M.LT. Laboratory for Computer Scicnce ‘ May 29, 1980‘
Computer Systems Rescarch Division Request for Comments No. 187

Debugging in a Distributed System

by Robert Schiffenbauver

The following is a Master's thesis proposal.

Brief Statement of the Problem:

Interprocess communication via message passing has become a central concept in distributed
computer systems. A software package is proposed to cnable user monitoring and debugging of
conversations between cxccuting processes at separate nodes. It is intended that such a package will
complement conventional subsystemns that merely permit debugging of the process cxccutions
themselves.

This note is an informal working paper of the M.LT. Laboratory for Computcr Science, Computer
Systems Rescarch Division. 1t should not be reproduced without the author’s permission, and it
should not be cited in other publications.

Debugging in a Distributed System 1

1. Introduction

The growth of distributed computing has created a new way of looking at programming systcms.
Rather than a collection of tasks running on a single CPU sharing the same rcal address space, a
particular job may now be implemented as a group of processes exccuting concurrently at remote
sites, maintaining cooperation through the use of message passing and acknowledgement.

Distributing the computation in this fashion complicates the task of monitoring and control of a
particular job. No longer does intcrprocess coordination consist of merely sctting semaphores via P
and V operations or leaving data in specified memory arcas by producer processes for later use by
consumer processes. Now processes must take a much more active role in coordinating themselves.
This leads to the creation of an cntirely new area for possible programming crrors, and, hence, a
new arca that must be monitored and debugged by the programmer. For complicated systems,
correct interprocess message communications may be more important for obtaining good results
than the correct exccution of any particular process. '

It scems appropriate, then, to develop new system tools which arc tailored to a distributed
environment by aiding ‘the programmer’s understanding and usage of message passing. In
particular, a program decbugger ought to include facilities for monitoring the communications
between cxecuting processes in the same way that conventional debuggers monitor the course of the
executions themselves. Such a system would allow the capability of switching back and forth
between the monitoring of the exccution of a particular process (or group of processes if the
debugger is sophisticated enough) and the monitoring of the intercommunications between scveral
processes.

Unfortunately, we know of no existing debuggers that permit both intraprocess and interprocess
monitoring. We hope to rectify that situation by the time this thesis is completed.

Debugging in a Distributed System 2

2. The Project

The debugger will be written in the Mesu language and will exist as a process, invokable at any
time by the user, running on a particular Alto personal computer. The communications to be
monitored arc those sent as messages (called PARC Universal Packets - or PUP's) over the
Fthernet, a coaxial cable connccting the various Alto's in the lLaboratory for Computer Science.
This is the only hardware equipment needed for this project. Since the Ethernet is currently up and
running, no problems arc forescen in this arca. As far as software cquipment goes, packet
generating processes arc needed to test the debugger. There is no lack of such processes currently
running on the Fthernes (file transfer protocols for example). Anything clse that is nceded will be
written in Alesa by the author.

A good point of departure for this discussion is the view that debuggers depend on threc main
concepts: dumping, tracing and breakpointing [1]. Dumping of core gives the user a view of the
system state at a parlicular point of exccution. ‘Tracing reveals to the user the particular secquence
of operations performed by the system during a particular interval of time. Breakpointing is the
mechanism whereby the user interrupts the exccution of his program in order to hand control over
to the debugger so that tracing and/or dumping can be accomplished.

It is believed that these three features are just as important for communications monitoring as they
are for cxecution monitoring and ought to be included in any distributed system message debugger.
In particular, a uscr ought to be able to trace the flow of messages through the system as processcs
execute; he ought to be able to examine at his leisure the status of incoming and outgoing
information at any node he chooses (for example, he ought to be able to determine what fraction of
a particular file has been received by node Y from node X at the current time); and l}c should be
able to sct breakpoints to suspend interprocess communications to allow traces and dumps to be

performed.

Tracing - The user ought to be able to specify exactly how global a view he desires for tracing. In
the ideal case, the cntire Fthernet would be available to the user at a glance. He could focus his
concentration on any particular nodes he likes simply by examining a particular part of the screen.
However, this flexibility may be ncither wise nor nccessary. It is probably unwisc because the Alto
screen is by no means large cnough to clearly display the entire Lthernet. Screen crowding is seen
as a constant adversary throughout this project. [t is probably unnecessary because (hopefully) few
jobs will nced to monitor the communications from all (or even most) nodes in the net. ‘Thus we
allow the user to specify what nodes he is directly interested in and place only those named on the

screen for monitoring,.

Furthermore, we allow the user, if he so desires, to specify the course of a message trace by
supplying him with the power to indicatc which packet (or group of packets) is to be sent next (in
other words, the user can decide what the next step in the trace will be). Obviously, this is a

Debugging in a Distributed System 3

capability that cannot cxist in conventional process exccution debuggers. Alternatively, the user can
clect to allow the system to decide the order of the trace. The system algorithm for determining the
"next step” (i.c. the next message to be passed) in a particular trace has yet to be worked out. A
time ordering scheme would need to be constructed. Perhaps somcthing based on Reed's pscudo-

temporal environments might prove uscful.

Dumping - The user ought to be able to determinc the progress of a particular conversation
between two or more nodes. He should have the power to cxamine in detail any PUP in the
system at any time. We belicve that the user will most often desire to sce the next PUP to be sent
to a particular node in order to determine, in a limited way, how much information that node has '
thus far reccived (e.g. how much of a file has been transferred at a particular point in time).
However, the user may cxamine any PUP he wishes.

We acknowledge that this is a roundabout way of determining the “state™ of interprocess
communications, and admit that it rcally is not the same concept as exemplified by memory dumps
in current debuggers. However, the alternative, which involves maintaining indicators at cach node
w0 reflect the communication state for that node at a particular point in time would appear to be
well beyond the scope of this thesis. Indced, it might make a good master’s thesis topic in itsclf.

Breakpointing - We intend to give the user the capability of stepping through his debugging at any
pacc he desires. A "single-step™ trace capabiligy will be made available, which would have the same
effect as physically sctting breakpoints after cach occurrence of a Send PUP command in any
process. "Slow-step™ traces will also be possible, with the user allowed to break in at any time to
make adjustments (e.g. altering packet contents, changing the order in which packets are sen,
originating new packets artificially, changing packet destinations, ctc.) or simply cxaminc packets.
Finally, the user may choose not to sct breakpoints and simply sit back and watch the
communication flow.

Debugging in a Distributed System 4

3. The Particulars

The goal is to make monitoring and dcbugging as casy as possible for the user. To this end we sce
two major subgoals. However, in all probability, and unless the implementation of one or the other
of these proves unexpectedly casy, only one of the subgoals will be met.

User Interface - We view the debugger as providing a clear and coherent picture of the
intercommunications process. As such, our first subgoal is to implement a powerful interface that
presents a graphic representation of what (we assume) is a natural conception of that process.
Specifically, we theorize that the interface ought to look not unlike an air-traffic controller’s screen,
with markings indicating both packets and Ethernet nodes. The debugger-user will cmploy the
mouse to point at specific screen areas and, in conjunction with this, issuc simple one or two
character commands. For cxample, the user may sclect a particular PUP on the screen (represented,
say, as a filled in rectangle) and then a particular node (a circle, say) and issuc a Send command by
hitting s, carriage return. ‘The cffect of this within the system will be to actually send the dcsignatch
PUP 10 the designated node and to make some adjustments in debugger controlled node clocks for
cach node involved in the transaction. This will be manifested on the screen by the rectangle
flowing (at some predetermined speed, perhaps signified by the user) from its source node circle to
its destination node circle. We hope that the commands will not be burdensome to the user, and
that the screen will be interesting to watch, sufficiently so that users will be willing to make use of
the system in the first place.

Above, we alluded to making some adjustments to node clocks. It is quite apparent that, at this
time, PUP's flow too swiftly through the system to allow 100% interception and processing by the
debugger package (for some commands such interception will be necessary). Thus this project
involves the creation and management by the debugger of virtual node clocks whose rates of flow
can be altered (by the debugger) at will. The ability to control time allows a PUP to be sent on its
way only when the debugger (or perhaps the uscr) secs fit,

One problem which we have considered and do not yet have a solution for is the nature of the
switching back and forth between the monitoring of process exccutions and the monitoring of the
communication lines. During a trace, do we switch to the "air-traffic” screen every time a PUP is
to be sent (this would lead to an inordinate amount of switching and uscr annoyance) or do we let
process exccution continue until a number of PUP's arc to be sent, switching only then to the
message screen so that a series of PUP deliverics are seen in a continuous manner (thereby giving
the user a Ffalse view of the sequence of instruction exccutions in the trace). 'This nceds more

thought.

Iligh Level PUP Representation - A probable user desire will be to examine in dctail the structure
of a particular PUP before it is sent through the net to its destination. Currently cxisting programs
(such as Ftherwarch), display packets in a fashion that leaves much to be desired. Itherwatch

Debugging in a Distributed System 5

simply prints out decimal values of particular packet bytes. We feel (as our sccond subgoal) that a
useful dcbugger ought to display packets at the level at which the user is thinking about his
programs, namcly, as constructs of the language being programmed in (perhaps Aesa or ECILU).
Single packets, or multiple packets configured upon the screen as the user dictates, ought to be
displayable. Such representations will doubtlessly make life much casier for human uscrs.

We cxpect that the user will interface to this capability by pointing at a particular PUP and typing
d carriage return (d for display). The PUP contents will be blown-up to cover some part of the
screen (or perhaps all of it). The user can examine the PUP contents at his Icisure and return to
the "air-traffic" screen whenever he desires.

As previously stated. in all probability only onc of the two subgoals will be attacked. 1f we manage
(o implement the "air-traffic™ screen, then we will simply allow PUP contents to be displayed in the
Ftherwateh fashion, and leave the user to fathom the bits. If. on the other hand, we obtain a good
high level PUP representation, then the "air-traffic” screen will be replaced by a simpler view.
Perhaps the screen can be divided into partitions, one for cach node. Al PUP's at a particular
node (waiting to be sent) will be shown in a high level representation.

Dcbugging in a Distributed System 6

4. Statistics Gathering

We recognize that a debugging package with all the capabilitics described might also provide the
basis for a powerful statistics gathering facility, Statistics gathering packages have been used
extensively in the past to monitor traffic flow over the Erhernet, so there is nothing new about this
concept. Such a package is currently absent from our system, however, and we hope to implement
a statistics gatherer in parallel with, and indeed drawing from, the debugging package. We sce this
as representing perhaps 25% to 35% of the thesis work.

Debugging in a Distributed System 7

5. Background

We are not aware of any work being done along the lines described here. Certainly, the literature
on debugging is not sparse, and [1] presents a good summary of past and current trends in the area.
[2] provides detailed documentation concerning the state of the current resident Alto (Mesa)
dcbugger. However, we believe that we are the first to attack the problems of interprocess
communication debugging in the way described.

Powerful user interfaces have been constructed, along the lines of presenting to the uscr a higher-
level, more global view of a complex system (see [1], [3], [4] and [5]). However, these studies did
not attack the particular area we have been discussing.

FFacilities for presenting information in terms of the language that the user is programming in is
discussed in [1] and [3]. As previously mentioned, this vught to prove uscful for displaying of PUP
contents for user examination. '

Virtual timing facilitics, and the ability to control system clocks to present virtual time environments
to applications programs arc not new concepts. They are discussed cxtensively in [6]. However, the
Virtual Machine Emulator presented there is oriented to the conventional single CPU, single
program concept. We hope to implement a more advanced version, which handles control over and
synchronization of multiple virtual timers at multiple nodes.

Nor, as mentioned, is there anything new about statistics gathering packages for measurcments of
interprocess communications over the Ethernet. Detailed discussions of these may be found in [7]
and [8].

Debugging in a Distributed System 8

6. Schedule of tasks

April - Decide what the detailed capabilitics of a debugger and a statistics gatherer should be.
Either complete, or finish majority of, main debugger module to intercept and display packets.

May - Deccide on which road to take - Do we want an "air-traffic” screen or high level
representation of PUP's? Begin programming one or the other.

June - Assessment - Is it possible to do both of the above tasks? If not, should be at lcast half-way
through the implementation of onc of them. Should have mest of statistics gatherer out of the way.

July - Begin writing thesis. Wrap up implementation and begin intensive debugging on typical
applications programs that usc the [thernel.

August - Put finishing touches on project. Finish writing thesis.

Dcbugging in a Distributed System ’ 9

References

[

(21

M)

[4]

5]

(6]

(1

(8]

Ol

(10]
1
(121

(13)

Monitoring System Bchavior in a Complex Computational Environment; Model; Xcrox
PARC; 1979.

Mesa Debugger Documentation; Xerox PARC; 1979.

Displaying Data Structures for Interactive Debugging; Myers; M.L'T. Master’s 'Thesis; To
Appear.

RIG. Rochester’s Intelligent Gateway: System Ovcerview: Ball, Feldman, Low, Rashid,
Rovner: University of Rochester Department of Computer Science; 1976.

VIMS: A Virtual Terminal Management System for R1G; Lantz, Rashid; University of
Rochester Department of Computer Science; 1979.

A Virtual Machine Emulator for Performance Evaluation: Canon,Fritz, Howard, Howell,
Mitoma, Rodriguez-Rosell; IBM Rescarch Laboratory.

-,

Performance of an Ethernet Local Network - A Preliminary Report; Shoch, Hupp; Xerox
PARC; 1980.

METRIC - A Kernel Instrumentation System for Distributed Environments; McDaniel;
Xerox PARC; 1977.

Ethernet: Distributed Packet Switching for Local Computer Networks; Metcalfe, Boggs;
Xerox PARC; 1976.

Mesa 1.anguage Manual Version 5.0; Mitchell, Maybury, Sweet; Xerox PARC; 1979.
PUP: An Internetwork Architecture; Boggs, Shoch, Taft, Metcalfe; Xerox PARC; 1979.
Mesa PUP Package Functional Spccification; Xerox PARC; 1979.

A Ficld Guide to Alto-land; levin; Xcrox PARC; 1979.

