e

M.LT. Laboratory for Computer Science Junc 9, 1980

Computer Systems Research Division Request for Comments No. 188

Récovery of a Repository in a Distributed Data Storage System

Gail C. Arens

‘This document is my Master’s thesis proposal.

Briel Statement of the Problem:

Repositories provide reliable data storage for the nodes participating in the Distributed Data Storage
System (DDSS) that is being built based upon Reed's object model. In order for DDSS as a whole
to be able to guarantee a high level of reliability it must require that its individual repositories
behave correctly at all times, even after a crash. ‘This thesis will define correct behavior and then
describe how a repository recovers its data . It will also describe how a repository’s processes and
communications interface are designed so that their state prior to a crash doesn’t have to be
recovered in order for the repository to resume normal activity.

‘I'his note is an informal working paper of the MLL'T. Laboratory for Computer Science, Computer
Systems Rescarch Division. 1t should not be reproduced without the author’s permissions, and it should
not be cited in other publications.

1. Introduction

As network communications become faster and cheaper it becomes more practical for a single
node in a distributed computing network to maintain only the resources that it can afford. It can
get all other resources that it may need through the network from other nodes that provide them.
Thus the network provides the benefit of cconomy of scale through sharing. Storage is one type of
resource that should be shared throughout the network. These nodes exist for the sole purpose of
providing high speed, high volume storage that has a high level of reliability. This gives the user
nodes the option of maintaining only a small amount of incxpensive, less reliable storage to scrve as
a cache for the long term storage residing in the external storage server nodes [Isra78]. These nodes
which are dedicated to the storage functions we call repositories. ‘Together. the collection of
repositorics in the network must provide a cohcrent storage system regardless of whether or not a
user’s data is stored entircly on one repository or distributed throughout a random number of them.

The distributed data storage system that this thesis is concerned with is called DDSS.

DDSS uses Reed's model for its storage objects and uscs a mechanism that he developed for
synchronizing all accesses to those objects [Reed78]. This mechanism allow DIDSS to guarantee a
high degree of reliability in maintaining the integrity of user data. In order for DDSS as a whole to
be able (o guarantee this reliability it must require that its individual repositorics meet up to certain
system standards at all times. A repository must always provide a uniform interface to the other
nodes of DDSS even after it crashes. “The purpose of this thesis is to describe how the components
of the repository are designed so that cven in the cevent of their failure the repository will always

meet DDSS’s requirements.

The components of the repository arc its storage, its communications interface, and its processcs.
The storage is the most important component of the repository. The processes and
communications cxist solely for the purposc of transmitting the data between the user and the
storage medium. Therefore the user data must always appcar consistent at the repository - DDSS
interface. When the repository fails it must be able to recover its components to a state in which
they will still meet DDSS standards. 'The storage mechanisms are designed so that the user data can
always be restored 1o a consistent state. The communications and most of the processes arc designed

so that they can simply be restarted with no memory of the state that they may have had when the

repository failed.

In my thesis I will first outline the requirements that the repository must meet when it recovers
from a crash and then I will show how its components meet those requirements. 1 will describe how
the repository recovers the user data in storage. Then I will have to describe how the processes are
designed and how the communications interface works in order to be able to justify throwing away

their state after a crash.
). DDSS

DDSS is supported on a local network of microprocessors. Some of these microprocessors
function as personal computers and support the applications that utilize DDSS. Others function as
servers that provide a particular resource to the entire network [Swin79]. A repository is a server. It
is a microprocessor that is connected to a configuration of storage devices. The applications don’t
directly communicate with the repository. They communicate their storage needs to a lower level
abstraction called a broker which resides in the personal computer. The broker decomposes these

nceds into requests that are comprehensible to the repositorics.

‘The structure of and access to user data is based on the mechanisms described in [Reed78]. |
will summarize these mechanisms with respect to DISS for those readers who are not familiar with
them. ‘The functional unit of data in storage is called an object. Every time an object is updated a
new version of that object is created. The collection of versions for a single object is called an
object history. DIDSS maintains the entire history of all its objects. Every version of an object is
valid from its time of creation to the time of the next version’s creation. There can only be one
version in an object history for any given time. In order to access an object an application must
specify a time and then it will be given the version that is valid at that time. ‘There are never any
holes left in an object history because when a new version is created at a specified time, the

previously current version’s time of validity is cxtended to fill up any vacant space.

In DDSS, time is a relative term and does not directly correspond to real time. 1t is used to
order the cvents occuring in DISS. There is a global clock mechanism that supplics the present

value of DDSS time to any application that request it. ‘The global clock is an ever increasing

counter that is incremented after cach time it hands out a timestamp. Therefore timestamps are
always unique and non-decreasing, yet correlated. Whenever an application wishes to create a new
version in an object history, i.c. update the object, it must specify a timestamp which it obtains from
the global clock. 'This timestamp designates the time at which the new version should be created. If
a version alrcady cxists for that time then the application can’t update the object at that time and
must try again at another time. This timestamping mechanism provides the basis for synchronizing

applications that run concurrently.

DDSS provides applications with the ability to perform a scries of updates as a single atomic
operation [Lamp79] [Lind79] [Reed78] [Svob79]. 'This means that the intermediate state of the
system (when only some but not all of the updates have been donc) should never be scen by a
process performing the operation. If there is a failure and not all of the updates can be done then
the system’s state should be backed up to the state it had before any of the updates were done.
Another implication of performing an operation atomically is that it should not be affected by any
other atomic operations that are being done in concurrently; that is, all other atomic operations
behave as if they precede or follow it

In DDSS, the atomic operations done at the user application level arc called atomic actions.
Every atomic action is given a globally unique timestamp and all updates within that transaction
create versions at that given time. If a atomic action is unable to update any of its objects then it is
aborted and must obtain a new timestamp and try the entire atomic action over again. This
mcchanism prevents applications from interfering with cach other and ecssentially scrializes any
atomic actions that involve concurrent accesses to the same objects. 1t also guarantees that if the
atomic action is aborted then none of the objects will be updated. 1t can guarantee this because it
only makes the updates tentatively until it knows whether or not the atomic action completed. A
tentative version in an object history is called a token. A record of these tokens is kept for cach
atomic action so that they can be deleted if the atomic action aborts. These records are called

commit records. Commit records arc stored in the repositorics.

DDSS does not care whether the objects updated by an atomic action arc entirely contained in
a single repository or distributed throughout a random number of them, 'The brokers manage the

atomic actions and make sure that the requests are dirccted to the proper repositorics. Once the

repositories reccive the requests, they know how to carry them out in synchronization with cach
other when handling requests for the same atomic action. They have the ability to communicate

with cach other if it is nccessary in order to coordinate their efforts.
3. Repository Requirements

In order for DDSS to guarantee a high level of reliability it requires that its repositorics always
conform to two specifications regardless of any failures. They must perform all requests atomically
and they must protect the integrity of the user data that they maintain in storage. Both of these
requirements arc closcly related because if the requests are not performed atomically then the data
integrity cannot be preserved. In the cvent of a failure the recovery process must mask the cffects

of partially completed requests and must repair any damaged data.

The repository communicates with the other nodes in DDSS by sending and receiving messages.
These messages contain cither requests for the repository or responses to requests that the repository
sent. The repository is a passive node in the network and only generates requests if they are

relevent to the fulfillment of requests directed to it

In order to fulfill the requests sent to it, a repository usually performs a series of tasks. In
order for DDSS to function properly these tasks must be done atomically; cither all or none of
them must be done. I the repository crashes in the middle of satisifying a request then it must
never let the requestor see its intermcdiate state. It must make this state consistent from the

requestor’s perspective before resuming its normal activities.

Since the local network supports limited sized packets, messages may be too large to be sent
within a single packet. For cfficiency rcasons, the repository begins to process the request contained
in a message before it receives all of the packets of the message. ‘T'herefore it may write the data
for a single object version into storage in bits and picces. I the repository crashes before recciving
the all of the data then it must cither delete the partially written version or finish writing the

remaining fragments out to the disk.

In the process of fulfilling a single request, modifications may bc made to more than one

object. These modifications must also be done atomically. 1f a repository crashes in the middle of
processing a request it must cither delete all modifications that have alrcady been made as a result

of the partial processing or make the remaining modifications necessary for the complete processing

of the request.

The repository protects the integrity of the actual data bits by keeping the data in stable storage
[LLamp79]. ‘This means that, from the uscrs’ perspectives, the data kept in stable storage will never
be fost or damaged. In actuality, if a crash occurs it can causc some of the data to be damaged but
there is enough redundancy and relevent information maintaincd in the stable storage that enables

the repository to recover it before the users access it.

A requestor can mnever be sure that its request was attended to unless it receives an
acknowledgement from the repository. Once it receives the acknowledgement, though, it has the
repository’s guarantee that the request was handled correctly and all of its data is in stable storage.
The repository must never acknowledge any request before it correctly completes all of the

nccessary tasks and puts the user data in its stable storage.
4. Data Recovery

'The repository has two types of data storage, volatile and stable. Physically, stable storage
consists of 2 scts of append only optical disks. Of course only the most current disk in cach sct is
kept on line. Each sct contains a complete copy of all the object histories stored in the repository.

All stable storage data is stored in the form of versions within object histories.

There are three categorics of data that must never be lost. 'The repository cxists for the sole
purpose of reliably storing user data, so of course uscr data must be kept in stable storage. Commit
records must never be lost so they too arc treated as objects and kept in stable storage. Finally,
the repository itsell keeps some of its own information that it may nced for recovery in stable

storage.

Volatile storage consists of a reusable magnctic disk. 1t serves two purposes. FFor one, it would

be silly to store short term information rcdundzmtly in stable storage since optical disks are write

once only and have slow access times. Sccondly, since optical disks are so slow the volatile disk
storage can serve as a cache for the data in stable storage that is frequently accessed. For example,
for cach object history, an aggregate of all data relevent to that object history as a whole is
mutintained in volatile storage. Then whenever a modification is made to an object history the
repository doesn’t have to scarch through the object’s versions to get this data. 'Fhis aggregate is
called an object header. Object headers are only hints because the correct functioning of the
repository is not dependent upon them [Verh77]. If a crash occurs and damages the object headers

they can be rcconstructed from stable storage.

After a crash, the data in storage must be recovered at a number of different levels. First of -all
if the bits are damaged then they must be restored. Sccond, the versions in stable storage should be
formed into coherent object historics. ‘Third, the repository must restore its volatile storage to the
most current consistent state that can be extracted from stable storage. Finally, the objects and

commit records must look consistent from the atomic actions’ perspectives.

Recovery is not as straight forward as it may seem. Complications arise duc to the fact that the
optical disks are write once. Versions in stable storage are supposedly ordered and have various
pointers to one another. Any time something has to be restored it has to be copied into a new
address and since pointers can’t be changed, the versions that point to it may also have to be
copied. But how do you know which versions point to the one which has just been copied? Also,
docs a version take on a new cnd time of validity if it is rewritten during the recovery process?
What other complications arise due to various unigue characteristics of the repository and how are

they handled?

Another factor that must be taken into consideration is performance. It is important to
minimize the down time of the repository since external nodes’ activitics may be dependent upon
the information stored in the repository. ‘Therefore the recovery process should take as little time as
possible. This will influence the design of the recovery process.

5. Communications Interface

Brokers and repositorics communicate their requests through messages. All requests that are

sent are acknowledged with a response from the recciving node. A response is the requestor’s
guarantee that its request was satisfied, (unless it contains an crror message). Each request -
response pair of message is given a unique id so that nodes can casily determine which request is

being acknowledged.

Messages are sent through the network in the form of packets. The low level processes that
send and receive these packets use the following protocol. The sending process can only send the
first packet of any message until it receives an acknowledgement from the receiving process. This
acknowledgement contains a number indicating how many more packets the sending node is
allowed to send. After sending this next number of packets, the sender must again wait to find out
how many packets the receiver will accept in the next sequence. The sender can never send more
packets of a message until the receiving node gives the go ahcad. This gives the receiving node
some control over the number of packets sent to it versus the amount of free space it has available

to buffer the packets.

When a repository crashes it can throw away all messages that it is in the middle of processing
as long as it docs not leave its long term data in an inconsistent statc and does not causc errors in
the requestors’ routines. ‘The stable and volatile storage rccovery process returns the data to a state
(hat is consistent from the requestors’ perspectives. Also, because the messages arc thrown away
and never acknowledged they appear to the requestors as lost messages. Provided that no cffects of
the partial processing of the disposed messages show through the repository interface, the continuity
of the requestors’ routines should not be destroyed since they are designed to tolerate lost messages.
‘They use time outs to decide when to give up on a transmitted message and cither retransmit it or
take alternative measures.

"There are two pathological situations that may arise and create problems. Iirst, a requestor can
nottell whether or not a repository has crashed or is overloaded and therefore responding very
sfowly. In cither case the requestor may retransmit after its time out period has cxpired. ‘The

repository must guarantee that it won't process the same request more than once.

Also, some requestors may not notice that a repository has crashed before that repository

resumes its activity. ‘They may still be sending packets that belong to a message that was thrown

away during recovery from the crash. In order for a repository to function properly and cfficiently it
must be able to distinguish between those packets and the packets that are part of new messages.
Otherwise it will waste some of its limited buffer space by holding these packets while awaiting the
arrival of the packets of the message that are missing. These packets may never be sent since they

were already sent prior to the crash (but were thrown away during recovery).

In my thesis 1 will explain how the combined use of the message id's and the packet protocol
takes both of the above situations into account even though all partially processed messages are

thrown away after the repository crashes.
6. Repository Processes

‘There are four types of processes that run concurrently within the repository. There is a single
master process that oversees all activities going on in the repository. 1t spawns oft afl of the other
processes and delegates certain responsibilities to cach of them. 'There is a single process that
interfaces directly with the network and participates in all low level network protocols. This process
is called the netdnver. There are a number of processes, called workers, that actually carry out the
requests that arc sent to the repository. When the master receives a request it hands it off to one of
the workers which will do whatever repository level tasks are necessary in order to satisfy the
request. Finally, there is at least one dacmon process which periodically modifics parts of the data

in storage.

In my thesis 1 will explain how these processes are designed so that if they can’t complete the
task that they are performing (because of a crash) they can be restarted rather than restored to the
state they were in before the crash. Any user data that they affected will be clcaned up by the
recovery mechanisms and any messages that they were handling will be treated as if they were never

received.

#

7. Related Work

There arc various other systems comparable to DDSS that have different underlying
mechanisms for providing a coherent and reliable distributed data storage system [Bern79] [Gray79]
[1.amp79] [Paxt79] [Swin79). At a glance they all Took very similar but in actuality they provide
varying levels of rcliability, have different models of user data and implement atomic actions

differently.

SDD-1 [Bern79] provides more reliability than DDSS by maintaining more than one copy of all
user data at more than onc node. WFS [Swin79] docsn’t provide the applications with the ability
to perform atomic actions but it docs guarantee the atomicity of its own operations. The system
described in [Paxt79] differs from DDSS in that it does not recover all of the data immediately after
restarting but instead, it recovers cach atomic action when the first access (after recovering from the

crash) is made to some of its affected data.

With regards to the synchronization of atomic actions, cach of the mechanisms used in these
systems arc different from the onc used in DDSS. SDD-I statically categorizes the atomic actions
as to their interference characteristics and provides different levels of synchronization for cach
category at run time. System R [Gray79] and the systems described in [1.amp79] and [Paxt79] all

use locks to prevent atomic actions from interfering,.

There are many other shades of differences which exist between these systems and DDSS and
also some similaritics, but they will not be discussed any further in this proposal. The systems all
have to provide different types of recovery mechanisms duc to their differences in goals, models
and implementations. The most unique feature of DDSS that is relevent to the repository’s
recovery scheme is the way it models user data. The object history structure must always be
restored after a repository fails. "T'he final implication is that my thesis will combine both new and

old ideas in order to provide a single coherent recovery procedure for repositorics within DISS.

8. Schedule of Tasks

April: Design DDSS-repository communications interfacc and rcpository processcs.

10

May-June: Write proposal; develop data recovery mechanisms; do most of the programming.

July-August: Finish up the programming; write thesis.

9. References

[Bern79]

[Gray79]

[Isra78]

[I.amp79]

[Lind79]

[Paxt79]

[Reed78]

Bernstein, P.A.; Shipman, D.W.; Rothnic, J.B., "Concurrency Control in SDD-1: A
Systemm for Distributed Databases; Part 1: Description,” Computer Corp. of
Amcrica, Report CCA-03-79, Cambridge, Ma., January, 1979.

Gray, J., ct al., "The Recovery Manager of a Data Management System.” IBM
Rescarch L.aboratory, Research Report RJ2623 (33801), San Jose, Ca., August, 1979,

Israel, J.E.; Mitchell, J.G. and Sturgis, H.E., "Scparating Data from Function in a
Distributed File System,” Proceedings of the Second International Symposium on
Operating Systems, IRIA, October, 1978.

Lampson, B. and Sturgis, H., "Crash Recovery in a Distributed Data Storage
System,” Xecrox Palo Alto Reascarch Center, Ca. April, 1979. To appear in CACM.

Lindsay, B.G., ct. al., "Notes on Distributed Databases,” IBM Rescarch Laboratory,
Rescarch Report RI2571 (33471), San Jose, Ca., July, 1979.

Paxton, W.H., "A Clicnt-Based 'T'ransaction System to Maintain Data Integrity,”
Proceedings of the Seventh Symposium on Operating Systems Principles, December,
1979, pp. 18-23.

Reed, D.P., "Naming and Synchronization in a Decentralized Computer System,”
M.LT. Laboratory for Computer Scicnce Technical Report TR-205, Scptember,
1978. (Also Ph.D. thesis, Department of Electrical Iingincering and Computer
Science, M.LT., Scptember, 1978.)

[Svob79]

[SwinT9]

[Verh77]

11

Svobodova, 1... "Reliability Issucs in Distributed Information Processing Systems,”
Proceedings of the Ninth 1EE Fault Tolerant Computing Symposium, June, 1979, pp.
9-16.

Swinchart, 1J.; 'Mcl)'anicl, G 'Boggs, D., "WFS: A Simple Shared File System for a
Distributed Environment,” Proceedings of the Seventh Symposium on Operaling
Systems Principles. December, 1979, pp. 9-17.

Verhofstad, J., "Recovery and Crash Resistance in a Filing System,”" Proceedings of
the ACM-SIGMOD Conference on Management of Data, August, 1977, pp. 158-167.

