e

M.LT. LABORATORY FOR COMPUTER SCIENCE March 21, 1980
Computer Systems Research Division Request for Comments No. 183

The Authentication Server:
Progress and Plans

by

D. Daniels, J. Lucassen, W. Rubin, and 1. Greif

Abstract

This is a report on the progress since September, 1979 of the UROP project on the
design and implementation of an Authentication Server for a distributed system.
Included as well are our plans for the spring term and a request that potential users
begin to tell us what services they would like from such a server.

This note is an informal working paper of the M.LT. Laboratory for Computer Science, Computer
Systems Research Division. It should not be reproduced without the author’s permission and it
should not be referenced in other publications.

1. Introduction

The authentication server project has two goals. The first is to build a key distribution center
that can be used to support other distributed system components that are to be built here. In
particular, the data storage server [Svobodova, 1980] will store data in an encrypted form and will
therefore require such a server. Also, any secure conversation between processes in the system
might require simifar services. The main function of the authentication server will be to provide

for key distribution.

A second purpose of the project is to provide a source of experience with programming for a
distributed system. The currently available "extended” CLU [Herlihy, 1979] will serve as a language
for several experimental implementations. By reviewing our programming experiences regularly we
will begin to develop some insight into how such a language can support the implementation of

programs for a distributed environment.

2. Progress Report

We began meeting in September 1979, before any other projects had developed detailed
specifications of their authentication server requirements. We spent about two months reading
selections from the literature on protection and encryption, as well as learning "extended” CLU. At
that time we decided to implement the protocols for establishing a secure conversation as presented
in [Needham and Schroeder, 1978]. T_here are two versions of the protocols, the first for use with
conventional encryption and the second based on public key encryption. These protocols should
have some relationship to protocols required by local users, t;ut are'not particularly tailored to the

needs of other projects in the laboratory. Thus the main results of this exercise have been

initiation into the extended CLU programming environment, production of two simple servers that

can serve as foundations upon which to build, and identification of a variety of problems not
addressed in the Needham and Schroeder paper. The next phase of our work will be the
development of additional protocols that will extend the functionality of our server beyond that of

the server defined by Needham and Schroeder.

2.1 The Conventional Encryption Implementation

The conventional key authentication server performs three services: (I) it creates a
conversation key for a user who wants to communicate with another process; (2) it writes out a
signature for a user who wants to sign a message; and (3) it reads signatures to authenticate them.

All functions of the server are implemented using the protocols described in [Needham and

Schroeder, 1978].

The protocols are described using a simple notation. We will denote the process that initiates a
conversation by A, the process with which A communicates by B, a nonce identifier by I, the
conversation key by CK, the secret key of A by KA, and a charactéristic value by CS. An encrypted
message is enclosed in brackets with the key appearing as a superscript after the message. A

message that is not encrypted is enclosed in parentheses.

When a process wants a conversation key, it sends the message (A, B, I) to the authentication
server. The server replies with the message: {I, B, CK, {CK,. AJKBIKA The process A can easily
check the nonce identifier against the one sent in the request, thus verifying that this is an answer
to that request. Once the mescage is verified, A can send the encrypted block {CK, A}KB to B. No
one else can read the conversation key as it is transmitted in an encrypted form. When B receives
the message it begins a handshaking protocol with A, so that each can be satisfied as to the identity

of the other.

When a process wants to sign a message, it sends the authentication server the message
(A, {CS}KA), where QS is the characteristic value of the message to be signed. The server then
creates a sighature block: {A,.CS‘}KAS., where K AS is the secret key of the authentication server. If
a second process, B, needs to verify the signature, it sends this block along with its name, B, to the
sefver. The server will decrypt the block and then encrypt it with KB. Then B can read the

block and see if the message has the correct characteristic value.

In order to create and update the database of the server, we have implemented a program
that allows some authorized person to enter and delete users from the database and to change their

keys. This program currently has no security checks on its invocation.

2.2 The Public Key Implementation

The public key authentication server performs a very simplé task -- it gives a public key to
anyone who requests one. Under the protocols as described in [Needham and Schroeder, 1978], the
" information is sent out as pairs: {A, PKA}SKAS, where SKAS is the secret key of the
authentication server and PKA is the public key of A. Since all participants know the publicv key
of the authentication server, anyone can decrypt this message. The purpose of this encryption is to

allow the recipient of the message to check its authenticity.

Since the name-key pairs are always encrypted under SK AS, the encryption can be done when
the information is added to the server’s database. This will enhance the server's performance since
there will be no need to actually carry out any encryption at the time of the request. An additional

advantage is that the server does not need to know its own secret key during normal operation.

Since there is no secret information stored in the server’s data-base, the server need be
write-protected only. This simplifies the implementation and can thus add to one’s confidence in

the security of the server.

A working implementation of the server is available. Also provided are some programs for

interface to the server;

For those interested in sending CLU objects between virtual machines, there is the
‘channel’ cluster. It aids the user in setting up inter-process communication links,
maintains the keys needed for a particular conversation, and enforces the integrity checks
on transmitted data using encryption. In addition, opening a channel yields two integers
(one for each end). These integers can be used in the ensuing conversation to detect
and recover from message stream modification (e.g. using a scheme of the sort described
in [Kent, 1976)).

In order to create and update the <name-key>-pair database of the server, there is a
program which allows some authorized person to enter and delete users from the

database, to list them, and to change their keys. (The authorization is not checked in the
current version.)

2.3 Some Comments on the Programs

The implementors of the public key and conventional encryption versions of the
authentication server worked on their programs independently. The main organizational difference
between the two implementations is in the use of ports. In the public key implementation the
authentication server receives all messages on a single distinguished port.l Each client has one
distinguished port on which it receives two kinds of messages -- responses from the authentication
server and initial messages of conversations started by other clients. Each client creates one
non-distinguished port per handshaking conversation. The conversation ports receive several

kinds of messages, each of which is only acceptable at a certain stage of the conversation.

l. A distinguished port is one that is catalogued in the ECLU message server catalog.

The conventional encryption implementation uses one distinguisl)ed port in the server and
one distinguished port per client.‘ In addition, every message sent by a client contains a newly
created “reply” port on which the client expects to receive a response. Thus the first of the three
messages between users in the Needham-Schroeder'protocols is sent to a user's distinguished port,
but other messages go to newly create “reply” ports. Similarly, each response from the
- authentication server is received on a new port. This second organization assumes ports are cheap
and relies on the creation of many ports that are used one time only. The result is that exactly one
kind of message is acceptable on any given port. The distinguished ports are used only for

initiating contact. The client keeps track of the mapping between ports and conversation states.

The communication between the authentication server and its clients resembles a procedure
call in that each message received is immediately answered. Thus a programming language which
supports remote procedure calls might simplify programming the client-server interface. However,
the handshake between clients involves an exchange of messages that does not fit this pattern so

that a remote procedure call would not be particularly appropriate.

3. Proposed Extensions and Modifications

There are three kinds of future work that we are considering. First, there are still parts of the

current implementation of the Needham and Schroeder work that are incomplete. The encryption
procedures do not implement secure encryption algorithms. Also, Needham and Schroeder suggest
some modifications to tﬁeir protocols that ‘would facilitate caching of keys for reuse in future
cdnversations. The current implementations require that the authentication server be involved each

time a new conversation is started.

Second, there are issues that were outside the scope of the Needham and Schroeder paper that
we can tackle. These include protocols for proceeding with a conversation once a key has been

agreed upon and protocols for revoking a key once it has been compromised.

Third, we are interested in providing services that will be of use to people building other
programs. For example, if the data storage server provides storage for large numbers of small
objects, each under a separate key, then adequate performance may depend on its ability to get a

large number of keys from the authentication server in response to a single request.

4. What Do You Need?

We are currently being kept informed of the authentication needs of the data storage server as
those needs become apparent. We would like to hear as well from other potential users about how

they could benefit from the availability of an authentication server.

5. References

Herlihy, M. P, Progress Report on CLU Message Passing Implementation, DSG Note 50,
Qctober, 1979,

Kent, S. T. Encryption-Based Protection Protocols for Interactive User-Computer
Communication. MIT/LCS/TR-162, May, 1976, pp. 121.

Needham, R. M. and M. D. Schroeder, Using Encryption for Authentication in Large
Networks of Computer, CACM 21, 12, December, 1978, pp. 993-997.

Svobodova, L. "Design of a Distributed Data Storage System,” M.LT. Laboratory for
Computer Science. Computer Systems Group RFC 182, January, 1980.

