M.LT. Laboratory for Computer Science August 4,1980

Computer Systems Research Division Request for Comments No. 191

High Level Maintenance Tools for Local Networks

by
Craig R. Leckband

Abstract

This paper addresses local network maintenance from a systematic viewpoint.
Previous attempts at providing network maintenance tools have lacked focus and
scope. These efforts have been too low level. This paper introduces a design of a
network maintenance center. There would be a center responsible for each
subnetwork. There are two logical components to this center. There is a component
consisting of data collection and status request tools. The second component is a high
level interface to the user that interprets the mass of low level data that is collected.

This note is an informal working paper of the M.LT. Laboratory for Computer
Science, Computer Systems Research Division. 1t should not be reproduced without
the author’s permission, and it should not be cited in other publications.

1. Overview

Isolated tools have been developed to aid in maintaining local networks.
Because each of these tools was developed in an ad hoc manner, they offer a
potpourri of services. The existing tools suffer two major drawbacks. The
maintenance tools offer low level assistance. Moreover, they do not offer a consistent,
unified approach to network maintenance.

What I am doing to alleviate this situation is to devise network maintenance
tools in a systematic top-down manner. The problem has been broken down into

three separate issues:

What high level commands should be provided in the set of
maintenance tools?

What existing tools are useful to this end, what tools are
necessary to fill in the holes, and how are they linked into a
unified tool? :

How is the necessary information obtained (what changes in
protocol are necessary)?

2. Approach

The set of network maintenance tools would appear to be one tool to the
user. These user visible tools would be the network maintenance center(NMC). The
reason for having only one set of maintenance tools visible to the user is to promote
ease of use by providing a uniform user interface. Furthermore, this scheme affords
the user a high level language for network maintenance. The NMC would integrate
several support tools together. In this manner the NMC would be able to sieve
through the information provided by these support tools in order to respond to high
level requests made by the user.

The NMC, then, consists of two logical components. The front-end
provides the user interface to the NMC by offering the user a high level command
language and interpreting the low-level information provided by the maintenance
support tools. The back-end consists of the set of support tools that collect
information from the network.

The NMC is local in nature. There would be a NMC for each subnet in the
network. Fach NMC would be responsible for its own subnet, but would try to
answer inquiries about other subnets. Some inquiries would require information
gotten from other subnets in the system. For example, the question "'Why can’t A talk
to B? would require non-local information if A and/or B are not local to the NMC
where the question was raised. Also, it may be useful to generalize the set of user
inquiries so that a user could find out status information from non-local subnets. The
manner in which non-local information would be obtained is to have the local NMC
connect itself to the NMC to be queried via a high-level end-to-end protocol (such as
TCP) and have the local NMC question the other by using the user command
language. The user has the option of connecting directly to the foreign NMC and
obtaining information about a non-local subnet in that manner.

The NMC'’s might be arranged hierarchically. This would help insure that
some central body would coordinate repairs. One could imagine that a NMC would
be required to report to a central authority (or even a "regional” authority) when it
detects a failure. Presumably the authority would be responsible for taking corrective
action.

2.1 Front-End

The most important function of the front-end is to process and respond to
user queries. The front-end includes a parser for the command language and a set of
action routines. There is an action routine that corresponds to each input command.
An action routine is responsible for collecting and digesting the information necessary
to respond to a user query. This information is gained by querying appropriate
databases administered by one or more back-end tools and by obtaining information
from the network directly by commanding an appropriate back-end tool to do so.

It may be useful to have the front-end continuously trouble-shooting the
local subnet in addition to processing user queries. I[n this manner the NMC could
serve as an alarm system for the local subnet. The front-end would scan incoming
status information and watch for patterns of network behavior that indicate trouble.
Examples of such patterns would be frequent gateway restarts, frequent loss of token
(LCSNET), retransmission of many packets, or network saturation. Actions taken in
response to finding a network problem would vary according to the severity of the
problem. The weakest response would be to have the NMC report the problem in a
trouble log. A serious network problem might require the NMC to report the
problem directly to one or more of the local subnet maintainers.

The syntax of the command language has not yet been determined. The
syntactic complexity of the command language will be kept to a minimum while
providing a robust interface to the user. A more important concern is what types of
questions will be supported in this command language. The following is not intended
to be an inclusive list:

Why can’t host A talk to host B?

Why is the network so slow?

When was the last time the network failed (lost the téken)?
When was the last time that each (local) gateway was rebooted?
Are there any discrepancies between the connectivity of the

network and what each (local) gateway perceives as the
network connectivity?

Are there any discrepancies in the aggregate number of packets
sent, received, undeliverable, and refused?

What is the most active link?

L

What is the most trouble-some gateway?
What hosts (links) are down?

What is the recent history of hosts that have failed and their
respective downtimes?

What is the recent history of gateway failures?
What is the recent history of LNI failures?

What is the status of other subnets? gateways?

In addition to the above queries, the NMC may allow maintenance
personnel to initiate some actions. Examples might be downloading diagnostics onto
gateways. It may also be desirable to be able to remotely restart any of the gateways.

2.2 Back-End

The back-end consists primarily of a set of data collection tools. These tools
may be developed separately and in an ad hoc manner. Back-end tools may be
integrated into or deleted from the NMC relatively easily. Additions or deletions can
be handled largely by changing the appropriate action routines in the front-end to
reflect the change. Of course, the integration of new tools would be aided by
prohibiting free form develonment of new tools. There should be a tool interface
standard that all new tools adhere to.

There are two arguments for constructing the back-end out of autonomous
tools. This modular structure allows the NMC to gracefully evolve as time passes.
The functions of an individual tool need not be pre-defined. The second argument
for this structure is that existing network maintenance and monitoring tools could be
incorporated into the NMC.

The set of back-end tools need not be constrained to run on the same host.
It may be natural for a tool such as a network monitor to run on a separate host from
an event logger. Political forces may dictate the hosts that various tools would run on.

3. Protocol

Two levels of protocol are necessary to support the NMC. The primary
protocol layer will be provided by a Fault Isolation Protocol(FIP). The basis for the
FIP is the Gateway Monitoring Protocol developed for the ARPA Catenet. This
protocol would be layered on top of the Internet protocol. The fault isolation
protocol is defined in the following section.

Requests that can not be handled by the FIP would be provided for by
embellishing the Internet protocol. A Trace option will be added to the Internet
protocol. Normally, Internet options may be ignored. Trace is not optional. Trace
options must be processed in order that any tool that uses them will function
properly. Immediately, this means that all hosts and gateways at M.LT. will be
required to process Trace options. A Trace would require each network node (host or
gateway) that sees this request to notify the specified NMC that it had received this
trace packet. This request facilitates the location of faulty links (or gateways).

The Internet headers for any FIP packets would be required to have a
special protocol number in the protocol field. The protocol number that should be
used is 68. This number is tentative until a permanent assignment is obtained from
Jon Postel.

Neither the Fault [solation Protocol nor the Internet Protocol guarantees
that all packets will be transmitted reliably. It is desirable that neither protocol
requires packet acknowledgements. The lack of packet acknowledgements allows
tools like the NMC to be more transparent. Absence of the NMC(s) would still allow
the networks to operate properly. As as result of this, the NMC will have to recover
from occasional packet lossage.

3.1 The Fault Isolation Protocol

The Arpanet Gateway Monitoring Protocol was originally designed for the
Arpa Catenet. The Catenet is a system of connected networks. The FIP will be used
to support the NMC in a similar environment. The environment here is the set of
connected networks at M.L.T. This environment differs from the Catenet in several
ways. The most significant of these is that there is greater control in effecting changes
in the constituent parts of the networks. This level of control simplifies the protocol
necessary to support network fault isolation tools such as the NMC.

There will be no negotiation mechanism in the fault isolation protocol.
Gateways and hosts in the M.LT. environment will be required to implement the
Fault Isolation Protocol.

There will be two classes of packets, requests and responses. Requests are
queries to gateways/hosts for specific information. Responses are sent by
gateways/hosts in response to a request by the NMC. Responses are also used to
send periodic status information to the NMC.

Requests for periodic information are also unnecessary. Periodic
information will be automatically sent by each gateway to their local NMC. The
NMC is then free to take note of only the information that it is interested in. Since
the request class is restricted to one-time requests, there is no provision for the
number of times nor the interval between responses.

Bits within fields are numbered from left to right, with the MSB being the
leftmost bit. The format of the header for the FIP is shown in Figure 1. The
descriptions of the fields appear below:

C: 1Bit
0 - Request
1- Response

TYPE: 4 Bits
0 - Reserved
1 - Gateway/Host Status
2 - Trace
Gateway/Host Status indicates that the packet is a request or

Fig. 1. FIP Header Format

~t—t—F-t—t-t-t-d-t-t bttt +=+~-+
| ADDRESS |
B e h ik b ik ek ks St R T LR T S B R R P T R TR T T
| STATUS |
$ot—t-t—t-t-t-d-tototodotododotodmd bbbt b bbbt ==t =F—+

response for status information of a particular gateway or host.
The recipient of a request class packet of type Trace is to send
an Internet Trace packet to the destination indicated in the
ADDRESS field of the request packet. A response class packet
of type Trace is to be used by every host or gateway that sees
an Internet Trace packet(including the host that originated the
Internet Trace packet).

" RSD: 4 Bits
This field is reserved for future use.

COUNT: 8 Bits
The COUNT field is used exclusively in Trace Response
packets. It is copied from the COUNT field an Internet Trace
packet. COUNT indicates the number of hops an Internet
Trace packet had traveled from the host that originated the
Trace. Itis used to order the Trace Response packets.

ID: 16 Bits -
The ID field is used in packet of all classes and all types. Itis
used to coordinate responses with requests. Responses that
have no corresponding request have an ID of zero.

ADDRESS: 32 Bits
The ADDRESS field is used for packets of type Trace to store
an Internet address. In a Trace Request packet, the
ADDRESS field would hold the destination address that the
Internet Trace packet would be sent. The ADDRESS field in a
Trace Response packet would be interpreted as holding the
Internet address of the gateway or host that sent the Trace
Response. Gateway/Host type packets would have zero in the
address field.

STATUS: Variable
The STATUS field carries network monitoring information in
a Gateway/Host Response packet. All other types and classes
of packets would have a zero length STATUS field. The
STATUS field options are shown in Figure 2. The format of a
STATUS option is shown in Figure 3. The Length field in a

-10 -

STATUS option is in octets.

3.2 Internet Options

One option, the Trace, will be added to the Internet protocol. The format of
this option is very simple. This option is four octets in length. This option ccnsists of
three fields. The first field is the type octet. There are three subfields to the type
field. The option class will be 2. The option number for the Trace is tentatively
assigned to be 6. The second field is the length octet. The third field is the ID. The
ID is to be used for coordinating the Trace responses. This is summarized in Figure
4:

Fig. 2. Status Options

Description
End of Status Field

Gateway/Host Status
Connectivity Matrix
Routing Tables
Queue Length
Traffic Statistics

oy
N wWNhF-O
(1]

Fig. 3. Status Option Format

01234567890123456 e n-1
s T S e o b T PR PR P S T e
| TYPE | LENGTH | DATA |

T et St S e St it i st et S TR B S R R S e

Fig. 4. Trace Option

+—

0j1 0/00110j000000T11]
B T o o S S e ks ol kot T T

-11-

4. Implementation

A subset of the design presented above will be implemented at LCS using
the LCS-NET and the Ethernet. Parts of the NMC that are likely to be built are the
front-end and one or more back-end tools.

4.1 Back-End Tools

This section lists several of the more obvious back-end tools that would be
useful in the NMC. Some of them are currently under development.

Microprocessor network monitor- Cliff Ludwig is currently working on a Z30
based monitor. It is responsible for keeping an up to date version of what hosts are
up on the ring. It would be able to detect.is too long and switch out the offending
node. It also would be used to switch out LNIs that are faulty, allowing the ring to
continue operation. In short, the network monitor is primarily concerned with
keeping the ring in operation. The monitor has the power to take out all of the nodes
in the network by activating a relay at each node to bypass the node. It would be able
to locate faulty nodes by taking out all of the nodes and reconnecting them one by
one as long as network continuity is sustained. It would not reconnect any node that
would disrupt network continuity.

Auto Restart- This tool is also under development. Auto restart would be
provided for gateways and terminal interface units (TIUs). The robustness hardware
of the processors of the gateways or TIUs would detect when the processor had failed,
and would request that the processor be downloaded from one of the other hosts and
restarted. Larry Allen is currently developing this.

Network event logger- There would be an event logges for each subnetwork.
The monitor for a ring may seem a likely place for the event logger to reside. For the
moment, this is infeasible because the event logger requires secondary storage which
is not available on the monitor. It may not be wise to have the event logger reside on
the monitor. The Z80 may not be able to collect the required data quickly enough.
Also, there may be a valid argument that the monitor is not appropriate because it
would complicate the monitor considerably. The monitor has a lot of power over the
operation of the ring. Unnecessarily complicating the monitor may cause
introduction of more software errors that have the potential of crashing the network.

-12-

The types of events that would be logged might include the total number of
packets sent over the net during a time period or the number of refused or
undeliverable packets sent for each destination host. The event logger would also
collect information from the monitor (if there is one) about the LNI’s that currently
are functioning. The event logger might ask for this information periodically, have
the monitor send the information periodically, or have the monitor update the event
logger each time the connectivity of the net changes. The event logger would also
keep an up to date list of each of the hosts that are operational on the network. It
would collect this information by periodically broadcasting a message to each host,
asking that each host identify itself. The logger would be notified when the token is
restarted. Hosts that are unable to deliver a message to a destination may inform the
local event logger that it tried 3 times to deliver a message to some destination and
failed. Finally, the event logger would make an entry each time a gateway or TIU
had restarted. The gateway or TIU that restarted would inform the event logger as
part of the restart process. Each event logged by the event logger would be
timestamped as it was collected.

The event logger would not digest any of the information that it collects.
The event logger would have to process the information in real-time which would be
difficult if not impossible to achieve. By deferring the processing of this information,
it allows a degree of robustness to the system. That is, by providing an appropriate
program, specific information could be obtained and put into the most useful format.
Many such programs could exist for different applications.

.13 -

Bibliography
[1] Mcdaniel G., METRIC: a kernel instrumentation system for
distributed environments, Symposium on Operating Systems

Principles (Nov. 1977), pp. 93-99.

[2] Page, D.F., ARPA Catenet Monitoring and Control, IEN
105, 1979.

[3] Page, D.F., Gateway Monitoring Protocol, IEN 131, 1980.

[4] Page, D.F., The CMCC Terminal Process, lEN 132, 1980.
[5] Postel, J., DOD Standard Internet Protocol, IEN 128, 1980.
[6] Postel, I., Assigned Numbers, IEN127, 1980.

[7] Saltzer, J.H., Environment Considerations for Campus-Wide
Netwworks, M.I.T. Laboratory for Computer Science memo,
1980.

[8] Saltzer, J.H., Source Routing for Campus-Wide Internet
Transport, M.I.T. Laboratory for Computer Science memo,

1980.

[9] Vieraitis, R.V., A Performance Monitor for a Local Area
Network, Bachelor’s Thesis, M.I.T., 1980.

