Laboratory for Computer Science : Request for Comments No. 193
Computer Systems Research Division August 11, 1980

ENGINEERING RELIABLE COMPUTER SYSTEMS

Sclected Bibliography

by Liba Svobodova

This document contains a list of selected papers that deal with diffcrent aspects of the design and
implementation of reliable systems, with emphasis on distributed information processing systems.
Admittedly, this bibliography is incomplete. First, I may not be aware of some important papers. Second, |
want to keep this list selective.

The bibliography is divided into several sections, reflecting different topics. Some papers on the list deal with
more than onc topic, and may be found under more than one category. The bibliography will hopefully grow
with time. Also, it is planncd that annotations will be added.

A. Reliable Computer Systems: Terminology, Models, Surveys

AVIZT]

AVIZ 78

BEAU 77

Avizienis, A., et al, "Fault Tolerant Computing: Progress
Problems, and Prospects,” Proc. of IFIP Congress 1977, Toronto,
Canada, August, 1977.

This paper concentrates mainly on hardware failures, but includes
also a brief discussion of the problem of software design errors
(work of the group from the University of Newcastle upon Tyne).
It techniques for reliability evaluation. Good survey.

Avizienis, A., "Fault-Tolerance: The Survival Attribute of
Digital Systems,” Proc. of the IEEE, Vol. 66, No. 10, October,
1978, pp. 1109-1125.

The paper presents the concept of fault-tolerance and the
methods for achieving fault-tolerance for both physical and
man-made (design) fauits. It includes a brief history of
fault-tolerant system designs and interesting reliability statistics
for the CRAY-1 computer.

Beaudry, D.M., "Performance-Related Measures for Computing
Systems,” Stanford University, Center for Reliable Computing,
1977.

New reliability measures that take into consideration possibly
varying levels of performance (computational capacity) due to
failures of system components are defined. Performance-related
measures are derived for a graccfully degrading system and a
multiprocessor system with repair and used to compare
two-processor configurations of these systems with corresponding
systems where the computational capacity remains fixed while the
system is operational. Though the systems cxamined were
drastically simplified, the approach demonstrated in this paper,
that is, relating performance and reliability is an important step in
computer system evaluation.

MERL 77

RAND 78

WULF 75

Merlin, P.M., ¢t al., "Consistent State Restoration in Distributed
Systems,” Technical Report No. 113, University of Newcastle
Upon Tyne, Newcastle Upon Tyne, England, October, 1977.

The notion of a backward eror recovery is formalized using
Occurence Graphs, a causc-effect model based on Petri Nets.
The paper defines backward error recovery in the context of this
model and presents a protocol for so called weak recovery in a
distributed system. The paper touches on the important problem
of dependencies that might be hidden at the level of abstraction
modeled by an Occurrence Graph and suggests an extention to
the model that facilitates inclusion of information about lower

level dependencies in the form of constraints. Overall, use of

Occurrence Graphs for error recovery is an interesting approach;
however, to demonstrate its real potential, it is necessary to apply
it to specific recovery problems. '

Randell, B., et al, "Reliability Issues in Computing System
Design," Computing Surveys, Vol. 10, No. 2, June 1978, pp.
123-165.

A good overview. It defines reliability oriented terms such that
they are implementation independent and applicable at any level
of abstraction. The appendix contains analysis of several
fault-tolerant systems, described in the terms developed in the

paper.

Wulf, W.A., "Reliable Hardware/Software Architecture,” IEEE
Trans. on Software Engincering, SE-1, 2, June, 1975, pp. 233-240.

This paper argues that software correctness is not a sufficient
condition for system reliability: it is necessary to take into
account possible hardware failures. It advocates run-time type
checking and implementation of data abstractions that allows for
testing of errors in the internal data structures.

B. Reliable Computer Systems: Specific Designs

AVIZT]

BART 78

BASK 72

KATZ78

ORNS 76

ROBI 78

WENS 76

Avizienis, A., et al, "The STAR (Sclf-Testing and Repairing)
Computer: An Investigation of the Theory and Practice of
Fault-Tolerant Computer Design,” [EEE Transactions on

Computers, C-20, 11, November, 1971, pp. 1312-1321.

Bartlett, J.F., "A 'Non-Stop’ Operating System,” IEEE Hawaii
International Conference of System Sciences, January, 1978, pp.
103-117.

Baskin, H.B., et al, "PRIME - A Modular Architecture for
Terminal-Oriented Systems,” Proc. AFIPS SJCC 1972, pp.
431-437.

Katzman, J.A., "A Fault-Tolerant Computing System," IEEE
Hawaii International Conference of System Sciences, January,
1978, pp. 85-102.

Ornstein, S.M., ¢t al., "Pluribus - A Reliable Multiprocessor,”
Proc. of AFIPS NCC, 1975, pp. 551-559. :

Robinson, J.G. et al,, "Software Fault-Tolerance in the Pluribus,”

A

Proc. of AFIPS NCC, 1978.

Wensley, J.H. et al., "The Design, Analysis, and Verification of
the SIFT Fault Tolerant Software,” Proc. of International
Converence on Software Engineering, San Francisco, California,
October, 1976, pp. 458-468.

C. Error Resistant Software

ANDE 76

ANDE 78

ANDE 79

BANA 77

Anderson, T., ct al, "Recovery Blocks in Action: A System
Supporting High Reliability,” Proc. of International Conference
on Software Engincering, San Francisco, California, October,
1976.

Anderson, T., et al., "A Model of Recoverability in Multi-level
Systems,” IEEE Trans. on Software Engincering, Vol. SE-4, No.
6, November, 1978,

Multilevel schemes can be intcrpretivé. where each level is
completely interpreted by the next lower level, or extended,
where several levels are supported by the same interpreter, but
cach level provides some new abstract objects to the next higher
level. Recovery techniques are discussed for both types of
multilevel systems. For the cxtended interpreter case, two
different recovery schemes are described: disjoint and inclusive.
In the disjoint scheme, recovery of a calling program does not
necessitate recovery of the underlying extentions, whereas in the
inclusive scheme all extentions are recovered by the interpreter.
The paper does not discuss explicitly the problem of system
crashes: some form of inclusive scheme would have to be used,
but additional precautions, not considered by the authors, would
have to be taken in the implementation of recoverable extended
objects.

Anderson, T., and Lee, P.A., "The Provision of Recoverable

" Interface,” The Ninth Annual International Symposium on

Fault-Tolerant Computing, Madison, Wisconsin, June 1979, pp.
87-94

This paper restates many of the ideas presented in ANDE 78. It
concentrates on the problem of recovery in multilevel systems
where the levels are implemented as extentions of some basic
interpreter. The concept of disjoint and inclusive recovery is
demonstrated in an example of a simple file system.

Banatre, J-P., ct al, "Rcliable Resource Allocation Between
Unreliable Processes,” Technical Report No. 99, University of
Newcastle Upon Tyne, Newcastle Upon Tyne, England, April,
1977.

FORS 77

GOOD 75

LEE 78

LEVIT7

LISK 77

Forsdick, H.C., "Responding to Errors in a Computer System,”
M.LT., Laboratory for Computer Sciecnce, Computer Systems
Rescarch Division, Request for Comments No. 144, June, 1977.

Goodenough, J.B., "Exception Handling: Tssues and a Proposed
Notation," CACM, Vol. 18, No. 12, December 1975, pp. 633-696.

Lee, P.A.. "A Reconsideration of the Recovery Block Scheme,”
University of Newcastle Upon Tyne, England, Technical Report
No. 119, January, 1978.

Levin, R. "Program Structures for Exceptional Condition
Handling," Ph.D. Thesis, Department of Computer Science,
Carncgic-Mellon University, Pittsburgh, Pennsylvania, June,
1977. '

Levin's cxception handling mechanism can handle, in addition to
the exceptions arising directly from an execution of a specific
program (flow class conditions) exceptions pertaining to shared
data structures (structure class conditions). A set of criteria for
evaluation of exception handling mechanisms is defined and a
number of existing and proposed mechanisms are discussed in
this light. The new mechanism is quite complex, and it is
guestionable whether such power and flexibility is indeed
needed. Overall, the report is a good exposition of the problems
involved and the possible approaches to their solution.

Liskov, B., et al, "Structured Exception Handling,” M.LT.
Laboratory for Computer Science, Computer Structures Group,
CSG Memo 155, December, 1977 (revised).

The paper argues that the termination model for exception
handling is more compatible with the structured design
methodologies than the resumption model, and that is sufficient
for the foreseeable nceds. Syntax and semantics of the CLU
exception handling mechanism are described and demonstrated
by cxamples. The paper is well written, with a clear statement of
the goal, and well rcasoned arguments to justify the design
decisions. ‘

MELL 77

PARN 76

RANDT75

SHRI 78

Melliar-Smith, P.M., Randell, B., "Software Rcliability: The
Role of Programmed Exception Handling,” Proc. of ACM
Conference on lLanguage Design for Reliable Software,
(Operating Systems Review, Vol. 11, No. 2, April 1977).

Parnas, D.L., et al., "Responsc to Undesired Events in Software
Systems,” Proc, of International Conference on Software
Engineering, San Francisco, California, October, 1976, pp.
437-446.

Randell, B., "System Structure for Software Fault Tolerance,”
IEEE Trans. on Software Engincering, SE-1, 2, June, 1975, pp.
220-232.

The first part of the paper explains the concept of recovery blocks
in sequential programs. The sccond part discusses the error
recovery problems amongst interacting processes. Finally, the
paper discusscs the recovery problems in multilevel systems. This
last part is rather murky; it tries to distinguish between
conceptual system levels and levels of interpreters -- a confusing
problem, but worth investigating. -

Shrivastava, S.K., Banatre, J.-P., "Reliable Resource Allocation
Between Unreliable Processes,” IEEE Trans. on Software
Engincering, Vol. SE-4, No. 3 May 1978, pp. 230-241.

Concurrent processes can interact in two different ways: by
cooperating on the same task, and by compcting for shared
resources. The paper studies the problem of recoverability of
competing processes. Shared resources are controlled by
recoverable monitors. However, rccoverable monitors must be
used through a new program structure called a port. A port
contains forward proccdures that specify what is to be done with
the shared resource under normal condition and backward
procedures that will undo the effects of the forward procedures.
The proposed scheme can handle algorithmic crrors and errors in
the input and output (including operations on sccondary storage);
it is not designed to deal with processor failures, although such an
extention might be possible.

VERH 76

VERH 77

YAU 76

Verhofstad, J.S.M., "Recovery for Mult-Level Data Structures,”
Technical Report 96, University of Newcastle Upon Tyne,
Newcastle Upon Tyne, England, December, 1976.

Verhofstad, J.S.M., "On Multi-Level Recovery: An Approach
Using Partially Recoverable Interfaces,” Technical Report 100,
University of Newcastle Upon Tyne, Newcastle Upon Tyne,
England, May, 1977.

Yau, S.S., et al, "An Approach to FError-Resistant Software
Design,” Proc. of International Conference on Software
Engincering, San Francisco, California, October, 1976, pp.
429-436.

The paper discusses an approach for building error-resistant
application software. The error detection and recovery takes
place on three different levels: the module level (similar to the
recovery block method developed at the University of Newcastle
upon Tyne), the program level (flow of control and data between
modules) and the system level (communication with other
processes, use of global shared data). The error detection and
recovery code is protected from the rest of the program; the paper,
suggests use of protection mechanisms similar to the rings of
protection in the Multics System. The paper contains some good
ideas, but ignores a great number of problems and lacks clarity.

D. Coping With Design Faults (By Eliminating or Masking)

CHEN 78 Chen, L. Avizienis, A., "N-Version Programming: A
Fault-Tolerance Approach to Reliability of Software Operation,”
The Eighth Annual International Conference on Fault-Tolerant

A e R S, Sl

Computing, Toulouse, France, June 1978, pp. 3-9.

FABR 73 Fabry, R.S. "Dynamic Verification of Operating System
Decisions,” CACM, Vol 16, No. 11, November, 1973.

NEUM 76 Neumann, P.G., et al, "Software Development and Proofs of

e A e T T,

Software Engineering, San Francisco, October, 1976, pp. 421-428.

\

RAND 75 Randell, B., "System Structure for Software Fault tolerance,”
IEEE Transactions on Software Engincering, SE-1, 2, June, 1975,
pp. 220-232. (See also Part C.)

SCHR 77 Schroeder, M.D., et al., "The Multics Kernel Design Project,”

Proc. of the Sixth Symposium on Operating Systems Principles,
November, 1977, pp. 43-56.

E. Software Testing

GOOD 77

SCHI 78

ANDR 79

-10 -

Goodenough, J.B., "Survey of Program Testing Issues,” Softech
Inc., Massachusetts, 1977.

Shick, ~J‘.G., et al, "An Analysis of Computing Software
Reliability Models," IEEE Trans, on Software Engincering, SE-4,
2, March 1978.

Andrews, D., "Using Executable Assertions for Testing and Fault
Tolerance,” The Ninth Annual Intcrnational Symposium on
Fault-Tolerant Computing, Madison, Wisconsin, June 1979, pp.
102-105

-11-

F. Recovery Strategies For Data Base Systems

BJOR 73

DAVI T3

DAVIT7

GRAY 77

GRAY 79

Bjork, L., "Recovery Scenario for a DB/DC System,” Proc. of the
ACM National Conference, 1973, pp. 142-146.

Davies, C.T., "Recovery Semantics for a DB/DC System,” Proc,
of ACM National Conference, 1973, pp. 136-141.

Davies, C.T., "Data Processing Spheres of Control,” IBM Systems
Journal, Vol. 17, No. 2, 1978, pp. 179-198.

Gray, J.N., "Notes on Data Base Operating Systems,” Advanced
Course on Operating Systems, Technical University, Munich,
Germany, 1977.

Gray’s lecture notes emphasize the need to integrate solutions to
two complex problems: synchronization of concurrent
transactions on a data base and recovery from system failures. In
particular, recovery from synchronization errors (deadlocks) and
recovery from failures in the underlying hardware and software
can be handled by a unified mechanism. The problem of
synchronization and recovery is extended to distributed data
bases, through a two-phase commit protocol. These lecture notes
are still more or less in a draft form, often sketchy, the reasons for
some of the details of the described protocols is left to the
imagination of the readers. In spite of these problems, the notes
present a more complete view of reliable transaction management
than any other publication.

Gray, JH., et. al, "The Recovery Manager of a Data
Management System,” IBM Research Division, Technical Report
No. RJ2623; August 1979.

This report finally presents the rccovery of RSS, the storage
subsystem of System R, as it is actually implemented. The
recovery manager uses a combination of shadow files and
undo/redo log. The shadow files represent a consistent state of
RSS; they serve as a system checkpoint. Recovery of individual
transaction from a system crash consists of undoing all actions
preceding the system checkpoint for those transactions that have
not committed prior to the crash and redoing all actions following

LIND 79

LORI77

STER 73

VERH 78

-12-

the system checkpoint for those transactions that have committed.
New recoverable object types can be easily incorporated into this
scheme. :

A critical evaluation of the recovery manager is included. The
recovery manager as implemented performs very successfully.
Although providing such comprehensive recoverability is quite
expensive, it accounts only for about 10 percent of the total
system cost. The main drawback of the system R recovery
scheme is the use of shadow files, which are very expensive for
large shared files. Also, save points for individual transactions are
not as powerful as they ought to be, due to the underlying
operating system.

Lindsay, B.G. ct al., "Notes on Distributed Databases,” 1BM
Research Laboratory Report RJ2571, San Jose, California, July
14, 1979.

The notes cover several topics, in varying depth. Chapter 1
surveys the problem of replicated data. Chapter 2 develops quite
a complex mechanism and protocols for access authorization in
database systems. The remainder is devoted to transaction
management. Chapter 4 describes a sophisticated transaction
recovery scheme based on a transaction log. The same material
was covered in GRAY 77, however, these notes present it with
much better clarity. The last chapter presents a robust transaction
management scheme for distributed systems that supports quite
general patterns of transactions. Highly recommended reading.

Lorie, R.A., "Physical Integrity in a Large Segmented Data Base,”
ACM Transactions on Data Base Systems, Vol. 2, No. 1, March,
1977, pp. 91-104.

Stern, J., "Organization and Operation of the Multics Backup
System,” Project MAC Internal Document, Multics Checkout
Bulletin (MCB) 1077, March 23, 1973.

Verhofstad, J.S.M., "Recovery Techniques for Database
Systems,” Computing Surveys, Vol. 10, No. 2, June 1978, pp.
167-195.

13-

Verhofstad defines recovery as the restoration of the database
after a failure to a state that is acceptable to the users. Several
different "states” that may be targets of a recovery in different
situations are defined. These states reflect the completeness and
the consistency of the information in the database. Recovery
techniques are summarized according to the type of database state
that can be restored with each technique. Individual techniques
are illustrated by examples and related to the other techniques;
the complementary aspects of different techniques are
emphasized. I found the classification used in the paper quite
useful, in particular where it is applied to explain recovery
mechanisms used in different systems.

-14 -

G. Atomic Updates In Distributed Svstems

GRAYT7

HAMM 79

LAMP 79

LIND 79

MONT 78

REED 78

Gray, J.N., "Notes on Data Base Operating Systems,” Advanced
Course on Operating Systems, Technical University, Munich,
Germany, 1977. (Sce also Part F.)

Hammer, M.M., Shipman, D."Reliability Mechanisms for
SDD-1: A System for Distributed Databases,” Computer
Corporation of Amecrica and Massachusetts Institute of
Technology, July 31, 1979.

Lampson, B. et al., "Crash Rccovery'in a Distributed Data
Storage System,” XEROX Palo Alto Research Center, California,
April 1979 (to be published in CACM).

The first version of this paper was written and began circulating
in 1976; this version is often cited as the source of the two-phase
commit protocol. The new version has a remarkably different
emphasis. It presents implementation of a "stable” system as a
lattice of abstractions built from realistically unrcliable physical
components. Atomic transactions that involve several physical
nodes are easy to implement, using the two-phse commit
protocol, if all nodes are stable systems. Highly recommended.

Lindsay, B.G., et al., "Notes on Distributed Databases,” ITM
Rescarch Laboratory Report RJ2571, San Jose, California, July
14, 1979. (See also Part F.)

Montgomery, W.A., "Robust Concurrency Control for a
Distributed Tnformation System,” Massachusetts Institute of
Technology, Laboratory for Computer Science TR-207, January,
1979.

Reed, David P., "Naming and Synchronization in a Decentralized
Computer System," Massachusctts Institutc of Technology,
Laboratory for Computer Science TR-205, October, 1978.

SHAP 77

SHAP 78

STON 78

TAKA 79

TRAI79

-15-

Shapiro, RM., et al, "Reliability and Fault Recovery in
Distributed Processing,” Oceans 77 Conference Record, Vol. I,
Los Angeles, California, October, 1977, pp. 31D-1--31D-5.

Shapiro, R.M., et al., "Failure Recovery in a Distributed Data
Base System,” COMPCON Spring ‘78, February, 1978.

Stonebraker, M., "Concurrency Control and Consistency of
Multiple Copies of Data in Distributed Ingres,” Proc. of the
Third Berkeley Workshop on Distributed Data Management and
Computer Networks, L.awrence Berkeley Laboratory, University

of California, Berkeley, August 1978, pp. 235-258.

Takagi, Akihiro, "Concurrent and Reliable Updates of
Distributed Databases,” M.LT., Laboratory for Computer
Science, Computer Systems Research Division,” Massachusetts
Institute of Technology, Laboratory for Computer Science,
TM-135, November, 1979.

Traiger, L. Gray, JN., Galtieri, C.A., Lindsay, B.G.,
"Transactions and Consistency in Distributed Database Systems,"
IBM Research Division, Technical Report No. RJ2555, June
1979.

Reliability (failure transparency) is only a small part of this
report, however, the report presents a good model of transactions
that is important for reasoning about reliability of distributed
systems. A transaction is an abstraction that represents a logical
unit of work and that provides location transparency, replication
transparency, concurrency transparency, and failure transparency.
The notion of consistency and the protocols that ecnsure
consistency developed in ESWA 76 are extended in this report to
distributed systems.

H. Replicated Databases

ALSB 76

GARCT9

MENA 78

-16 -

Alsberg, P.A., "A Principle for Resilient Sharing of Distributed

A s M L e TS

Engineering, San Francisco, California, October, 1976, pp.
562-570.

Garcia-Molina, H., "Performance of Update Algorithms for
Replicated Data in a Distributed Database,” Stanford University,
Stanford Computer Science Laboratory Memo CSL TR-172,
Department of Computer Science Report No. STAN-CS-79-744,
June 1979.

Menasce, D.A., Popek, G.J., Muntz, R.R., "A Locking Protocol
for Resource Coordination in Distributed Databascs,” submitted
to ACM Transactions on Database Systems, 1978.

The paper presents a centralized locking scheme for distributed
systems that includes recovery protocols to deal with failures of
the participating nodes and network partitioning. Three disjoint
recovery mechanisms are provided: recovery of a single node,
replacement of a failed centralized controller, and merge of
network partitions. The locking scheme seems to carry with it a
substantial overhead (each node maintains a complete lock table
for data items in all accessible nodes), and the proofs presented to
demonstrate the infailibility of the protocols are incomplete; in -
particular, the fact that there is a critical time interval during
which no node may make an indcpendent decision about the fate
of a lock request (granted or refused) is ignored.

-17 -

I. Robust Communication Protocols

REED 76

REED 77

Reed, D.P., "Protocols for the LCS Network,” M.L.T., Laboratory
for Computer Science, Local Network Note No. 3, November 29,
1976.

Reed, D.P., "A Protocols for Addressing Services in the Local
Net," M.LT. Laboratory for Computer Science, Local Network
Note No. 5, February 15, 1977.

-18 -

J. Reliable Communication Networks

LEET9

CLART7T

SALTT79

Lee, R., "The Architecture of a Dynamically-Reconfigurable
Insertion-Ring Network,” IBM Resecarch Laboratory Report
RJ2485(32434) 3/13/79, San Jose, California.

Clark, D.D., "A Contention Ring Network,” M.LT. Laboratory
for Computer Science Local Network Note No. 11, September
1977.

Saltzer, J., and Pogran, K., "A Star-Shaped Ring Network with
High Maintainability," Proceedings of the NBS-Mitre Local Area

Communications Negtwork Symposium, Boston, Massachusetts,
May 7-9, 1979.

-19 -

K. Copying With Errors in the Input to a System

———

HAMM 76 Hammer, M., "Error Detection in Data Base Systems,” Proc, of
AFIPS NCC, 1976, pp. 795-801.

