M.LT. LABORATORY FOR COMPUTER SCIENCE June 25, 1980
Computer Systems Research Division Request for Comments No. 192

SWALLOW: A DISTRIBUTED DATA STORAGE SYSTEM FOR A LOCAL NETWORK

David Reed
Liba Svobodova

This paper has been submitted to the International Workshop on I.ocal Networks sponsorcd by the
IBM Zurich Rescarch Laboratory in August 1980.

‘Ihis note is an informal working paper of the M.L'T. Laboratory for Computer Scicnce, Computer
Systems Rescarch Division. 1t should not be reproduced without the author’s permission, and it

should not be cited in other publications.

SWALLOW: A DISTRIBUTED DATA STORAGE SYSTEM
FOR A LOCAL NETWORK

David Reed

I.iba Svobodova

M.LT. Laboratory for Computer Science
545 'Fechnology Square
Cambridge, Massachusetts 02139

ABSTRACT

SWALLOW is an experimental project that will test feasibility of several advanced ideas on design
of object-oriented distributed systems. Its purpose is to provide a reliable, secure and cfficient
storage in a distributed environment consisting of many personal machines and one or more shared
repositorics. SWALLOW implements a uniform interface to all objects accessible from a personal
computer: these objects can be stored cither on the local storage device or in onc of the repositories.
The repositorics provide stable, reliable, long-term storage. The access control to objects in the
repositories is based on encrypting the data; encryption is used to prevent both unauthorized
release of information and unauthorized modification. SWALLOW can handle cfficiently both very
small and very large objects and it provides mechanisms for updating of a group of objects at one

or more physical nodes in a single atomic action.

'I'his rescarch was supported by the Advanced Rescarch Projects Agency of the Department of
Defense and was monitored by the Office of Naval Rescarch under Contract No. N00014-75-C-
0661.

1. Introduction

SWAILLOW is an cxperimental distributed data storage system being developed at the Computer
Systems Rescarch Group of the Laboratory for Computer Science at M.L'T. The purpose of this
projeet is to test scveral advanced idecas on design of reliable secure object-oriented distributed
systems. The project has emerged from a broader rescarch on computer networks [CLAR 79] and

distributed processing [SVOB 79] conducted by this rescarch group over the past several years.

SWALILOW is intended for a distributed environment that consists of a network of cooperating but
highly autonomous computers. The term autonomy characterizes the ability of the individual
network nodes to operate independently when disconnected from the network, but also the ability
to administer their own resources: the allocation of the local hardware resources, and most

importantly, thc processing and release of the local information.

SWALILOW can be viewed as a sct of standard protocols that cooperating computers may use to
manage their data. 1t is not intended to be used directly by human users: it defines a functional
interface for other programs. If SWALLOW is to be successful in the stated environment, this
interface must provide a natural support for a broad class of application programs. In particular,
SWALLOW provides:

Uniform interface - the recad and write operations defined for the objects managed by
SWALLOW make the location of data stored in the system transparent. Howcver, the
owners of data arc allowed to control the location of data cither directly, by specifying
where the data are to reside, or indirectly, by specifying the desired propertics of the stored

data, in particular, stability and sccurity.

Reliability - SWALLOW provides storage for data objects that is extremecly stable. In
addition, only thosc nodces that hold data needed by a computation nced be available to run

that computation, so availability is enhanced.

Atomic actions - SWALLOW provides synchronization and recovery mcchanisms so that
any arbitrary sct of opcrations on an arbitrary sct of objects may be combined into an
atomic action, Network failures and node crashes do not compromise proper

synchronization and recovery of these atomic actions.

Protection - SWALILOW provides encryption-based protection mechanisms. These
mechanisms arc decentralized, so that there is no critical central authority that can

compromisc the sccurity of cvery user of SWALLOW.

Support for small objects - SWALLOW can support a very large number of objects whose
average size is relatively small. These objects are not only stored and retricved as separate
entities, but different access restrictions can be specified and enforced for each individual

object.

SWALLOW supports only untyped objects. An object is represented as a history of the states
assumed by the object since its creation, following the model developed by Reed [REED 78, REED
79]. ‘I'his model provides the basis for synchronization and recovery in the implementation of
atomic actions. 'The very high reliability of SWALLOW is accomplished through a combination of

an extensive use of stable storage and carcful internode protocols.

1.1 Related work

The projects most closely related to SWALLOW are the WES {SWIN 79, PAXT 79] and Juniper
[LAMP 79, ISRA 78]. Both of these projects implement a file server for a similar environment as
postulated in our project. The WES provides to its clients a page-level access to files stored on a
remote server. Only operations on single pages arc guarantced to be atomic. However, a
transaction system that runs in a clicnt computer was developed as an extention of WES [PAXT 79].
This system supports atomic actions that involve not just multiple pages but multiple files. 'The
Juniper falls in between: it is a distributed server that implements multi-file atomic actions without

participation of the clicnts,

SWALLOW is closer to Juniper, but it goes substantially beyond the facilitics of any of these

servers in the following:

-it provides a uniform interface to remote data (maintained by shared servers) and local

data (maintained by the client computers)
-it supports objects of arbitrary sizes, with provisions for large numbers of small objects

-it associates protection mechanisms with individual objects and with atomic actions on

collections of objects

-it is integrated with other kinds of servers, namely, the name lookup and authentication

SCIrvcers.

Our project draws also on other previous and current work in the arcas of management of
distributed databascs, file systems, crash recovery, protection, and management of small objects.

However, while’ most work that is concerned with reliable update of distributed databases

concentrates on perfecting the profocols for concurrency control and commitment synchronization,
our intent is to design and implement the actual mechanisms that arc necessary to make any of
these protocols feasible. The main consideration is the robustness of these mechanisms; we use
techniques similar to those employed in Juniper [ILAMS 79A] and the transaction manager for the
System R [GRAY 79]. Our protection scheme assumes an existence of an authentication and key
distribution server; protocols for secure key distribution were developed by Needham and Schroeder

[NEED 78]).
2. Object model

SWALLOW allows the construction of atomic actions. Each atomic action is a (possibly distributed)
computation that can rcad or write an arbitrary set of objeccts in the system. By dcfinition, an
atomic action, though composed of individual steps that rcad and modify objects, cannot be
decomposed from the point of view of computations outside the atomic action. This view implies

two properties:

Atomicity in the face of failure—an atomic action cither exccutes in its entirety without
failure or clse it has no effect. No updates are exposed for reading until the atomic action

is guarantced to complete.

Atomicity in the face of concurrency—the accesses to objects that are part of the same
atomic action cither all precede or all follow any other access not part of the atomic action.
This implics that the effect of applying a sct of atomic actions to the state of the system is

cquivalent to some serial schedule of thosc actions.

SWALILOW provides for atomic actions by using the object model developed by Reed [REED 78,
REED 79]. Here we recapitulate the important features of that model, though our trcatment is
necessarily sketchy. In Reed’s model, cach object is represented as a sequence of versions, called a
version history. Each write to an object produces a distinct version; the versions themselves are
immutable once created. Reading an object is done by sclecting the appropriate version, according

to the mechanism discussed below.

All accesses to objects in the system are totally ordered by assigning cach access a number called its
pseudo-time. Fach atomic action is assigned at its start a range of pscudo-times that docs not
overlap with the range assigned to any other atomic action. Successive accesses in an atomic action

are assigned pscudo-times from that range in increasing order.

The versions of cach object are ordered by the pscudo-times of the write requests that created them,

Reading an object at pscudo-time p selects the version of maximal creation pseudo-time g, such that
g < p. Writc and read requests belonging to concurrent atomic actions are exccuted in the (real
time) order of arrival at the object. Write requests that arrive at an object out of pscudo-time order
may be refused. ‘This happens if a write request with pscudo-time p) arrives at an object that has a
version created at pseudo-time py < py, which version has been returned as the result of a read at
pscudo-time p3 > py. If a write request is refused, the atomic action issuing the write request is
aborted, unless the write is not required for correct completion of the atomic action. Consequently,
the effect of a set of atomic actions that correctly complete is cquivalent to a scrial schedule of the

atomic actions according to their pscudo-times.

The ability to abort a partially completed atomic action that encounters a failure (a synchroniztion
failure like the refused write, a network or node failure detetected by a timeout, or a protection
violation) is provided by grouping ‘the versions created by an atomic action into a set called a
possibility. A possibility is a group of versions that are not yet available to atomic actions outside
the one that created them. When an atomic action completes successfully, it commits its possibility,
making all of the versions it created available to all other atomic actions. On unsuccessful (non-)
completion, the versions in the possibility are aborted. If an atomic action attempts to rcad a
version belonging to an uncommitted possibility, it must wait until the state of that possibility is
known. Thus, nouc of the updates made by an atomic action is exposed until the atomic action

succeeds.

Possibilitics are implemented by requiring that cach version refer to a commit record that represents
the statc of all of the versions of the possibility. Initially the commit record is in the UNKNOWN
statc. ‘The possibility is committed by changing the commit record state from UNKNOWN to
COMMITTED. 1t is aborted by changing the commit record state from UNKNOWN to
ABORTED. No other state changes arc allowed.

3. Organization of SWALLOW

Figure 1 illustrates the overall structure of the SWALILLOW system. Each client computer that uscs
SWALLOW accesses stored objects via a module called the broker, which is implemented on each
client. The data owned by that computer is stored cither on local secondary storage or on a shared
server called the repository. SWALLOW can have several repositorics; individual client computers

may have access to different subsets of them.

The broker controls the location of, and mediates all accesses to, the data owned by its client.
These functions are achieved through interactions with the repositorics and other servers: the name

lookup server and the authentication scrver.

The repository provides large quantitics of stable storage, but it supports only the minimum
necessary set of functions. In particular, a repository is not responsible for protecting the data
stored in it from unauthorized release, and, although it implements some mechanisms nceded for

construction of atomic actions, the responsibility for managing atomic actions rests with the brokers.

3.1 Organization of the repositories

We arc assuming that the information stored in the individual client computers is not directly
accessible from other nodes, that is, it is not possible to change or even examine the raw data (of
course, an application program can make local data available to programs running at different
nodes). Also, most of the clients will be "personal computers” that may not have sufficient facilities

to store their own data rcliably. Thus the SWALLOW repository provides two main functions;

1. reliable and sccurc long-term storage

2. dircct data sharing

The repository implements the object model described in the preceding scction; this provides the
basic mechanism for access synchronization to shared data. Protection of shared data is achieved

through encryption, as will be discussed later.

For reliable long-term storage of objects, the physical storage in the repository must be stable, that
is, the information stored in it must not decay over time. In addition, it is nccessary to ensure that
information written to it is cither written completely and correctly or not at all, that is, that the
operations on stable storage arc atomic. Since no physical device provides storage with these
propertics, the atomic stable storage must be implemented as an abstraction, using hardware
components with less desirable properties [[LAMS 79A]. In particular, atomic stable storage must be
designed to tolerate processor crashes during write operations and decays of the storage media. This

is accomplished by writing the data twice, into decay-independent sets.

An operation that is most difficult to perform atomically is an in-place update of stored information.
An atomic updatc mecans that cither the content of the updated cntity is changed into the new
value or, if the operation fails, the value of this entity is left unchanged. That is, atomicity
guarantees that a stored cntity is never left in an inconsistent state where the old value has been lost
and the new value is incorrect. To perform an atomic update, the two copics of stored information
in the two decay-independent sets must be changed strictly scquentially, i.c. the first write must
complete successfully (correct data written to correct address) before the sccond write is initiated. If
the storage model does not have to support an updatc operation, the problem of atomicity is

simplified. It is still necessary to have two copics for stability, and the ability to detect and correct

bad writcs, but the two writes into the two decay-independent scts can be done concurrently, This
simplification is a strong motivation not only for the adaptation of Reed’s object model, but for
overall organization of the repository around a stable append-only storage called the version storage

that contains not just the data objects but also all the information nceded for crash recovery.

The given object model will require a large amount of storage. Thus, it is important to utilize
storage devices that are: 1) inexpensive, 2) are casy to store offline. To provide fast access to an
arbitrary version of an arbitrary object, a random access device is nceded. A promising option is to
usc optical disks. Since optical disks provide write-once storage, the append-only model of version

storage is crucial to making such an implementation feasible.

4. Protocols

The protocols of SWALLOW are designed to ensure that atomic actions involving multiple sites
work correctly in the face of arbitrary failurcs of networks and nodes. We require that only those
brokers and repositories involved in atomic action need be operational and accessible for that action
to succeed. The sct of brokers, repositorics, and network communications facilitics used need not

be known in advance.

The protocols used by SWALLOW are based on those suggested by Reed [REED 78, REED 79).
We arce primarily concerned with performance and reliability issues in the design of the protocols.
The basic protocol on which all higher-level protocols are built is the SWALLOW Message Protocol
(SMP). "The purpose of the SWALLOW Message Protocol is to provide a means for sending single
arbitrary-sized messages from one computation to some “logical port™ on another machine. It is a
datagram-style protocol, with some differcnces we will discuss. Another basic protocol, the pseudo-
time clock protocol (PCP), synchronizes the logical clocks at cach broker that are used to assign
pscudo-times to atomic actions. The high-level protocols of SWALLOW fall into two
categories—the protocols for storing and retricving objects from remote repositorics, and the

protocols that implémcnt atomic actions.

4.1 SWALLOW Message Protocol

The SWALLOW Message Protocol is used for all communications between components of the
SWALLOW system. 'The protocol is specialized to the needs of SWALLOW, and built on top of
the Internet Datagram Protocol defined by the DARPA Internciwork Working Group [POST 80},
The protocol defines a sct of ports at cach computer node in the system, and allows any

computation at a node to scnd a message to a port at any nodc.

Messages arc not limited to a single packet. However, if a single packet will hold a message, then
only that packet will be transmitted. No connection sctup is required. If a message requires
multiple packets, then the SMP flow control mechanism controls the rate at which the second and
successive packets are delivered. to avoid overflowing the receiver’s bulfer capacity. The flow

comtrol is a windowing scheme, where the window is controlled by the receiver,

There is no attempt to mask all failures at the message protocol level. A varicty of surprising
effects can occur, such as duplicate delivery of messages, lost messages, and reordering of messages
within the network., ‘These problems are naturally handled by the higher level protocols. It is not
necessary to detect duplicate messages since requests pertaining to data accessing and management
of atomic actions arc processed in such a way that they are idempotent—doing the same operation
over again has no cffect. lost messages are handled correctly by the higher level protocols because
cach request has an associated response that serves as a positive acknowledgement of both the

delivery of the message and the completion of the action requested.
4.2 Synchronization of Pscudo-time clocks

Generation of mutualy exclusive pscudo-time cnvironments for atomic actions is the responsibility
of the brokers. Each broker generates pscudo-times for its atomic actions by using a pseudo-time
clock—a cell that maintains a monotonically increasing integer value. ‘There are two requirements
on the values obtained by rcading the pscudo-time clocks. Each value obtained must be unique
over the set of all values obtained from all pscudo-time clocks. 'This can be satisfied by assigning a
unique identifier to cach pscudo-time clock, which identifier is then returned as the low-order bits
of any value read from the pscudo-time clock. The second requirement is that two readings that
occur at distinguishable real times (that is, where it is appareat from outside of the system that one
value was rcad before the other) should reflect the order of the readings. Thus the pscudo-time
clocks must be approximately synchronized. 'The protocol used to achicve this approximate
synchronization is based on the technique suggested by Lamport [LAMP 78]}, though SWALLOW

has somcwhat less rigorous requirements for synchronization.
4.3 Protocol for accessing data on repositorics

The brokers access data stored on a repository by means of read and write requests. The version to
be read or created is specificd in the request by an object unique identifier and a pscudo-time. In
addition, cach request includes a commit record unique identifier. The pscudo-time and commit

record unique identifier depend on the atomic action responsible for the access.

A rcad-request contains simply a specification of the version desired. If the repository can provide

the proper version immediately, it will respond with a message that consists of the value of the
version. If the version is very old and has migrated to offline storage, or if the version desired has
been created by an atomic action that has not yet committed, the read request must be delayed and
the repository will respond with a status response. A status response is also returncd when the
version does not exist: cither the specificd object has never been created, has never been initialized,
or has been deleted by a request with an carlier pscudo-time. However, the repository may not
respond at all, if it or the network encounters a failure. ‘The broker is free to retransmit a read-
request at any time, since repeating a read on an object has no side-effects. The response to a read-
request includes the object unique identifier and pseudo-time, which are sufficient to allow the
broker to ignore cxtra reponses that may be gencrated by retransmission or duplication of the

message in the network.

A write-request specifies which version is to be created, and contains the value of that version. [f
the repository can create that version, it responds with a positive acknowledgment when the version
has been created, added to the possibility denoted by the commit record identifier, and is in stable
storage. If the version has alrcady been created (as in the case when a write-request is duplicated or
retransmitted), that fact is detected because the object unique identifier, pscudo-time, and commit
record unique identifier match an cxisting version. Such a request is also positively acknowledged,
because the retransmission may have been due to a lost acknowledgment. 1f the version cannot be
created because it conflicts with some other version or because the object cannot be accessed, a

negative acknowledgment is returned.

The responscs to both read and write requests serve two purposes. They transmit the result of the
action requested at the repository, and they implicitly provide confirmation that the repository
reccived the requests. No low-level acknowledgment is used to provide this latter confirmation.

The number of nctwork packets transmitted is thus reduced significantly.

Since the values of objects may be of an arbitrary size, messages that transmit such values (e.g.,
write-requests and responses to read-requests) may be arbitrarily long. In the common case where
objects arc small, the responses will fit in onc packet, so the interaction associated with a such an
access will require only two packets—onc packet in and one packet out. No lower-level
acknowledgment or conncction sctup will be required, so both the delay and network overhead will
be minimized. For large versions, the flow control mechanisms of the message protocol allow the
data to flow at a maximum possible rate between the repository’s stable storage device and the

broker's stable storage device.

The repository is designed in such a way that it can process and transmit large versions piccemeal.

As individual fragments are delivered via SMP packets, they are stored on the repository’s stable
storage. ‘The SMP flow control mechanism adapts the rate of transmission to the characteristics of
the repository stable storage. The fragments can be of different sizes. Further, since objects are
never updated in place, different versions of the same object can be fragmented differently; this

allows for maximum flexibility in flow control.
4.4 Protocol for managing atomic actions

As we noted carlier, a major function of SWALLOW s to coordinate atomic actions. The tools for
doing this coordination, pscudo-times and commit records, are managed by the SWALLOW

protocols.
Commit records

Commit records are managed by repositorics. Each commit record’s state is maintained at a single
repository, and is manipulated by remotely originated requests. When an atomic action is begun,
the initiating broker requests creation of a commit record at some chosen repository. ‘Thereafter,
cach version created by that atomic action is tagged with the name of the associated commit record.
When the atomic action completes successfully, a COMMIT request is sent to the commit record’s
site. If the COMMIT request is honored, then the versions created by the atomic action become
accessible to other atomic actions. The atomic action will be aborted if ecither an cxplicit ABORT

request is received or a timeout clapses at the commit record.

As in Reed’s model, an atomic action passes its commit point when the commit record is updated to
the commitied state. Versions become committed later, when they are informed of the final statc of

the commit record; the state is transmitted from commit record to version by two mechanisms.

» If a rcad is attempted on an uncommitied version, a request is made to the
commit record’s site to get the commit record’s state; if committed, the version

then is committed.

P When a commit record is committed, it broadcasts this fact to all versions tagged
by the commit record; this broadcast may not get to all such versions, so this

mechanism is viewed only as an optimization.

In SWALLOW, we have modificd the protocol originally suggested by Reed for managing commit
records, in order to cnhance performance. In Rced’s model, cach version crcated in an atomic
action is added to a list maintained with the commit record. This list serves two purposcs—it is

used to allow deletion of the commit record when all references to it are deleted and it is used to

10

broadcast the final statc of the commit record to its versions as soon as it is known. The
modification in SWALLOW distributes this list. Each site that contains versions tagged with a
particular commit record maintains a commit record representative, as shown in Figurc 2. The
commit record representative contains a list of the tagged versions at its site. 'The primary commit
record contains only a list of local tagged versions and a list of sites that contain commit record
representatives. ‘The broadcast of a commit record’s final state thus will usually require many fewer

messages.

When a ncw version is created at a site, if there is no commit record representative at that site, one
is created. Creating the representative requires an interaction with the primary commit record site.
Once a commit record representative cxists, new versions can be created without any further
interactions with the primary site—cach version is simply added to the represntative’s list. 'This also

substantially reduces the message traffic.

The cost of creating N new versions in an atomic action at .S sites can be broken down as follows

(this is the case where no failures occur).

Messages Purpose
2 crcatc commit record
2N crcate versions.
28-2 creatc commit record representatives
2 commit commit record

25-2 commit versions, delete commit record.
Thus the total number of messages is 2N +48S.
Pseudo-times

Pscudo-times associated with the accesses of an atomic action are chosen by the brokers that
perform the accesses. If multiple brokers are involved in an atomic action, then they must
coordinate their use of pscudo-times. This coordination is done by a broker-broker protocol that
hands off the statc of an atomic action from onc broker to another. In the initial version of
SWALIOW, an atomic action is active at only one broker at a time. ‘This restriction guarantces

that successive accesses in an atomic action arc made in successive pscudo-times.

When an atomic action is begun, the broker initiating the action receives two independent
capabilitics. These arc a) the right to read and create versions of objects as part of the atomic
action and b) the right to commit the atomic action. The first capability is usually passcd when an

atomic action becomes active at a new broker; the sccond is usually retained at the initiating broker

11

because that broker usually knows best when the atomic action is correctly completed. Both may be
passed, however. The right to abort an atomic action is part of capability a) above, since cach
broker that performs accesses on behalf of an atomic action has the option of failing to perform its

part and thus aborting the action implicitly.

Wiicen a client of SWALILLOW makes a request to another site to perform a part of an atomic action,
it includes in its request the capabilitics needed to perform that part. These capabilitics are
obtained in a "scaled package” from the client’s broker, and passed in the request message. 'The
broker at the site that is the target of the request can then unscal the package and perform accesses
using the encloscd capabilities. Thus, the interbroker communication is piggybacked on the

interclient communication, rather than requiring cxtra messages.

5. Protection

Protection of information in the SWALLOW system is based on the systematic use of encryption.
We have chosen an encryption-based protection mechanism because it maximizes the opportunity
for node autonomy in implementing protection policies. Our goal is to have cach broker
responsible for protecting the information it manages, with minimal responsibility placed on shared
nodes such as repositorics. The primary threats to information owned by the clients of a broker
occur when that information is shipped on the network and when that information is stored on a
shared repository. Another important threat to the information in the system is unauthorized
tampering with the atomic action mechanism that results in inconsistency. We consider two generic
classes of threats—unauthorized disclosure and unauthorized modification of the stored information.
A third class of threats—unauthorized denial of service—can be detected, but not corrected within
the system. An intruder can casily intercept, change, delete and introduce packets into the network.
SWALLOW docs not allow such interference to result in unauthorized disclosure of information,

and prevents unauthorized modification of information.

We assume that clients communicate using encrypted messages, and that some sort of authentication
server allows the clients to authenticate such communications. Our concern here is primarily with
the broker-repository communications. This communication can be broken down into two Kinds, as
before—those directly concerned with accessing versions of objects and those associated with

commit records.

The broker-repository communication requires a special kind of authentication. The broker needs
to detect the case where an intruder trics to impersonate a repository. A repository that does not
remember the data stored there can have an effect cquivalent to unauthorized modification or

unauthorized denial of service. Assuming the broker trusts the repository, the broker needs to

12

determine whether a response to its request is (a) from the correct repository, and (b) a responsc to
that request (not a duplicated response to another request). This authentication of responses can be
donc by gencrating a digital signature at the repository that signs the request-response pair.

Needham and Schroeder discuss a varicty of such techniques[NEED 78]

There are two kinds of accesses to objects, reading and writing. Unauthorized disclosure of objects
on the repository is prevented by encrypting cach version of an object under an object key (OBK)
known only to authorized brokers. Versions transmitted from broker to repository are encrypted, so
intercepted network messages do not cxposc the contents of versions. The repository does no
authentication of requests to rcad objects. This simplifies the repository, at the expense of

relegating more work to the broker.

In principle, cncrypting objects in a key known only to the broker also protects against
unauthorized modification, since a version created with the wrong key would be detected when an
authorized user attempted to read it and failed. Since all versions of an object are retained (at least
on backup tape), we could allow any broker to creatc a new version of any object on the repository,
Jcaving it to the broker rcading an unauthorized version to detect and ignore that. version. In
practice, we may not want repositorics filled up with unauthorized versions that are not detected

until the next read operation—this is a rather severc performance penalty.

If a conventional encryption scheme is used, such as the Federal Data Encryption Standard [NBS
77), the above protocols have the property that anyone who knows the key for an object can both
read and write the object. Use of a public-key system [DIFF 76} would aliow distinguishing the
capability to produce a new version from the capability to read an old version, since different keys

arc used to cncrypt and to decrypt in a public-key system.

To prevent the unauthorized creation of garbage on the repository, the SWALLOW repository
authenticates requests to crcate new versions. The repository maintains a key with cach object
(called the write authentication key, WAK). The WAK is used to encrypt write requests, so that
the repository can authenticate them. A broker that writes an object must know both its OBK and
its WAK. 'This use of a sccond encryption can be used with a conventional encryption scheme to
distiguish the right to rcad from the right to crcate new versions. In a public-key system, this
sccond encryption serves only to detect unauthorized writes carly—the relcase of the WAK for an

object only makes the repository perform more poorly in space and time.

T'he broker is free to maintain the keys associated with objects in any way it chooses. In the initial
version of the broker, the keys associated with objects will be maintained in a special object called

the key file. ‘The key file is simply a mapping from object id to the keys associated with it. ‘The

13

key file will be stored under a single master encryption key as an object on some repository.

Encryption is also used to authenticate requests associated with commit records. . ‘The primary
purpose of this authentication is to ensurc that an atomic action is committed only if all parts of it
complete correctly. Our current scheme for this involves keeping a key (the per-atomic-action key
or PAK) with cach atomic action. The PAK is kept sccret by the brokers involved in the atomic
action until the atomic action has crcated all of its versions. Each version is encrypted using the
OBK and the PAK in combination (doublc encryption will always work; but XOR’ing the two keys
works for a DES-based system). No computation outside the atomic action knows the PAK, so the
versions created by the atomic action are not visible until the PAK is made public. As part of the
commit request sent to the commit record, the PAK is supplied. When the commit record informs
a version of its final state, the PAK is transmitted and stored with cach version. The information
returncd when a version is read includes the PAK, so the broker, knowing the OBK already, can

access the committed version.
6. Conclusion

We are implementing SWALLLOW to demonstrate that the concepts involved, that is, uniform
interface, atomic actions, stability and protection in an cnvironment that consists of a large number
of small objccts residing at different physical nodes, can be implemented in a practical system.
Since the organization of SWALLOW is radically different from traditional storage systems, the only
way to understand how well it will perform in practice is to build it, and then use it in constructing
some applications. In the first stage, we will implement a prototype system with most of the
features of SWALLOW on a sct of Altos [ILAMS 79B], with at lcast one repository node, and
several brokers/client nodes. - Altos were chosen because of the existence of both solid hardware
and well-developed support software. However, our laboratory is developing a more powerful
personal computer, the Nu machine [WARD 80}, and an abstraction-oriented language for
distributed processing in a network of autonomous computers is under development [LISK 79).
Thus the full SWALLOW system will be constructed on the Nu machines, using a language

explicitely designed for that kind of programming.
References

CILAR 78 Clark, D.D., Pogran, K.T., Reed, D.P., "An Introduction to [.ocal Arca Networks",
Proc. of the IEEE, Vol 66, No. 11, November 1978, pp. 1497-1517.

DIFF 76 Diffie, W. and Hellman, M.. "New dircctions in cryptography,” IEEE Trans. Inf.
Theory IT-22, 11 (November 1976), pp. 644-654.

14

GRAY 79

ISRA 78

LLAMP 78

LLAMS 7T9A

1.LAMS 79B

LISK 79

NBS 77

NEED 78

PAXT 19

REED 78

REED 79

15

Gray, J. ct. al., "The Recovery Manager of a Data Management System,” 1BM
Rescarch Laboratory Technical Report RJ2623, August 1979.

Isracl, J.E., Mitchell, 1.G., Sturgis, H.E., "Separating Data from Function in a
Distributed File System,” Proc. of Second International Symposium on Operating
Systems, 1RIA, October 1978.

Lamport, L. "Time, clocks, and the ordering of cvents in a distributed system."”
Comm. of the ACM 21, 7 (July 1979), pp. 558-565.

Lampson, B.W., Sturgis, H.E, "Crash Recovery in a Distributed Data Storage
System”, XEROX Palo Alto Rescarch Center, April 1979. To be published in
Comm. of the ACM.

Lampson, B.W., Sproull, R.F., "An Open Operating System for a Single-User
Machine,” Proc. of Seventh ACM Symposium on Operating Systems Principles,
Pacific Grove, CA, Deccember 1979, pp.98-105.

Liskov, B. "Primitives for Distributed Computing,” Proc. of Seventh ACM
Symposium on Operating Systems Principles, Pacific Grove, CA, Pecember 1979,
pp.33-42.

National Burcau of Standards, Data IFncryption Standard, Federal Information

Processing Standards Publication 46, 1977.

Needham, R.. Schroeder, M., "Using Encryption for Authentication in Large
Networks of Computers,” Comm. of the ACM, Vol. 21, No. 12, December 1978,
pp.993-999.

Paxton, W.H., "A Clicnt-Based Transaction System to Maintain Data Integrity,”
Proc. of Seventh ACM Symposium on Operating Systems Principles, Pacific Grove,
CA, Deccember 1979, pp.18-23.

Reed, D.P. "Naming and Synchronization in a Decentralized Computer System.”
Ph.D. thesis, M.LT. Department of Flectrical Engincering and Computer Science,
September 1978. Also available as M.LT. lLaboratory for Computer Science
"Technical Report TR-205.

Reed, D.P. "Implementing Atomic Actions on Decentralized Data.” paper presented

SVOB 79

SWIN 79

WARD 80

at Seventh ACM Symposium on Operating Systems Principles, Pacifc Grove, CA,
December 1979, Submitted to Comm. of the ACM.

Svobodova, L., Liskov, B., Clark, D., "Distributed Computer Systems: Structure and
Semantics,” M.LT. Laboratory for Computer Science 'I'echnical Report TR-215,
March 1979.

Swinchart, 1J., McDanicl, G., Boggs, D., "WFS: A Simple Shared File System for a
Distributed Environment,” Proc. of Seventh ACM Symposium on Operating Systems
Principles, Pacific Grove, CA, Deccember 1979, pp.9-17.

Ward, S.A., Terman, C.J., "An Approach to Personal Computing,” Digest of Papers,
COMPCON Spring 80, Fcbruary 1980, pp.460-465.

16 -

Client
nodes

-

Broker

&

I local

storage

Repository

X

Broker

of

Network

Repository

§Od

Storage devices

oo

Client
Broker i interface
Repository : I Swallow

Figure 1: Structure of Swallow System

primary
commit record

CRid = xx

timeout

state

plel Ay

i

CRid = xx

CRid = xx

CRid = xx

tagged versions

REPOSITORY A

Figure 2:

N\
AN

CRid = xx

timeout

state

/

L

>

/xx
T

commit record tagged
representative versions
-_—T T~
CRid = xx XX
timeout
state
o /—\\
o] XX
REPOSITORY B
~ -
\ v
. commitrecord tagged versidns
\ representative -

REPOSITORY C

Implementation of a multi-site possibility
with commit record representatives

