the design of the storage system proper, we have to consider two

supplementary servers, the name look-up server and the authentication server.
1. Interface to the storage system from the clients

igsues:
functions to be supported

conversion from typed to untyped world

2. Internal organization of the private (local) server in the personal

machines

issues:
encachement scheme for private objects
encachement scheme for shareable objects

relationship of the local data storage server to the
local virtual memory

storage management (storage used by the locally
maintained data objects vs cache)

3. Internal organization of the external data storage servers

issues:

implementation of stable storage (type of storage
devices to be used

mechanisms for synchronization and atomic update of
groups of objects

storage management

replicating objects on several servers

4. Interface to the external data storage servers

issues:

connections to the external servers from the personal
machines

grouping objects for encachement and easier key
management

control of object creation/deletion/update



- 13 -

object naming
object sizes

objects that contain both private and shareable
components

5. Interface to the authentication server

issues:
control of key distributions

the role of the authentication server in updating
shareable objects

the role of the authentication server in the
encachement protocols

6. Internal organization of the authentication server

issues:

maintenance and protection of the key data base

7. The name look-up server

issues:
interface to the data storage system

internal organization
relationship with the authentication server



