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Abstract

This paper surveys various issucs that arise in design of a distributcd computer system where
individual nodes retain a high degree of autonomy. Such a distributed system is believed to be a
natural realization for many applications, especially distributed processing necded to support office
automation. The paper focuses on the operating system level, and presents the major goals for a
programming language (programming system) for development of distributed applications. The
paper also surveys the problem of distributed update, in the context of both the partitioned
database and the replicated database, since understanding of this problem is important in deciding
the amount of support that should be provided by the operating system.
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1.  Introduction
Distributed systems can be divided roughly into two categories:

a) Systems that look to their users and behave at their interfaces as if they were
monolithic central systems, but are actually engincered from physically distributed pieces.

b) Systems that facilitate communication and cooperation among autonomous nodes. The
users are aware of the distributed nature of the system although they should not have to be
concerned with the physical location of data and services used by their programs.

The first category represents systems that are quite similar to loosely coupled multiprocessor systems
(i.c., multiprocessor systems where processors do not share memory). The distributed organization
is motivated primarily by cost, reliability, and performance. ‘The primary distinction between a
multiprocessor system and a distributed system lies in the communication medium. Multiprocessor
systems use 170 buses that usually constrain the physical separation of the processors and limit the
expansibility. Distributed systems use a general message oriented communication network that
supports a variety of communication patterns and affords practically unlimited growth.

The main distinction between the first and the second category is how the system is administered.
In the first case, the administration is centralized. In the second case, individual nodes have a
substantial degree of autonomy, that is, the owner of a node has control over the structure of the
node and its use while the node participates in a distributed application [SVOB 79a, CLAR 79].
Such systems are a natural realization for many applications. Specifically, the notion of autonomy is
very important to the success of a computerized office, where sociological and political reasons
pressure towards decentralization of control [DOLI 77]. However, it is beneficial to built distributed
systems that support local autonomy even for applications that are more coherent, since a node
designed to be autonomous is mere robust with respect to errors and attacks from outside of itself
and can operate (at least to some degree) even while it is completely cut off from the rest of the

system.

This paper concentrates on the problems of designing distributed systems that preserve a fair
amount of autonomy for the individual nodes. lts main focus is the operating system and related
tools that are available to the builders of distributed applications. It should be noted that the
applications implemented on this kind of systems may give their users an impression of a
monolithic central system, that is, the end users do not have to be aware of the distribution.
However, the distributedness is visible to the application builders: the interface that the system
provides to these users is an important part of the overall design.

The kind of distributed systems considered here typically have three classes of components: the
computing nodes, special servers, and a communication substrate. As an extreme, cach computing
node is dedicated to one individual (i.e., it is a "personal computer™) or to a single application task.



The servers are specialized machines that perform particular services for the community as a whole.
The servers are a direct outcome of the decision to afford significant autonomy to the individual
computing nodes. 1t is not possible to assume that individual computing nodes are always willing to
perform an operation requested by a computation running on another node; any such interaction
may first have to be negotiated.  Functions that are crucial to the correct and efficient operation of
the whole system thus ought to be provided by special servers. Some servers will be part or an
extention of the operating system; examples are file servers [PAXT 79, SWIN 79, REED 80}, name
1'00kup servers, and authentication servers. Other servers will be application specific, such as
registration servers in an electronic mail system [LLEVI 79]. The notion of a server is useful also in a context
of a more closely coupled form a distributed system [WILK 80]. Finally, the communication substrate permits
the cxchange of messages between the various computing nodes and scrvers. The communication
substrate may also include some spccial servers for message spooling and monitoring and diagnoses
of the physical communication lines, but these servers are in general invisible to the application
builders.

"The major application arca for these systems is office automation [ELLI 80}. A fully automated
office will be made up of many highly autonomous tasks that execute concurrently and that interact
with other tasks and with human users. Officc automation includes several forms of distributed
processing: management of distributed databases, high-level protocols for electronic mail and
document management, real-time interactions of a group of people (teleconferencing), distributed
decision making.  Another important application arca is distributed sensing and control, for
example, aircraft tracking or city traffic control, or, more general, distributed problem solving [LESS
79). These applications are narrower than office automation (the whole system is usually dedicated
to a single specific problem arca), but require a much higher degree of interaction among individual
nodes, since the problem has to be solved in real time,

Since shared data arc an important ingredient of these applications, the next section present a
summary of the problems of distributed data management. Scction 3 concentrates on the function
and mechanisms of the operating system needed to support distributed processing among
autonomous nodes. Scction 4 looks at the problem of programming distributed systems.

2. Management of Distributed Data

Management of distributed data is an important rescarch subject, since any distributed application
includes some form of a distributed database, as does the operating system for a network of
computers; thus the term database will be used here in a rather general scnse.

A databasc is distributed by partitioning it into scveral picces that reside on different physical
nodes; these picces can be viewed and managed as scparate logical (abstract) objects. The whole
database or just individual picces can be also replicated, that is, copies of those data may exist at
two or more nodecs.



The basic problems concerning distributed databases are:

i.  Physical distribution.  This includes decisions regarding how the data should be
partitioned among the nodes in the network, which parts should be replicated and how
many copics of replicated data should be maintained and where.

ii. Internal management. 'This includes primarily access synchronization and recovery.

Although the operating system can help in finding a suitable physical distribution of data by
supporting various measurcment tools, this topic is out of the scope of this paper; the rest of this
section concentrates on the issuc of the internal management of distributed databases.

Much of the reascarch on distributed systems is concerned with the problem of performing an
update that involves several physical nodes. Such an update must preserve certain consistency
constraints. In case of partitioned databases, the consistency constraints are internal, that is, they are
determined by the semantics of stored data, and have to be dcfined as part of the system
specification. For replicated data, the problem is mutual consistency, that is, the individual copics
must be consistent with each other. In both cascs, it is unreasonable to require that the consistency
constraints will hold at every instant; practical update algorithms must be allowed to produce brief
inconsistencies as part of changing the whole databasc to a new consistent statc. However, if all
actions that nced to be performed to step a database from one consistent state to another are
grouped together in a single afomic action, the consistency constraints are guarantced to hold
between these atomic action. In the context of database systems. atomic actions are called usually transactions.
While not all distributed applications will require such rigorous control as is implied by the
protocols that have cmerged from this body of work, mechanisms for performing distributed
updates atomically belong among the basic mechanisms of a distributed operating system.

The definition of an atomic action is that it is indivisible; the tcmporal inconsistency of the database
on which it operates is hidden within thc action. This means that:

i.  Atomic actions must be indivisible with respect to the effects observable by concurrent
computations.

ii. Atomic actions must be indivisible with respect to failures; an atomic action is cither
carried to its completion, according to its specification or, if it fails, or if the originator
decides to abort it, it lcaves the system in the state it was prior to the invocation of that
action.

The recovery aspect is in general nontrivial, even in the absence of concurrent computations, since
the various picces of a computation running on different autonomous nodes may lose contact with
cach other, or some may fail while others complete succesfully. To ensure indivisibility of
distributed computations in the face of failurcs, it is necessary to use a two-phasec commit protocol



[GRAY 78, LAMP 79, REED 78, MONT 78, TAKA 79, TRAI 79, LIND 79, STON 78, HAMM
79]). If concurrent operations on the same database are allowed, the nced to undo the effects of
individual operations must be considered in the design of the synchronization protocols; thus the
two aspects of indivisibility cannot be completely scparated.

Many different protocols for atomic actions have been proposed that differ in how they implement:

a) scrializability [ESWA 76, TRAI 78] of atomic actions:
i. synchronization (mutual exclusion) of accesses to individual data objects
ii. detection and resolution of scheduling conflicts

b) recoverability of individual atomic actions:
i. physical update of individual data objects
ii. release of the data objects updated by individual atomic actions

Synchronization of concurrent operations that guarantees serializability can be performed in a

varicty of ways:

1) locking:
a) centralized [MENA 78]
b) distributed with centralized deadlock detection [STON 78]
¢) distributed with distributed deadlock detection [GRAY 78}

7) timestamp-based scheduling of accesses [TAKA 79, REED 78]
3) organization of the database that enforces correct ordering of messages [MONT 78].

Locking schemes, unless some additional sequencing information is used, are all vulnerable to
deadlock. Deadlock detection in a distributed system may be an expensive proposition, unless
locking is centralized (e.g., all requests for locks go through a centralized controller) in which case
locking itself might be too expensive because of this extra step (additional messages) nceded to
acquire the locks. Timestamps define a complete ordering on all the operations in the system. All
requests that belong to the same atomic operations carry the same timestamp, and the individual
nodes in the system are required to process received requests in the timestamp order. Timestamp-
bascd synchronization schemes vary in how they handle out of order (outdated) requests. One
approach is to reject a delayed (older) request if a newer request (that is, a request with a higher
timestamp) has already been processed and abort the atomic action that gencrated the delayed
request [REED 78],  However, this may lead to a "dynamic deadlock” where the same set of
transactions is aborted over and over because those transactions repreatedly outdate cach other --
this is similar to the collision problem in contention networks such as Ethernet [METC 76]. An
alternative solution, less susceptible to dynamic deadlock, is to reject a newer request in favor of a
delayed older request, given that the atomic action that gencrated this newer request has not yet



been locally committed [TAKA 79].

A related problem is when the individual data objects used within an atomic action can be released.
This problem has two subproblems: when the modifications to the data are made permanent, and
when other uscrs are allowed to see these modifications. To be able to recover an atomic operation,
its update requests must be processed in such a way that it is possible to restore the previous
content of all involved data objects. On the other hand. once a node agrees to perform the
requested updates, it must guarantee that those updates will indeed be performed correctly if that
atomic action is committed. Thus, at some point during the exccution of an atomic action, both the
new and the old valuc of all involved data objects must be remembered [LAMP 79, GRAY 78,
GRAY 79]. Other computations may be allowed to view the updated objects before the updates are
committed, but that necessitates recovery of all such computations should the one that produced the
changes have to be recovered. 'This approach is used by Montgomery [MONT 78, MONT 79] and
Takagi [TAKA 79].  Although additional mechanisms are necessary to keep track of the
dependencies of the transactions that have rcad uncommitted data, this provision can significantly
improve performance of the system, especially if the time between writing a new value of a data
object and the actual commitment of the responsible action is long.

Replicated data present additional problems. A two-phase commit protocol could be used again to
preserve the consistency constraint (mutual consistency). However, one of the main reasons for
replicating data is the availability of such data objects even if some nodes are not operating or
accessible; a two-phase commit protocol is unsuitable since it requires nearly simultaneous
availability of all the copies in order to accomplish an update. In fact, if a straightforward two-
phase commit protocol were used, the availability of a replicated data object would be lower than
the availability of a non-replicated (single copy) data object! Thus it is nccessary to use a more
sophisticated scheme where only the fraction of the images must be simultancously available to be
able to procced with the update [ALSB 76, THOM 79, GARC 78, GIFF 79, LIND 79]. Such
protocols arc further complicated by the requirement that update requests can be directed to any of
the copies; carcful synchronization is needed since concurrent requests could produce inconsistencies
if updates were applied in different order at different nodes.

A natural question to ask is how to choose from the variety of schemes developed to solve the
problem of distributed update. However, there is a more fundamental question, and that is, if and
when distributed and replicated data should be used. In principle, the distributed atomic update is
in conflict with the requirement of autonomy. Within any two-phase commit protocol, there exists
a time window during which a participating node must abandon its autonomy and await the final
decision.  Some failures during this window will leave the participating nodes unable to cither abort
the update or commit it; such a situation may last for an cxtended period of time. Although
protocols were developed that substantially reduce the probability that the individual nodes will not
be able to proceed because of a single or of muitiple failures, the price is a very high complexity of
the update protocol; not only such protocols arc likely to be expensive, but their compexity makes



them prone to errors. Thus distributed applications should be carcfully analyzed to determine
whether the consistency of the underlying database cannot be ensured by some other means. An
example of a distributed application where consistency of the underlying database is assured by
compensation tather than by a two-phase commit protocol can be found in [LISK 79]. As for
replicated data, it is often the case that the individual copies needed to provide sufficient availability
of information do not have to be all the most current version of the actual data. If it is necessary to
ensure high availability of the current version of the data, a master/backup arrangement, where all
updates must be directed to the same, master copy, can be used [ALSB 76]. A yet another
approach is to abandon the requirement of consistency of the stored data and rely on catching the
possible inconsistencics on a higher level. This approach has been used successfully in problem
solving systems that alrcady must be prepared to deal with miscellancous inconsistencies arising
from the imperfect or conflicting inputs to the system, additional inconsistencies in the
implementation can be handdled by the samc mcans [ILESS 79].

The final question is how the operating system should support distributed and replicated data. The
operating system should provide mechanisms that simplify implementation of distributed atomic
actions, but should not (and cannot, since many consistency constraints are application dependent)
enforce such atomicity automatically. The specific mechanisms will be discussed in the following
scction. Replication of data is often needed within the operating system, to provide sufficient
reliability. In addition, the operating system can provide an abstraction of a replicated data object
to application programs, but a simple master/backup scheme is probably sufficient.

3. Operating System for Distributed Processing

The fundamental problem in designing an operating system for distributed processing is how to
provide coherence in communication among the nodes in the network while these nodes retain their
autonomy [SALT 78a]. More specifically, it is necessary to decide on the appropriate level at which
coherence ought to be enforced. A related question, that was alrcady brought up in the preceding
scction, is how much support such an operating system ought to provide, that is, what kind of
environment and tools ought to be offered to the implementors of distributed application systems.

In general, an operating system cinbodies mechanisms and policies. Much has been said in the
literature about the nced to scparate these two components. Such a scparation scems to be even
more important in the case of distributed systems. The mechanisms provided in individual nodes
determine what kind of cooperation is possible. Policics specify how the operations of the system
arc controlled. OF course, the mechanisms must be sufficiently powerful to support the desired
policies.

Policies can be classified as resource management policies that control use of a single logical resource
(such a logical resource may be represented by a set of scparately distinguishable and controllable
components) or a collection of resources and communication policies that control communication
between system components and between a resource and its users.  Communication policics are



generally called protocols. Thus in the following discussion the term policy will be used to imply
resource management (resource allocation, protection, maintenance). In the extremes, the policics
can be cither global, that is, they must be observed by the whole system, or local where cach node
sets its own policies.

The choice between a local or a global policy depends on the type of resource being controlled. To
support autonomy, each node of a distributed system ought to have a full control of its local
resources. In particular, the assumption of local autonomy precludes load sharing at the level of
hardware processor allocation: an autonomous node cannot be forced by some central authority to
exccute somcebody else’s program. Conscquently, at this level the resource management policies
ought to be local. Load sharing, if desired, can take place at a higher level, the service level. At
this level, a distributed system can be viewed as a network of servers and clients, with possibly more
than one instance of a server of a particular type. The decision which of the server instances is to
be used when a client asks for a particular service can be based on their momentary availability
and load. The actual control of the server allocation can be cither centralized or distributed: in the
latter case, selection of a particular server can be negotiated by a bidding protocol [FARB 72, SMIT
80). A server can also provide undesignated computing power, that is, it can run arbitrary user
programs and thus act as a direct extention of the user machine [STRO 79].

To be able to operate as an autonomous entity, each node has to have its own (copy of) operating
system kernel that provides the mechanisms for allocating and deallocating the local hardware
resources, controlling attached 170 devices, creating, controlling and destroying processes, and
sending and receving packets of information via a communication network. An example of an
operating system for an autonomous node, a personal computer that is to be used as a building
block of a distributed system, is the Pilot [REDE 79]. The interprocess communication primitives in
Pilot support client/server mode of communication, but a more general type of communication can
also be achieved. The communication facilitics are an integral part of the node kernel and interface
smoothly with the management of the local resources.

Many functions nceded for distributed computing can be congentrated in special servers, but to
smooth out the differences between remote and local services, appropriate interfaces should be
provided in the individual nodes [REED 80]. A collection of such interfaces and the underlying
protocols forms a particle of the network operating system. At cach node, the operating system
should provide a set of higher level primitives that hide the implementation differences of local and
remote entitics, or even the existence and usc of outside scrvers, and facilitate uniform naming of
both local and remote entitics in the language(s) used by the application builders. The network
operating system includes, in addition to the particles present in the individual computing nodes,
facilitics for managing a varicty of servers, some of which may be invisible to the users.

Let us look at some specific issues in the design of an operating system for distributed computing
that have been and still need to be studied:



» Naming. Any object in a system (data object, program, communication port, [/0 device,
ctc.) can have several names, valid in the context of a specific computation, but ultimately such
names must resolve to a name that is unique in the whole system [SALT 78b). In many systems,
this unique name for stored objects is their physical address. However, the physical address can
change during the lifetime of an object In order to avoid the problem of dangling references,
names of this kind should not be propagated beyond the boundaries of individual nodes.
Interesting mechanisms that isolate references between separately managed storage areas were devised by Bishop
(BISH 77]. but such mechanisms, besides being expensive, are again incompatible with the autonomy requirement.
Objects should be assigned identifiers that arc unique in space (within the system) and that do
not change during the lifetime of an object. For easicr management, it is also desirable that
such names be unique in time, that is, that they are never reused. To satisfy the autonomy
requirement, cach node should be able to decide independently how to name its local objects;
system-wide unique identifiers are then obtained by appending the uid of the node to the uid of
the object [ABRA 80, SOLL 79}

The problem of naming resources, and in particular, data objects, is closely connected to the
issue of moving and copying objects. When an object is moved, it can cither retain its name
[ABRA 80], or it can be assigned a different name, a unique identificr local to the target node
[SOLL 79]. An object may contain references to other objects (contain other objects by
reference). If these references are globally unique names, copying or moving can be performed
dircctly. Otherwise, proper interpretation and translation of the cmbedded names becomes
necessary [SOLL 79). A rclated question is whether it is necessary to also copy all the contained
objects or if it is possible to defer this step until the particular contained object is actually
needed, in which case it can be either copied or operated upon at the remote node. The design
choices at this level stropgly influence the low level support mechanisms that the system must
provide for locating, manipulating, and protecting objects. Autonomy plays an important part
here, since it is not possible to rely on later availability of the original site of the copied object
to resolve the names of the contained objects.

When a copy of an object is made, it can be treated cither as a separate object, unrclated to the.
original object, or some form of relationship with the original object can be maintained.
Replicated database where mutual consistency must be maintained represents an extreme case of
such a bond among the existing copics. However, as already discussed, for many applications it
is sufficient to distribute versions of data objects that arc known to represent a particular state of
a data object (state that existed at a particular instance of time) but are not automatically
updated when the master copy of the data is updated. A model where objects arc implemented
as histories of their states was developed by Reed [REED 78] Each distinct state is represented
by an immutable sclf-identifying version [SVOB 80]; these versions can be freely copied. A
natural extention of this model is a mechanism that, given a local copy of some version, checks
whether this version is still current, and if not, retrieves the current version [WYLE 79).
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»  Name binding. Name binding cntails resolving a reference to an abstract object (a higher
level machine-sensible name or a character-string name) by replacing it with information
sufficient to access the physical representation of the object. Binding strategics employed in the
system have a strong influence on how casy it is to dynamically reconfigure the system [ABRA
80]. Binding can be static, that is, a higher level name can be permanently bound to a
particular physical object, or dynamic, when the desired object is ‘determined only when the
name is actually used. Once a higher Ievel name is resolved to indicate a unique object within
the system, the unique low level name of this object can be used in the following references.
However, because of the local autonomy, the named object may be deleted or moved, thus
invalidating the name. Individual nodes must be able to detect such invalid references; for this
reason, the object identifiers should be unique not just for the object’s lifetime, but forever, that
is, they should not be reused. On the other hand, the requestor that submitted an illegal
reference should be able to recover gracefully, possibly by finding (rebinding to) another
instance of the requested entity in the network [ABRA 80).

P Synchronization and recovery. The problem of synchronization in distributed systems has
been studied primarily in the context of distributed databases, and, as discussed in the preceding
section, synchronization has to encompass the problem of recovery. To support execution of
arbitrary computations as atomic actions, the operating system should provide mechanisms for
grouping together updates on many different and distributed data objects, making objects
recoverable, and committing/aborting the updates all at once. Reed proposed a very elegant
comprehensive set of mechanisms to solve this problem [REED 78, REED 79]. The basis is
formed by the already mentioned object model that captures the entire history of a data object.
A request to update an object results in a new version being created. A version has a time
attribute that specifies its range of validity, that is, the time interval in the history of the object
during which the object had that particular value represented by that version. A version is only
tentative until the action that created it is committed. If that computation fails, the version is
simply discarded. The synchronization (mutual ecxclusion) of atomic actions is controlled
through assignment of pscudo-temporal environments to atomic actions. All requests that
belong to a specific atomic action are assigned pscudo-times from the same pscudo-temporal
environment and the range of validity of cach version is specified in pscudo-time. Finally, a
special data structure called a commit record is used to supervise commitment or abortion of the
changes madc by the individual atomic actions. Thesc mechanisms give the users substantial
flexibility in how to resolve scheduling conflicts and how to respond to the unavailability of
some resources. A reliable and cfficient implementation of these mechanisms is being studied
[REED 80, SVOB 80].

»  Recliability. A distributed (dccentralized) system is often chosen on the grounds that it is
(or. can be made) more reliable than a monolithic centralized system, First, both functions and
data can be replicated on independent hardware.  Sccond, propagation of low level errors is
restricted by physical scparation of processes and resources. However, physical distribution,
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decentralized control and autonomy requirements present new problems, in particular in regards
to recovery. This issue was already discussed in connection with atomic actions, but there are
additional considerations.

In order to ensure termination of distributed computations, a process waiting for a response
from another node must be allowed to time out if it does not reccive a response for an
unusually long time. Such an action, however, may leave the system in an inconsistent state,
since it is not known what the requestec has accomplished. 1t should be possible to retransmit a
message Wwithout running into the problem that some action, if performed more than once, will
produce wrong results. ‘Thus all actions should be cither idempotent (repeatable) or it must be
possible to detect duplicate requests. The operating system does not always know that something
is a duplicate request, thus this cannot be handled automatically. However, the operating system
can provide mechanisms that ease the task of detecting duplicates on the application level:
examples of such mechanisms are unique identifiers for inter-node messages and a stable
message log.

While each node ought to implement correctly the protocols needed for distributed computation,
no node should rely on the proper behavior of the rest of the system; run-time checking of
incoming requests should be the normal mode of operation. Again, this task can be aided by
the operating system, but it is necessary to provide the application builders with good tools for
error reporting [SVOB 79b].

» Protection. In the class of distributed systems considered here, intra-node protection
mechanisms are not required to have power sufficient to protect against subversion and malice.
This is in strong contrast to a system such as Multics [SALT 74], and many other time-shared
and multiprogrammed systems that were designed to operate properly with a set of mutually
hostile users. What is required within a single node is a mechanism that protects against error
and forgetfulness. Inter-node protection, on the otherhand must be able to decal with the
potentially hostile environment: 1) individual nodes are autonomous, that is, it is not possible to
assume that they will behave as desired by other nodcs, and ?) the communication lines between
nodes in general cannot be physically secured. The solutions to the second problem generally
use cncryption [KENT 76]. A crucial part of inter-node protection is mutual authentication of
the communication partics; protocols based on encryption authentication (key distribution) were
developed in [NEED 78 KENT 80a). A different kind of problem is that when complex data
structures are transfered between nodes, selected fileds may have to be "covered” (e.g., nil or
zero can be sent instead). Again, the opcrating system can perform this covering automatically as
part of the data transfer/copy protocol [SOLL 79].

A new consideration in distributed systems that allow extensive autonomy and wherc the
individual nodes cannot be physically sccured is protection of proprictary software. Kent
developed a model of a node that provides such protection through a combination of tamper-
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resistant hardwarc and encryption protocols [KENT 80b).
4. Programming Languages for Distributed Applications

In order to make development of distributed applications practical, it is necessary to have a suitable
programming support: a high-level programming language integrated with the operating system,
Such an integration is desirable and has been applied in the context of single processor systems
[LAUE 79], but is cven more important in the context of distributed systems, if the application
programmers are to have control over performance and reliability of their systems.

Several recent languages (e.g., Concurrent Pascal [BRIN 75] or Modula [WIRT 77]) have features
for concurrency, but they assume that processes interact through shared memory. The language
PLITS [FELD 79] is designed for distributed processing, but it does not place strong emphasis on
integrating the language and operating system features. At the Laboratory for Computer Science at
MIT, we have been developing a programming system for implementation of distributed applications
that embody the notion of autonomy [SVOB 79a, .ISK 79]. The programming system is envisioned
as a set of tools that include primitives found in conventional higher level languages such as Pascal
or PL/1, but also primitives normally assumed to be part of an operating system. The primary
design goals for this programming system and the related research are summarized below:

Support well-structured programming. It has been successfully demonstrated that powerful
abstraction mechanisms, and spccifically data abstractions, aid in the production of well-
structured programs [LLISK 77a, WULF 76]. Data abstractions are believed to be very
important to design of distributed applications, because they allow the builder of a
distributed application to work with application-specific entitics, without concern for the
idiosyncracies of the individual autonomous nodes. Data abstractions are also convenient
for hiding distributed nature and replication of databases, if it is nccessary to preserve some
consistency constraints on such a database.

Support communication in terms of abstract objects. Communicating program units should
be able to cxchange messages that contain objects meaningful at that level, rather than
having to translate such objccts into strings of bits deliverable by the communication
subsystem. 'That is, the translation of abstract objects into such low level messages should
be automatic.  Because of the node autonomy, abstract objects may be implemented
differently on different nodes. Thus, one problem is to find a common representation for
various data abstractions and a mapping for each local representation to and from this
common representation [HERL 80]. The second problem is a conversion of this common
rcpresentation, which may be a complex data structure, into a conscqutive bit stream and
vice versa [SOLL 79).

Allow explicit control of the application distribution. Since many placement decisions will be
based on non-technical factors cxternal to the system, the application builders have to be
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aware of the distributed nature of the system, and have the power to determine where parts
of the application will reside; this decision should not be arbitrarily changed by the
operating system in order to improve performance. A special abstraction called a guardian
[SVOB 79a, LISK 79] was proposed as the basic building block (module) of distributed
programs. A guardian is in fact an abstract node: it has its own local memory that is not
dircctly accessible to other guardians, onc or more processes that operatc on the local
objects, and one or more ports for communication with other guardians. A distributed
application is then represented by an abstract network of guardians. The physical
distribution of an application is controlled by assigning the whole guardians to appropriate

physical nodes.

Although scveral guardians may reside on the samc physical node, guardians can
communicate only by sending messages. The possible programming primitives for inter-
guardian communication vary from a remote procedure call to general send/receive
primitives that allow concurrent exccution in both the sender and the recciver [LISK 79]. It
has been argucd that these two kinds of primitives arc functionally equivalent [LAUE 78},
but for cach one there are situations where that kind of primitive seems more appropriate
(it is casier to accomplish the desired effect) than the other one. Thus, just as common
programming languages support, for example, more than one control abstraction for
iteration, a programming language for distributed computing should offer both remote
procedure calls and send/receive primitives.

Support sharing and long-term storage of information. 'The guardians include objects that
have permanent quality that is, that exist outside of the procedurc and the process that
created them. Rather than storing such objects in a separate file system, long-term storage
should be provided by the programming system. The programming system must also
support sharing of information represented as objects that reside at different nodes and
belong to different users. An important aspect of sharing is proper synchronization and
access control.  The mechanisms developed by Reed can make much of the nceded
synchronization transparent to the programmers [REED 78]). Very rcliable and sccure
shared data storage can be provided by special servers [REED 80, SVOB 80].

Support reliable (robust) operations. Requests and responses in a distributed system must be
tested for integrity and authenticity, using a combination of the built-in system features and
application dependent  procedures. A good programming language should provide
exception handling mechanisms [GOOD 75, LISK 77b). Exception handling that involves
concurrent processes also has been investigated [ILEVI 77]. In a distributed system,
cxception handling may genceratc unsolicited messages, that is, "rcsponsc” messages that
were not triggered by an explicit request [ISRA 78]. Additional facilitics nceded for
construction of robust distributed programs arc primitives for sctting (cxtending, cancelling)
timeout, checkpointing primitives, mechanisms that facilitate detection of duplicate requests
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and mechanisms for selective control of recovery.

The programming system must also include tools for debugging, maintenance, and evolution of the
application software. Mechanisms needed for crash recovery of individual guardians are belicved to
provide a suitable base for selective modification of guardians: the old guardian is forced to crash,
and the new version is installed as part of the recovery. Since the whole application network of
guardians can be installed on the same physical node without any changes (given that such a node
has cnough capacity), a lot of debugging can be done locally. However, to be able to assess the
performance and robustness of a distributed application, the programming system would have to be
aided by a simulator.

Summary

This paper looked at selected issucs that arise in connection with a design of an opcrating system
and programming support for distributed systems where the individual nodes operate in a highly
autonomous way. A major problem in this kind of work is the lack of understanding of the
applications. Thus studies of relevant application areas and trial implementations arc an important
step towards a more sound specification of the facilitics needed for distributed processing. And,
there are various related issues: design of the hardware base, that is, of the communication nctwork
and the individual nodes; design of low level protocols; and performance measurement and analysis.
In conclusion, design of distributed systems is a rich problem arca and much rescarch is still

needed.
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