M.LT.LABORATORY FOR COMPUTER SCIENCE March 21, 1980
Computer Systems Research Division Request for Comments No. 184

Programs for Distributed Computing:
Designs of Calendars
by

Irene Greif

Abstract

This report on the calendar application focuses on the functionality of the system and includes a
section on a subproblem having to do with the distribution of the calendar data.

This note is an informal working paper of the M.L.T. Laboratory for Computer Science, Computer Systems
Rescarch Division. It should not be reproduced without the author’s permission and it should not be
referenced in other publications.



1. Introduction

We began our design of calendar systems with the intention of focussing on implementation issues,
particularly those of communication, sharing of data, and the use of forms as the standard interface among
modules. In [Greif, 1979] we outlined some possible design alternatives that were intended to provide a
variety of implementation projects from which we could gather information about these issues. Several such

calendar implementations are now underway.

During later design phascs we have become more interested in the functionality of the calendar and its
user interface. To some extent the use of forms as the communication medium shapes the human interface as
well as the process-to-process interface. Also, some aspects of the functionality, most notably the notion of
"tentative meeting” have arisen from analysis of the distributed implcmcntation.l Section two is a report on

the functionality of the calendars we arc building, Section three is about the distributed implementation.

2. The Functionality of the Calendar

There are two kinds of calendars that we have been designing -- personal calendars and public "resource

scheduling” calendars.
L]

2.1 The Personal Calendar

The personal calendar can be used for keeping track of appointments, meetings, holidays, ctc. The
calendar can be displayed in several ways showing either a summary of the week, a list of appointments on a

day, or a diagram of the day showing blocks of frce and reserved time. The main operations are "appt” to

1. Leslic Lamport inspired this fine of thought when he insisted on knowing what my calendar did, and
started to help me specify the meaning of a call for a meeting.



make an appointment, "cancel” to cancel one, and various display commands. A description of the

commands will be typed out in response to "2."

One can attempt to make an appointment at any time. If there is a conflict with another appointment,
the calendar reports this fact. If not, the appointment will be made. Appointments are recorded at a

particular time with a few keywords to indicate the purpose.

2.2 A Calendar for a Conference Room

The Conference Room Calendar is similar to the personal calendar in that time slots can be reserved
and cancelled. This program is meant to support the reserving of time in one of our conference rooms in the
laboratory. The room is generally used for semipars and may involve the coordination of several people and
resources. Since a scminar generally has a host who is responsible for the reservation, the host’s name is listed
in the calendar display as the keyword for the appointment. In addition, there is a form on file for each
appointment. The form contains information about the seminar such as the s'peaker’s name, the title of his
talk and whether there will be refrcshmeﬁts. These forms can be active, in which case they may trigger
communication with other calendars (such as the calendar for the person who sets up the coffee pot in time

for scheduted rc:freshments).1

1. Simple single process versions of both the personal calendar and the 512 calendar have been implemented.
The personal calendar can be run on XX by copying <grcif>pcal.cxe and <greif_xfile.pcal and then typing
peal at exec. For the 512 calendar, copy <greif>512.cxe and Cgreifd> xfile.512 and type 512. No guarantces are
made about the performance or consistency with the description in this paper. The programs will leave some
files named "your-name.cal.1", "512.cal.1", and "512.forms.1" in your directory.



2.3 Coordination Between Personal Calendars

A personal calendar can try to call a meeting. The desired length of the mecting, a st of possible times
and a list of participants must be specified in the request. The calendar system will try to find a time at which

the meeting can be held and will then notify all participants.

For mectings that are called very far in advance of the time at which they will be held, the meeting can
be considered to be tentatively scheduled. A scheduler will keep track of several possible times at which the
meeting can be held. A second meeting is considered to conflict only if scheduling it (and therefore removing
its time slot from the set of times tentatively reserved for the original meeting) would rcduce the set of
possible times to less than one. If the second meeting is scheduled, the set of available times for the first
mecting is simply reduced. Shortly before the date of the meeting a single time is chosen for the meeting.
This can occur either at a "commit” time specified in the call for the mecting or by an explicit request to
commit. A caller could specify that he wants a meeting the week of March 10th and that it should be
definitely scheduled by March 3rd. Thus the caller can be sure that the meeting will appear on his calendar
with sufficicnt advance notice for planning. If the meeting is committed to a single time too soon, it is quite
likely that some participant will have to cancel in order to mect a higher priority commitment that ariscs later.

This would require rescheduling, rather than the simple reduction in the set of tentative times.

2.4 Coordination Between Personal Calendars and Resource Calendars

In the laboratory now, when somcone needs the conference room, either that person or his secretary
calls the person in charge of the room and asks for a time. Such a request can be initiated by a person at his
personal calendar if, for example, as part of arranging a mecting one could request a room for the meeting.
The personal calendar and the resource calendar could then negotiate for an available time slot. We e)spect

that most appointments on the conference calendar will be made by other calendars so that the



person-in-charge nced not be involved, except perhaps as reviewer of the calendar’s decisions.

2.5 Making Requests - The User Interface

As mentioned above, in the case of seminars we keep a file of forms containing information which does
not nécessarily appear on the calendar display. For uniformity we implement all interactions with the
calendar in terms of forms so that even a reservation for the personal calendar is considered to be
accomplished by filling in a form -- a "request for reservation” form. The fields are date, start time, end time
and keywords. A cancellation form requires only a date and start time. Requests for displaying parts of the

calendar are made by filling in the date.

The user need not know what information is required for a particular request -- the form itself will
prompt him once he specifies the kind of request he wishes to make.l This is a kind of active form in which
the filling in of one ficld (the type of request field) triggers the asking of further questions - the form only
asks for the fields that contain information relevant to the particular request. Changes to entries can be made
by entering edit mode. In this mode the system asks which ficld is to be modified and for cach ficld, displays
the old contents of the ficld and accepts a new entry. Therc is currently a distinction made between ficlds that
can always be changed (&.g. title of a talk) and those which require rescheduling (e.g., start time). To change

the latter one must enter "reschedule” mode.

Sometimes filling in one form will trigger filling in an auxiliary form. This could arise, for example,
when calling a mecting that has a room requircment. The room requircment implies that the scminar request

form must be filled in and sent to the conference room calendar.

1. ‘The current implementation of peal does not prompt for all fields in "appt" requests.



-6-

Most request forms are disposed of as soon as the rcducsf 1s fulfilled. This is not true of the seminar
request forms, since that information may have to be referred to (and possibly even modified) later. These
forms arc kept on file according to date and time of the seminar. It should also be possible to file incomplete
forms that are not yct associated with a definite time. For ckample, if a request conflicts with scheduled
meetings, but an alternative time cannot be suggested immediately, the user might store the form and retrieve
it later, avoiding retyping all of the information in order to resubmit the request. A user interface wiﬁ more

sophisticated forms manipulation facilities is being designed by a bachelor’s thesis student [Wylen, 1980}

The next stage of design for a user interface will include consideration of the coordination among the
personal calendar and other personal resources such as lists ‘(‘)f things to do. Probably there should be a
uniform interface to all of the user’s resources, so that the calendar and the various other personal resources
can all be considered to be parts of a single system. In the context of an officc support system the user might
expect to enter the calendar system immediately upon login so that all of tl;csc resources might be available
directly. Alternatively, the calendar, or various other parts of the time management system might be
subsystems which the user enters only as desired. Urgent messages from any of them might be presented to
the user at login time. Deadlines and reminders from various lists might show up on the calendar, but details
would be available only if the user decided to enter his calendar system. Appointments made by the calendar
program itself might be flagged until seen and confirmed by the user. This is similar to the current
arrangement on the TOPS-20 wherc one gets messages about new mail in EXEC, but can only rcad the mail

by entering mm.



3. Calendars in a Distributed System

Facilities for coordinating a set of calendars are of use in cither a centralized or a distributed system. If
the system is to be distributed, its implementation will certainly differ from the implementation of a
centralized version. We are assuming that in order to coordinate with another calendar a request must be sent
to that calendar. That is, there is no central data base that contains information on all calendars and that can
be accessed directly by any calcndar.1 Thus from the point of view of anyone who needs information about

several people the data is stored in a distributed data base.

Operations other than calls for meetings may depend on data at more than one node. For example,
when there are tentative meetings (as described in section 2.3) then while a meeting is "uncommitted” the
status of certain time slots on the personal calendars of the participants may depend on the status of the
tentative meeting. Thus cven if the personal calendars store their data locally they may have to communicate
with the tentative meeting in order to find out whcther a particular time slot is free. This can cause noticeable
delays if a user is at the terminal trying to schedule an appointment in real time. It also raises a question as to
how to display the calendar -- should all tentative times for various meetings be shown or should the display

show a possiblc schedule based on information available locally?

Other questions arise:

- How do these data dependencies relate to the dependencies which arise in supporting modular atomic
transactions [Reed, 1979]? Are such dependencies at the application fevel likely to occur in many

applications? If so, how can we support their implementation in a programming language for distributed

applications?

1. This does not prectude storing all information on a central storage device such as a Distributed Data
Storage System [Svobodova, 1980]. Access to any process’ data, ¢.g. a calendar’s data, would still be under

that process’ control.



- Should the caller of the meeting act as the source of information about the tentative mecting? If the
tentative mectings are distributed in this way how will scheduling be done if one person is invited to several
meetings? Should a central scheduler be invoked to manage meetings? (This latter approach is being

explored by a UROP student.)

- Should chains of tentative meetings be schedulable? (E;g;."can I schedule meeting A conditionally
depending on the final timing of meeting B?) This may save the time of checking with the tentative meeting
about a particular time slot. But then how will the system help me in backing out of meetings when conflicts

are later confirmed?

4. Conclusion

This report on the progress in the calendar épplication has focused on the functionality as scen by the
end user. Most of the user interface functions have been implemented in a single user setting. Some siuple
communicating calendars have been built. "Tentative mectings” have not been implemented but initial

design efforts have already generated a number of additional design issues such as those mentioned in the last

section.

The recent focus on functionality and planned work on the interface may lead to a more concerted
effort to build a calendar service availablc in the laboratory in advance of a truly distributed environment.
To this end, suggested extensions to the functions of the calendar are welcome. The distributed version (or

versions) are being developed not as a service but as a source of research questions.

5. References

Gifford, D. K., "Weighted Voting for Replicated Data,” Proceedings of the Seventh Symposium on Operalmg
Systems Principles, Pacific Grove, California, December, 1979, pp. 150-162.

Greif, I., "Programs for Distributed Computing: An Interim Report of an Experiment,” M.LT. Laboratory



for Computer Science. Computer Systems Group RFC 180, December, 1979, pp. 1-13.

Reed, D. P, "Implementing Atomic Actions on Decentralized Data," Preprints for the Seventh Symposium on
Operating Systems Principles, Pacific Grove, California, December, 1979, pp. 66-74.

Svobodova, L., "Design of a Distributed Data Storage System,” M.LT. Laboratory for Computer Science.
Computer Systems Group RFC 182, January, 1980.

Wylen, E., "A Personal Calendar: The Human Computer Interface." Bachelor’s Thesis, Expected June,
1980. .





