Laboratory for Computer Science Request for Comments 201

Computer Systems Research Division 7 November, 20 1980

CSS Proposal to DARPA for 1981-82

by David P. Reed

Attached is the section of the 1981-1982 LCS proposal to DARPA that
relates directly to the Computer Systems Structure group. It is
not particularly detailed, but gives a sense of where ARPA thinks we

are going over the next two years.

WORKING PAPER-- Please do not reproduce without the author's permission
and do not cite in other publicationms.






Page 1

1. Building Blocks for Distributed Systems

1.1 Introduction and Objectives

The principal objective of this research is to develop and build an effective
substrate for the construction of distributed application systems. This substrate
includes subsystems common to many applications, such as a distributed data
storage system, and tools useful for the construction and maintenance of

applications, such as debugging programs for a distributed environment.

As we discussed in the preceding section, there are certain significant advantages
and attractions for developing and using distributed programs, namely: (1) better
resource utilization; (2) increased availability; (3) simpler protection; and (4) natural

extensibility.

Achieving these advantages requires constructing applications in a completely
new way. The application program faces a much more dynamic environment --
including concurrency, failures, changing system hardware configuration, on-line
installation of software, and changing protection constraints -- than is normally
found in a centralized application. These dynamics make construction of distributed
applications qualitatively different than construction of centralized applications.

The construction and maintenance of centralized applications is aided by a wide
variety of software tools and subsystems commonly found on any modern time-
sharing system such as file systems, debuggers, linker loaders, synchronization
mechanisms, protection mechanisms, and command languages. These tools and
subsystems, while still helpful, are much less effective in constructing decentralized
software. New tools and subsystems will be required for constructing these new

applications.



1. Building Blocks for Distributed Systems Page 2

Our approach to decentralized computing is derived from earlier work at MIT on
the structure of distributed systems (14), and complements work on distributed
system semantics described in the preceding section. Indeed, there is a shared view
and strong cross-coupling of the efforts proposed in Sections 4 and 5 of this

proposal.

1.2 Background and Technological Need

Our proposed effort under this section falls into four areas -- a decentralized data
storage system, a debugging and monitoring system, a naming mechanism to bind
decentralized applications together, and a sample decentralized application that
uses these building blocks. Relevant background for these four areas is discussed

in the following subsections:

1.2.1 Decentralized Data Storage

in many applications where the data involved is naturally decentralized, there is
still a strong need for coordination among the nodes. Such coordination is needed,
for example, to control concurrent transactions involving data managed by multiple
nodes and to orchestrate recovery from failures that impact on such transactions. In
addition, aggregates of interconnected advanced nodes (Section 2) exhibit a need
for shared data storage servers that provide reliable coordination and Iongierm
storage of information. Although there have been many suggested mechanisms for
coordinating synchronization and recovery in a decentralized environment, these
mechanisms usually assume that the data accessed by a computation is known in
advance -- that is, the entire data configuration is known at the time the application is
constructed. For example, the SDD-1 project has developed a technique that

requires preanalysis of all transactions that operate on a distributed data base.

The difficulty of such approaches may be illustrated by an example. Suppose that
a distributed application involves interconnection of two autonomous inventory
control systems, belonging to independent organizations A and B. Ordering an item



1. Building Blocks for Distributed Systems ‘ Page 3

to be moved from A to B requires a transaction to act at both A and B. Yet if A and B
are autonomous, the actions taken at A may be unknown to the implementor of B,
and vice versa. Proper synchronization and recovery from failure in such multi-node
transactions must be achieved without knowing the implementation details of the

autonomous subsystems.

Reed has proposed an approach (1) (2) that works to coordinate synchronization
and recovery of data in autonomous subsystems. If each node stores its local data in
a data storage system that follows the protocols suggested by Reed, then application
transactions on each node that manipulate their own local data can be easily
combined into larger, multi-node transactions. Synchronization and recovery of
these multi-node transactions is automatically provided by the mechanisms of the

individual data storage systems.

Although data is naturally decentralized, the economics of secondary storage
devices are such that reliable, low-cost, long-term data storage is still best provided
as a shared resource. This naturally leads to the concept of repository nodes --
special nodes whose job is to provide reliable, low-cost, long-term storage of data.
Such a notion is exemplified by two systems produced at Xerox PARC -- WFS (15),
and Juniper (7).

Our approach of coordinating access to distributed data and shared data storage
servers is embodied in our proposed SWALLOW distributed data storage system
(13). The SWALLOW system is intended to support a wide variety of decentralized
applications and is further explained in Section 5.4.

1.2.2 Debugging and Monitoring System
Debugging a decentralized application is qualitatively different from debugging a
program in a centralized system. This difference results from at least the following

new effects present in decentralized applications:



1. Building Blocks for Distributed Systems Page 4

1. Concurrency: Each piece of a decentralized application operates
concurrently, so that debugging tools oriented towards single-stream
computations are rfot very helpful.

2. Autonomy: The decentralized applications are often built incorporating
prexisting application subsystems. These subsystems may present an
opaque interface to the application programmer who is debugging his
application. '

3. Failure Recovery and Time-outs: Failures of components are often
detected by time-out mechanisms. Debugging facilities, such as the use
of breakpoints, may interfere with the real-time behavior of a system,
provoking time-outs where none would otherwise occur. Debugging
facilities must also be capable of exercising the failure recovery
mechanisms of the application, hence they must be able to simulate
failures. '

Our approach to debugging and monitoring dece,ntralized applications is based
on interposing a debugging and monitoring system (DAMS) on the communication
mechanism that links the nodes of a distributed system. This debugging and
monitoring system will be able to observe, to modify, to delay, to delete, and to
introduce messages between the nodes participating in the application.

The DAMS must be able to control the apparent progress of time in the nodes of
the system, so that time-outs do not occur as a result of debugging. It must also be
able to simulate a variety of failures and operating conditions such as lost packets,
variable network delays and node response times. Finally, the DAMS must present
information about the system at a variety of levels of abstraction -- the debugging
user may wish to see information in packets as bits, or grouped together as high-
level messages. Similarly, interactions among nodes, such as remote procedure
calls, might be viewed as multiple messages, or as single abstract computation
steps, depending on the level of desired detail.

Although there has been much work to date on debugging systems, very little of it
is applicable to decentralized debugging. The inspiration for our work comes from



1. Building Blocks for Distributed Systems : Page 5

two sources -- the METRIC system developed at Xerox PARC (9) and the virtual
machine emulator developed at IBM San Jose Research Laboratory (6). Strictly
speaking, neither of these is a debugging system. Instead they are systems that

support the monitoring of concurrent system processes.

1.2.3 Naming Mechanisms

The naming mechanisms of any computing system are an important ‘paft of the
"glue" that holds applications together. For example, directories provide
mechanisms for grouping parts of an application together, while the name resolution

mechanism of a linker/loader provides means for inter-module communication.

For decentralized applications, existing naming facilities are much more primitive.
Typically, the only system-wide standard names refer to the ports on the network
(such as the _ARPANET host names). Such names are relatively static over time, and

are assigned and managed by a central administrator.

We believe that distributed system applications need a much richer name
environment, with the ability to assign and rebind names to application-level entities
such as pfocesses, services, data objects, and users. This function can be provided
by a standard naming mechanism that is itself a decentralized system. Application
builders should be able to assign names and rebind them dynamically without
interacting with central management. The naming mechanism must itself be

extremely reliable in the face of expected component failures.

The naming facilities in traditional operating systems provide a wide variety of
functions. Names are used to link the parts of systems together -- files, program
modules, etc. The naming systems in traditional operating systems typically provide
facilities that allow some or all of the following (non-exhaustive) set of features:

1. Autonomous Name Definition: multiple independent users can invent
and use names.



1. Building Blocks for Distributed Systems Page 6

2. Dynamic Name Definition: names can be (re)defined while the system is
running.

3. Multiple Naming Contexts: user-dependent name definitions are
allowed so that substitutions made by one user do not affect all users of
the naming system.

4. Translation of Long-term Names to Efficient Short-term Names: such as
the conversion from the name of a module to its virtual memory address
by a linking loader.

These issues are further discussed in Saltzer (3) in the context of traditional
operating systems. Each of these features has an analog in distributed systems, but
the distributed environment is different enough that the traditional mechanisms do

not generalize.

Comprehensive programming systems tools such as program libraries (for
example, the Multics library system (3) or the CLU library system (4)) use rather
sophisticated naming facilities in their implementation. Building such a program
library function in a distributed system will require careful attention to the naming
mechanisms in order to provide the autonomy and reliability possible in distributed

systems.

Natural implementations of naming mechanisms in a distributed system often
include "name server" nodes that maintain the name-object mappings. But the
server is only part of a larger system. The patterns of name use in the larger system

will determine the functionality of the server.

We would like to develop naming mechanisms for use by distributed applications
that are at least as flexible and powerful in the distributed system context as are the
naming mechanisms of Multics in the context of a single mainframe. Just as the
naming mechanisms of Multics simplify the construction and testing of applications,
the naming mechanisms of the distributed system should be the fundamental
building blocks for distributed applications.

-



1. Building Blocks for Distributed Systems Page 7

1.2.4 Decentralized Application Support

To date there have been very few decentralized applications built. Those that do
exist have relatively simple functionality, e.g., message systems, airline reservation
systems, and banking transaction systems. Construction of these systems has
typically involved substantial effort because they had to be engineered from the

ground up.

We believe that with the proper tools, we should be able to construct more
ambitious decentralized applications with greater ease. Such applications might
include distributed administrative information systems and command and control
systems that are more than straightforward enhancements of message systems. To
that end we would like to build a small prototype of a decentralized application that

tests and exercises the tools that we develop.

1.3 Accomplishments

In 1977 and 1978, we developed the mechanisms for coordinating accesses to
data in decentralized systems. During 1979 and 1980, we began work on the
concepts of the SWALLOW distributed data storage system and on the specification
and construction of an initial prototype implementation on several interconnected
ALTOs. |

During the course of this work we focused our attention on the performance of the
shared data storage servers (repositories) of SWALLOW. Our efforts during 1980
resulted in a design of the server that uses append-only random-access storage
devices for its stable storage. Such storage devices can be naturally implemented
by wriie-once optical disk storage technology. By the end of 1980 we expect to have
completed construction of a prototype repository and to have begun using and

enhancing it.



1. Building Blocks for Distributed Systems Page 8

1.4 Proposed Effort and Milestones
Our proposed effort for 1981 and 1982 is presented in the following four sub-
sections and represents the four proposed areas of work that we have already

discussed.

1.4.1 The SWALLOW Distributed Data Storage System

By the beginning of 1981, we expect to have a working prototype of a SWALLOW
repository. This protype will support the basic protocols and will be implemented on
an ALTO (16) using magnetic disk storage. In 1981, we will concentrate on
implementing the brokers of the SWALLOW system,; i.e. the software at each node
that manages both the local data stored on the node and the remote data stored on
remote repository nodes. We intend to construct the brokers on the advanced
nodes (Section 2), and perhaps on other architectures, should that seem desirable.
Our ultimate intention is to integrate the SWALLOW system with the Extended CLU
language (8) (proposed in Section 4) on the advanced nodes.

During 1982, we plan to continue work on the SWALLOW repository, producing a
second prototype on the advanced nodes. To that end, we would like to explore
construction of a repository that uses random-access, write-once optical disk

memory in order to demonstrate both our design and the optical disk technology.

Protection of information in the SWALLOW system is important to that system’s
purpose and usability. Accordingly, during 1981 we plan to explore techniques and
possibly the use of hardware modules toward that end.

1.4.2 Debugging and Monitoring System

During 1981, we plan to develop a system for debugging and monitoring
decentralized applications. As noted in Section 5.2.2, this work will concentrate on
issues such as‘timing, monitoring and controlling message passing, thereby
providing several levels of detail to the user of the debugging and monitoring

systems.



1. Building Blocks for Distributed Systems Page 9

The initial phase of the work consists of the construction of a debugger that can
observe and control the message passing activity of a distributed application
running on several nodes. Where feasible, we intend to coordinate this work with
the work on the ECLU language proposed in Section 4, so that the messages seen
by the debugger are viewed on the level of ECLU rather then as packets that are
simple strings of bits. Each node implementing part of an application would
cooperate with the node containing the debugger, so that all messages are
forwarded through the debugger. The debugger then can display the messages,
forward them to their destinations with controlled delay, and relate the activity

caused by forwarded messages to the causing messages.

The result of the first phase will be a debugging system that allows detailed
observation and testing of a distributed application. It will often be the case that the
initial system provides information and control that is far too detailed. The second
phase of our investigation will involve development of techniques to hide unwanted
detail. Our approach will be to look for common patterns in the dynamic behavior of
systems. For example, the debugger may be able to recognize retransmission of a
high-level set of requests. The user then would not have to deduce that a set of
messages are duplicates of previously seen ones. The debugger could then analyze
the difference between the first execution and the one resulting from retransmission,

presenting the user with the "difference" information.

1.4.3 Naming Mechanisms for Decentralized Applications
During 1981, we plan to investigate naming mechanisms for naming the
constituent parts of decentralized applications. We plan to construct a useful

~ naming system based on this research.

This activity closely related to the work proposed in Section 4. The parts of a
distributed application, i.e. its modules, its nodes, and its permanent data, will use a
common naming mechanism. We will first explore the impact of the autonomy and



1. Building Blocks for Distributed Systems Page 10

the dynamics of distributed applications on the semantics of the underlying naming
facilities. The result of this exploration will be in the form of a design for a naming

mechanism to be used within decentralized applications.

Our next step is the construction of software that implements the design. We
intend to coordinate the construction of this software with the research proposed in
Section 4. We expect that construction of specialized name server nodes will be
necessary to support the naming mechanism in order to reduce dependence on

individual autonomous nodes.

1.4.4 Demonstration Application
During 1982, we would like to demonstrate the utility of these system building
blocks in the context of a sample decentralized application. The sort of applic_:ation
that we have in mind must have a significant requirement for local autonomy and
local tailoring of software. Examples of such applications are:
1. Command and control systems that include interaction of both
computers and human operators i.e., something more than a message
system. For example, if each such site maintains its own operations

data base, an operation at one site may need to perform coordinated
actions at multiple sites as part of this command.

2. A scheduling system for meetings, personal calendars, rooms, and so
forth. By this we mean a system that assumes much of the burden
carried by secretaries in arranging schedules, but where secretaries and
principals are still in the loop to handle exceptions. This system calls for
a high degree of autonomy and tailoring.

3. A distributed program library system to support the development of
decentralized applications, by enabling sharing of subsystems.

During 1981, we would like to select an application and invite DARPA’s help
toward that end. By 1982, we expect to begin construction of a prototype. Our
major effort in 1982 will be oriented around the construction of this prototype.



1. Building Blocks for Distributed Systems Page 11

1.5 Relevance to DARPA/DOD and Technology Transfer

Within the DOD, decentralized systems have a natural application due to the
decentralized nature of the organization and its data and computing requirements.
New hardware advances such as the development of powerful advanced computing
nodes, high performance local area networks, and longhaul packet networks have
all enhanced the opportunity and need for such decentralization.

Yet the capability to construct decentralized Systems has not keep pace with these
hardware advances. Since there are many applications within the DOD that require
or will require decentralized solutions, it is important that tools and subsystems be
developed that aid in the construction of such applications.

The SWALLOW distributed data storage system, for example, can be a key
component in any application Where access to decentralized information is
important. Similarly, the debugging systems that we plan to construct are expected
to have wide applicability in the construction of many different kinds of decentralized

systems.

Transfer of this technology to the DOD is likely to occur in two ways. First, the
systems that we construct will be usable on the advanced nodes. Second, the
techniques that we will develop are expected to be useful in a wide variety of
application environments.

1. Reed, D.P., "Naming and Synchronization in a decentralized computer

system,” Ph.D. dissertation, MIT Dept. of Electrical Engineering and
Computer Science, September 1978. Available as MIT/LCS/TR-205.

2. Reed, D.P. "Implementing atomic activity on decentralized data,"

Presented at ACM Search Symposium on Operating Systems Principles,
10-12 December 1979, Pacific Grove, California.

3. Saltzer, J. "Name binding in computer systems," in Computer System
Engineering, Draft notes for MIT Subject 6.033, MIT, Cambridge, Ma.

revised July 1979.



1. Building Blocks for Distributed Systems Page 12

4. Liskov, B.et al., "CLU reference manual," MIT/LCS/TR-225, MIT
Laboratory for Computer Science, Cambridge, Ma., October 1979.

5. Bernstein, P.A., Shipman, D.W., Rothnie, J.B., and Goodman, N. "The
concurrency control mechanism of SDD-1: A system for distributed
databases (The general case),” Technical Report CCA-77-09,
Computer Corporation of America, Cambridge, Ma., December 15, 1977.

6. Canon, M.D., Fritz, D.H., Howard, J.H., Howell, T.D., Mitona, M.F., and
Rodriguez-Rosell, J."A virtual machine emulator for performance
evaluation,” Communications ACM 23, 2 (February 1980), 71-80.

7. Israel, J., Mitchell, J., and Sturgis, H. "Separating data from function in a
distributed file system,” Proceedings of the Second International
Symposium on Operating Systems, France, October 1978.

8. Liskov, B. "Primitives for distributed computing," Proceedings of the

Seventh ACM Symposium on Operating Systems Principles, Pacific
Grove, California, December 1979, 33-42.

9. McDaniel, G. "METRIC: A kernel instrumentation system for distributed
environments," Proceedings of the Sixth ACM Symposium on Operating
Systems Principles, Purdue University, November 1977, 93-100.

10. National Bureau of Standards. Data Encryption Standard, Federal
Information Processsing Standard Publication 46, 1977.

11. Reed, D.P., "Implementing atomic actions on decentralized data,"
Proceedings of the Seventh ACM Symposium on Operating Systems
Principles, Pacific Grove, Ca., December 1979, 163. Submitted to

Communications ACM.

12. Reed, D.P. "Naming and synchronization in a decentralized computer
system," Ph.D. dissertation and MIT/LCS/TR-205, MIT, Laboratory for
Computer Science, Cambridge, Ma., September 1978.

13. Reed, D.P. and Svobodova, L. "SWALLOW: A distributed data storage
system for a local network," submitted to International Workshop on
Local Networks, sponsored by IBM Zurich Research Laboratory, August
1980.

14. Svobodova, L.et al. "Distributed computer systems: Structure and



1. Building Blocks for Distributed Systems Page 13

semantics,” MIT/LCS/TR-215, MIT, Laboratory for Computer Science,
Cambridge, Ma., March 1979.

15. Swinehart, D., McDaniel, G., and Boggs, D. "WFS: A simple shared file
system for a distributed environment," Proceedings of the Seventh
Symposium on QOperating Systems Principles, December 1979, 9-17.

16. Thacker, C.P., et al. "Alto: A personal computer," to appear in

Computer Structures: Readings and Examples, Sieworek, Bell and
Newell (Eds.), McGraw-Hill, 1979.

17. Ward S. and Terman, C. "An approach to personal computing,"” invited

paper, COMPCON Spring 80, IEEE Computer Society International
Conference, San Francisco, February 1980, 460-465.






