M.LT. Laboratory for Computer Science) Request for Comments No. 202
Computer Systems Research November 21, 1980

SMP Protocol Specification
by Leandro Lopez

1. Overview

The SWALLOW Message Protocol (SMP) is a communications protocol intended for the efficient
tansfer of arbitrary size messages between nodes in a distributed data storage environment. More
particularly, it implements the communications substrate of the SWAILLOW data storage system [1].

The protocol allows several client processes to simultancously send and receive multiple messages.
Clients interface to SMP through ports; ports themselves arc subdivided into paths. Fach message is
sent through a uniquely named path.

Transmission of short messages involves minimum overhead since no connection sctup nor
acknowledgment is required. SMP will guarantce the integrity of a received message but the higher
level protocols arc responsibic for detecting duplicated and lost messages. 1.ong messages, on the
other hand, arc broken up into variable Iength segments for transmission. A scgment number
associated with each segment, together with the unique path name, makes detection of duplicated
and unordered scgments possible. Lost packets are detected with the help of timeouts;
retransmission is requested via negative acknowledgments (sclective retransmission). Both ends are
able to abort ‘an ongoing transfer. The nature of the problem encountered is reported, when
possible, to the client.

Each path is individually flow controlled; the end to end flow control mechanism is based on a
credit scheme. ‘

SMP makes usc of the underlying datagram scrvice provided by the User Datagram protocol {2].

Working Paper — Please do not reproduce without the author’s permission and do not cite in other
publications.

2. Interfaces

SMP interfiaces on one side to the higher level client processes and on the other to an underlying
datagram service.

Message transmission from the client point of view is carried out by a scquence of appropiate
procedure calls. A minimum sct of such procedures must include means for opening and closing
ports, managing paths, sending and receiving segments of messages, and querying the status of a
path. Appendix 2 presents a MESA definitions file of a typical client interface.

SMP utilizes the underlying datagram scrvice offered by the User Datagram Protocol (UD) [2],
which provides unreliable and unordered port-to-port transport of packets. On top of it SMP
implements the path management functions as well as flow control and error control on a per path
basis.

3. Addressing and Multiplexing

An SMP implementation allows scveral client processes to concurrently send and receive multiple
messages. Clients interface to SMP via one or more ports. Each port is further subdivided into paths
through which messages are transferred. Hence, cach client may simultancously be sending and
receiving several messages, cach through a different path.

Paths arc bidircctibnal, but at most one message may be transferred in each direction. This feature
allows clients to send a higher level request and receive the corresponding response through the
same path. A path is specified by the concatenation of an origin-destination host address pair, an
o.d. port number pair and a unique path identificr (UID)). The least significant bit of the UID
distinguishes between messages sent through an unused path (requests) and messages transmitted
through a previously active path (responses). The UID is unique among all messages originated by a
given port; therefore, every message is transmitted through a different, network-wide unique path.

4. Packet Format and Purpose

Five packet types are defined: two of them arc data carrying packets, the remaining three serve
different control functions. Every packet includes its path identifier, but its format is type
dependent.

SMP protocol packets are transmitted as datagrams. A fixed-size SMP header follows the UD
header supplying additional SMP specific control information. Finally, packet type dependent data
and control ficlds complete the packet. The data ficld is variable in length; cach data carrying
packet may contain from 0 to 536 data bytesl,

(1) The Internet Protocol [3] —underlying the User Datagram protocol—recommends a packet-length upper limit of 576

bytes. The typical IP header is 20 bytes long, UD uses an additional 8 bytes and SMP requires 12 bytes for its header,
leaving a maximum of 536 bytes for data.

The header comprises the following fields:

UuiD (32 bitg)
Opcode (16 bits)

‘The UID should be distinct for every message originated by a given source. The opcode defines the
packet type, onc of the following:

(1) FSM First Segment of Message

(2) SSM Subscquent Segment of Message

(3) SRA Segments Request and Acknowledgment
(4) NAK Ncgative Acknowledgment

(5) ABORT Abort Request

An FSM packet carries the first, or only, scgment of a message. It also informs the recipient the
total length of the message (in bytes) and the maximum number of outstanding segments the source
is able to handle (i.c. the number of slots in its retransmission qucue). Knowledge of the total
length of the message allows the recipient to allocate the appropiutc amount of resources, or to
abort the transfer in the first place if there is not cnough space for storing the incoming message.
Also, the recipient can determine the end of the message without need of a special signal. For flow
and error control purposes it is important that the receiver know the size of the sender’s
retransmission queue, since it imposes an upper limit on the window size.

SSM packets are utilized to send the rest of the scgments composing a message. A segment number
identifies the position of a given segment within the completc message. 'The segment sent along
with the FSM packet is by definition segment number zero, thus the range of SSM scgment
numbers is [/,(tns-1)], where s is the total number of scgments of a message. The segment number
is represented by a 32-bit long integer; hence, messages may have up to 232 segments.

The purpose of SRA packets is to acknowledge the correct reception of all scgments, up to and
including the one spccificd by the contents of its acknowledged segment number (asn) ficld, and to
report a window (i.e. number of segments the source is allowed to transmit starting with segment
number asn+ 1).

When packets get lost or arrive damaged, the recipient requests their retransmission via NAK
packets. The scgment that needs retransmission is specified by the contents of the requested segment
number field.

An ABORT packet is used, when an unrecoverable error is detected or another insurmountable
problem is encountered, to inform the other end of the source-sink pair to abort the ongoing
transfer. This is only an optimization since the inability to complete the transfer will always be
detected by cither sender or receiver timing out. The nature of the problem encountered is encoded
in the error type field. A variable length error message may be appended.

S. Flow Control

‘The puipose of an end to end flow control mechanisim is to adjust the source rate to the sink rate
so as to avoid sink buffer congestion. Morcover, this is to be acomplished in a way that maximizes
path throughput.

5.1 Mechanism

SMP’s flow control mechanism is based on a credit scheme. The recipient informs the sender how
many scgments it is permitted to send without need of an acknowledgment (i.c. specifies a window).
The window size is limited by the number of free buffers allocated for message rcassembly at the
rcceiving end, and also by the size of the source’s retransmission queue. This precludes any
possibility of reassembly deadlocks! and assures that retransmission requests will be honored.

When a message transfer is initiated, the first packet sent informs the recipient the total length of
the message, as well as the number of outstanding segments that the source can handle. The source
will restrain from transmitting any segments until it is told to do so by mecans of a segments request
and acknowledgment (SRA) packet, which acknowledges the correct reception of the initial segment
and requests the transmission of a certain number of scgments. The recipient makes further requests
cach time that the client —having processed the correctly received segments— frees up some buffer
space. This process is repcated until the whole message is transferred.

5.2 Policy

The flow control policy is concerned with (1) deciding how many segments to ask for, and (2) when
to make the request, in order to optimize the use of the available resources (c.g. network bandwidth,
disk transfer rate, ctc.) and maximize the throughput,

If the recipient waits to send an acknowledgment till it receives all packets of a previously requested
window, a silence period of duration at least cqual to the round trip delay will be incvitable. Note
also that since acknowlcdgments free buffer space at the source node, a delayed acknowledgment
may, in some cases, unnecessarily slow down the source client (c.g. if the clicnt runs out of buffer
space and all buffers are used up by the retransmission queue, a new scgment will not be
immediately available for transmission at the moment an acknowledgment arrives). Careful
allocation of buffers to both client and retransmission queuc will solve this problem. Still another
disadvantage of the single acknowledgment is that, if it gets lost, the only way to detect it is by
means of a costly timeout. On the other hand, sending an acknowledgment for cach correctly
received packet will generate unnecessary traffic and added burden to both hosts. The best
compromise is to send an acknowledgment when the number of free buffers exceeds a certain
threshold value. The optimum threshold value will, in general, depend on several factors: window
size, network dclay and client’s source and sink rate.

(1) A reassembly deadlock occurs when the receiver is waiting for an out of sequence segment but no buffer space is
available for it ‘

On a high bandwidth, low crror-rate local network environment, the cffect of the round trip delay is
minimized and it is possible that sending a single acknowledgment after receiving the complete
window will not significantly degrade the throughput. Some cxperimenation is needed in order to
decide on a final policy.

6. Krror Control

Packets may get lost, damaged, become duplicated or may arrive in an order different to the one in
which they were sent. The recipient should be able to detect such occurrences and recover from
them. -

6.1 Error Control at Receiver

The recipient SMP module will discard any incoming packet whose path does not correspond to
onc of the active paths. The only exception to this rule is, of course, the case of an FSM packet.
Hence FSM packets are "dangerous” in the sense that duplicated ones may not be detected by SMP
(for example, when the duplicated packet arrives once the corresponding path is no longer active).
As previously mentioned, the client should recover from such events.

Recall that each segment carries an identifying scgment number that defines its position within the
complete message. This cnables SMP to detect duplicated and unordered segments. Duplicated
segments are simply discarded; the same applies to out of range scgments, i.e., scgments not
belonging to the current window. Out of scquence scglncnts are accepted since cnough buffer space
for resequencing is guaranteed by the flow control mechanism. Lost packets are detected with the
help of timeouts, i.c., if a requested packet is not received in some specified amount of time it is
assumed it got lost.

An informal description of the crror recovery procedure of the recipicnt is the following. After
receiving an FSM packet, the recipient issues a request for a certain number of packets and starts a
timer. Under normal circumstances packets will start arriving before the timer runs out, but should
a timecout occur, the request is retransmitted (probably got lost). The timer is restarted after
receiving each segment. If a timecout occurs, the recipient checks for all missing segments and
requests the retransmission of cach of them issuing a NAK (sclective rctransmission). NAKs may
also get lost; a timcout again will signal the need for retransmission. Should a certain number, say
three, of consecutive timcouts happen, then the mcssage transfer is aborted for in this casc the
source probably crashed or the transmission channel failed.

In the case of a local network—where packets usually arrive in order—it is probably a good idea to
immediately request retransmission of all lower numbered missing packets when an out of order
packet arrives, instcad of waiting for the timeout.

6.2 Error Control at Sender

The same timcout and retransmission policy applies to the transmission of FSM packets at the

source end (only in the case of long messages, see below). Once an FSM packet has been
acknowledged, however, it is the responsibility of the recipient to detect lost packets and requcst
their retransmission. The source node will only timeout and abort the transfer if it does not hear
from the recipient for a reasonably long period of time.

7. End of Transfer

After sending the last scgment of a message the source considers its job done and does not expect a
final acknowledgement. Correspondingly, the recipient does not acknowledge the last segment
reccived. Note that, as a result, single fragment messages are not acknowledged.

Another consequence of this is that in the case of long messages, the sender will not wait for an
acknowledgement after sending the last segment, but this last segment will most certainly belong to
a window. Thus, all segments composing the last window will not be retransmitted in case they are
damaged or lost. Although the probability of this happening is very small, it is nonetheless positive.
The receiving SMP module will detect the error and report it to the client, who is responsible for
recovering from such occurences.

References

[1] Reed, D. P., Svobodova, L., "SWALL.OW: A Distributed Data Storage System for a Local
Network,” M.LT. Laboratory for Computer Science, RFC No. 192, June 1980.

[2] Postel, J., "User Datagram Protocol,” 1EN-88, USC-Information Sciences Institute, May 1979.

[3] Postel, J., "Internet Datagram Protocol,” IEN-80, USC-Information Scicnces Institute, February
1979.

Appendix 1

SMP Packet Format

Five packet types are defined:

(1) FSM
(2) SSM

(3) SRA

(4) NAK
(5) ABORT

First Scgment of Message
Subsequent Segment of Message

Segment Request and Acknowledgment

Negative Acknowledgment

Abort Request

Fvery packet carries a fixed size header followed by packet-type dependent ficlds. The fixed header
consists of a unique path identificr (U11) and a packet type identificr (Opcode). The least significant bit
of the UID should be set to "1" when the message is being transmitted through a path that was

previously used to receive a message; to 0" otherwise. The following table specifies the format for each

packet type:

Packet Type
FSM

SSM

SRA

NAK

ABORT

Field

UID
Opcode
Total message length (in bytes)

Max. number of outstanding packets

Data

uiD

Opcode

Segment number
Data

UID

Opcode

Acknowledged segment number
Window size

UID
Opcode
Scgment number

uUID

Opcode

Error code
Error message

Length

4 bytes
2 bytes
4 bytes
2 bytes
0 to 536 bytes

4 bytes
2 bytes
4 bytes
010 536 bytes

4 bytes
2 bytes
4 bytes
2 bytes

4 bytes
2 bytes
4 bytes

4 bytes
2 bytes
2 bytes
0 to 536 bytes

The correspondence between the opcode value and the packet type is:

Packet Type Opcode Value

FSM (g
SSM)
SRA O
NAK @),

ABORT (177777),

Appendix 2

-~-SmpClient.mesa (by Gail Arens)

--This module defines the client’s interface to the Swallow Message Protocol package.
--Last change: November 6, 1980 by LL

DIRECTORY
ProcessDefs: FFROM "ProcessDefs" USING [Ticks],
SmpPath: IFROM "SmpPath" USING [Path, PathType],
SmpPrimitives: FROM "SmpPrimitives” USING [User, InternetAddress, ErrorType,
StatusType, Port];

SmpClient: DEFINITIONS =
BEGIN OPEN SmpPrimitives;

-- TYPES -

AbstractObject: TYPE = {hidden};

Path: TYPE = SmpPath.Path;

Port: TYPE = SmpPrimitives.Port;

User: TYPE = SmpPriitives.User;

Siteid: 'T'YPE = SmpPrimitives.InternetAddress;

-- ERRORS -
CommunicationError: ERROR [e: ErrorTypel;

‘TooManyPaths: ERROR [excess: CARDINALYJ; .

- PROCEDURES --

- Starting up and shutting down the Smp package -

StartUp: PROCEDURE [maxbuffers, bufferpoolsize, pathpoolsize, rgSize: CARDINAL;
== This procedure does all initializations and then starts up the SMP module,

-~ maxbuffers = max. number of buffers each client can claim

-- bufferpoolsize = total number of buffers assigned to SMP

-- pathpoolsize = defines max. number of concurrently active paths
-- rqSize = size of the receive process queue.

‘ShutDown: PROCEDURE;

-- Gracefully turns off the Smp package. Finishes up whatever buffer it is sending
or receiving at the moment and then stops all communications with the network.

-- Registering with Smp --

CreateClient: PROCEDURE RETURNS {port: Port);

= Gives the client an unused port through which it can send and receive
messages. All packets of messages that are sent to a SMP client must include its
port in the address. '

OpenClient: PROCEDURE [port: Port};

-- Opens a specific port. Signals PortError if that port number is already being
used. .

DestroyClient: PROCEDURE [port: Port];

-- Cancels the given client. Smp won’t accept any messages addressed to this
client once this procedure is executed.

- Management of the paths --

-- There arc multiple paths for cach port through which messages can be sent or reccived. This
allows the client to send or receive more than one message concurrently. Only one message can be
transmitted through a path at once and the complete message must be transmitted through the same
path. In order for a clicnt to send a message it must first Claim a path. When receiving, all first
scgments of a message sent to the client are directed to the client’s port and then are received
through any available path so it doesn’t have to Claim one. When the client receives the first buffer
it also receives the path so that it can receive any subscquent segments that exist for that message.
In cither case, the client must GiveUp the path once it has sent or reccived the message.

Claim: PROCEDURE [source, destination: User] RETURNS [p: Path];

== Claims a path in the port through which a client can send a message. A new
path must be claimed for every message sent. The client never has to claim a

path in order 1o receive a message. All first segments of messages along with the
path through which any remaining segments may be received are handed to the
client’s main process when it executes Getlirsl.

GiveUp: PROCEDURE [p: Path];
-- This procedure must be executed once a client has finished receiving or
sending a message. Simply gives up the space occupied by the path for use by
another message.

Abort: PROCEDURE [p: Path];

-- Aborts the transmission or reception of the message associated with this path.
Sends ABORT packet to other end.

-- Receiving messages --

-- Paths don't have to be claimed in order to receive a message since they are handed to the client
process with the first buffer. They do have to be given up when the message is completely reccived.

GetFirst: PROCEDURE [port: Port] RETURNS [p: Path, buffer: DESCRIPTOR FOR ARRAY OF
WORDJ;

-- I'very message is received through a path. All first segments of a message are
obtained via this procedure. It returns the first segment of the message and the
path through which it was received. All subsequent segments of this message (if
any exist) must be received through this path via GetNext (below).

OkToReceive: PROCEDURE [p: Path, maxbuffers: CARDINALJ;

-- The sending node won't send any subsequent segments until this procedure is
executed by the client. SMP will tell the source how many segments it can send
(i.e. specifies a window) before it must wait for an acknowledement. The client
only needs to execute this procedure once for a single message. Afier that the
SMP receive process will do the acknowledging and requesting for more as the
client frees up the buffers that have already been received. SMP will never
request from the sender more segments than the number (maxbuffers) specified in
this procedure call.

GetNext: PROCEDURE [p: Path, timeout: ProcessDefs. Ticks] RETURNS [buffer: DESCRIPTOR
FOR ARRAY OF WORDJ;

-- Returns the next segment buffer of the message being received through the
given path. This procedure can’t be executed before OkToReceive has been
executed unless the client is getting a message that is a response lo a message it
originally sent, (see FirstDescriptor). This procedure returns a NIL descriptor if
called once all buffers have been received. It will signal CommunicationsError if
an error in the reception of the message occurs.

11

-- Sending messages -

== In order to send a message a client process must first Claim a path through which it will be sent.
When it is finished scnding the message it must GiveUp the path (sec path management
procedures).

FirstDescriptor: PROCEDURE [p: Path, maxbuffers: CARDINAL, awaitresponse: BOOLEAN]
RETURNS [buffer: DESCRIPTOR FOR ARRAY OF WORDY;
== Gels the first buffer in which the data of the message being sent may be
placed. The systent won't ever let a client have more than “maxbuffers” buffers
outstanding at any one time. If the client expects a response to the message it is
sending then it must indicate this through a TRUE value for "awaitresponse”.
SMP will then use the same path it used for sending the request to receive the
response. All the client process needs 1o do is execute GetNext’s on the same
path until it has received all the segments of the response.

SendFirst: PROCEDURE [p: Path, messagelength: LONG CARDINAL, bufferlength: CA RDINALYJ;

-- Sends the first segment of the message. "messagelength” specifies the length
of the entire message, "bufferlength” is the length of the first segment.

NextDescriptor: PROCEDURE [p: Path] RETURNS [buffer: DESCRIPTOR FOR ARRAY OF
WORDJ;
== Gels the next buffer in which the data of the message being sent may be
placed.

SendNext: PROCEDURE [p: Path, bufferlength: CARDINALJ;

-- Sends the next segment of the message. This is used for messages that consist
of more than one segment. If an unrecoverable error impedes further
transmission it signals ConwnunicationError.

-- Status Information -

Messagel.cngth: PROCEDURE [p: Path] RETURNS [length: LONG CARDINAL];

== Returns the length (in bytes) of the entire message being transmitted or
received through the given path.

PathiD): PROCEDURE [p: Path] RETURNS [source, destination: User, uid: LONG CARDINALJ;

-- Returns the path identifier of the message being transmitted or received
through the given path,

StatcOchésagc: PROCEDURE [p: Path] RETURNS [t: SmpPath.PathType, s: StatusType, e:
ErrorType, numSegments: LONG CARDINAL]J;

== Returns certain useful information about the state of the message being
transmitted through the given path: whether or not a message is being sent or
received, the sialus, any error messages and how many segments have been
transferred. '

