M.LT. Laboratory for Computer Science Request for Comments No. 206
May 4, 1931

An Introduction to the Use of the Mesa System

by Robert W, Baldwin .

i. Introdaction
This'memo is the first part of a much longer memo intended to make Mesa programming casier,

The most useful sections in this part are the ones on the Alto Exccutive, and the Mesa Debugger.

2. Getting Started

"This section is a slight rewrite of the section of the same name in the Mesa Users Flandbook.

2.1, Ge(ling the Basic Mesa Disk

The best way to make a new Mesa disk is to copy an existing one. You can cither copy someonc’s
current disk (and then delete the uneccessary files), or copy the basic Mesa disk stored on the file
server. All the features described in this document are provided in the basic disk, other people may

have different or inconsistant versions.

To get the disk from the file server, load a blank or re-cycleable disk, and boot the program
" CopyDisk from the network. To do that, hold down the BS and ' keys then press the boot button
on the back of the key board. This boots the nctwork executive (NetExec). Type CopyDisk to tell

the NetExec to down load the disk copying program,

CopyDisk prompts with a *, type copy and it will ask you where to copy from. Answer

[Seal]<Disks>BasicHasa.disk. It will probably ask you to login. If you don’t have an account,

WORKING PAPER — Please do not reproduce without the author’s permission and do not cite
in other publications.

and you should if you intend to do much programming, use the guest accout name = user,
password == user. Next, CopyDisk asks where to copy to. Answer DPO. 1t then reminds you that
the old contents of DPO will be lost, and asks for two confirmations. 1f the copy fails (an unlikely

event), just try again, Ifit fails again ask somcone for help.

Once the disk has been copied, press the boot button with holding down any keys. This will

cause the alto to boot from the disk (dp0d) and it will start running the Exccutive (see XXX).

2.2, Instaitivg the Debugger
After you have a disk you MUST install the debugger to establish the communication link
A between the Mesa Exccutive and the debugger. To do this, type the command 8HakaXliDabug to
the Alto Executive. Actually, this command invokes a list of commarnids in a file (see the section on
the Alto Exccutive). These commands get the debugger from [ES, install it, and delete the

unnceessary files.

23, ¥diting »

Programs are prepared with the text editor Bravo (sce the Alto user’s Handbook for
documentation). Bravo provides a rich set of formatting capabilitics that greatly cohance the
reacdablity of Mcsa code either on paper or on the screen. The BasicMesa disk comes with a couple
of templates for mesa modules, which make it possible to write well formatied code without

knowing a lot about Bravo formating,

2.4. Compiling ‘ .

The Mesa compiler has the casy (o reimember name Compilser. image. The . image means that
it is a stand alone program. The command Cempiler n/c b/c u/c sourcel source?2 ...
compiles several sources files into object files. The default extention for source files is .mosa and
the object files end in .bed.” The switches like b/¢ turn on various compiler options. The three
listed respectively turn on: - code o signal an error if you fetch data using a NIL pointer, code to
signal an error if an array reference is out of bounds, and extra source checking to produce a
warning if a variable appears to be used before it is initialized. Oddly cnough, the default setting

for iese options is off.

Not all programs compile the first tirne. When an error is detected by the compiler it records the
source statement and crror message in the file Foo.errlog, where Foo.mesa is the name of the

offending source file. Scc Appendix A of the Mesa Uscer's Handbook for further information.

2.5. Binding
Several object files can be bound into a runnable program by using the Mesa program
Bindor.image or Binder.bcd. The command Binder Sourco rcuds the file Source.con?ig

and produces a file Sourca.bed which can be run divectly or bound into larger programs.

The file Sourco.config is a text file which decribes how to put together existing object files.
The binder understands a full blown programming language called C/Mesa. The amazing and
obscure feature of C/Mesa are described in the Mesa Language Manual, The key thing to
remember is that .config files contain source code in the /Mesa language which is
compiled/interpreted by the Binder, C/Mesa is conlusingly similar to Mesa, so be carctul. Sce

Appendix B of the Mesa Users Handbook for more information,

2:6. Running
To run a mesa program type mesa filoname.bcd to the alto exccutive. This will invoke the-
progrom Mesa. image which scrves as an exccutive and as a runtime support package and as a

library of common routines, Mcesa will automatically load in the named file-and start executing it.

Notice that the Mesa language, the Mesa executive, the Mesa runtime system, and the Mesa
“loader arc all called "Mesa’ without dlistinguishing which one is realily meant. "This will cause you

endless confusion. Sce Appendix C of the Mesa User’s Handbcok for more information.

2.7. Debugging

To sct break points and display the run time state of your programs, you must first invoke the
debuger. The most commbn way is to hold down the control key and press the swat key (bottom
blank key). The difference between most debuggers and the Mesa debugger is that it performs all

operations at the source language level. Sce the section on the Debugger for more inforation.

2, The Alto Executive

3.1 Syntax
The Executive is the program that starts up when the Alto is booted. It gets commands from the

user and excentes them, Command lines do not have a rigid syntax beyond the fact that the first
word of the line must be cocrcible into a program name. By convention, most programs use parse

the following syntax:
rrogram-nama>[/<gtobal switchss>] [Kvaluad>/{su ‘itch>]‘

Where {] indicates an optional part, and I]* indicates zero or more repetitions of an optional part.
In the following command line, the global switch u tells Fp to start in User-only mode. The local
switch ¢ indicates that the valie is a command as opposed o a server name or file name. The
Retricve command is modificd by the switch n which says to retricve the file only if it is new (i.e., it

does not already exist on your disk),
Ftp/u Connect/c Ssal Rotrisve/n <{AltodFtp.run

3.2, Comeemn and Bom.om
Belore a program is executed a copy of the command line is placed in the file Com.cm. In fact
Fip looks in Com.em for it's commands. [the command line contains multiple .commands
(separated by scinicolons), all but the first command is copicd into the file Rem.cm. When the
Exccutive starts running, it looks in the file Rem.em for additional connimands, if there are none it
accepts commands from the keyboard. Thus it is possible for a program (o write commands into
Rem.cm and have the Exccutive cxecute them, The programs DO and IF, described later, use

Rem.cm to extend the capabilitics of the Alto exccutive.

3.3. Hpecial Characters
Several characters have special meanings to the executive, Some of the more useful ones are:

~ BS
Deletes the last character,

~ D,
Deletes the whole line.

~CR
Marks the end of a comand line,

~ ESC
. Assume the previous word is a file name and complete as much of it as possible,

~TAB
List all the files that match the previous word and clear the command line, Sce 2,

~w ?
Same as TAB, but doesn’t clear the command line,

l‘l*

Malches zero or more characters in a file name. The command, * .mesaTAB, is a good
way (o get the names of all the mesa source files on your disk. Also, Dalete *.* isa
very bad thing to do. ‘

~ #
Maltches any one (exactly one) character, Usclul with TAB or 2.

s
~

Quote the next character. This is particularly usclul for putting #°s in a command like
FTP 2'#4'#. '

[gnore the next character in the command line. This is used to make long command
lines more readable by allowing the line to include CRs. It is mostly used in command
files. Scc below.

Seperates multiple commands typed in at the same time. For example, FTP 1Ifs
Retrieve/c MoreHints.memo; Bravo/n HoreHints.memo will retrieve this file

and enter bravo automatically,

~ X
Control X expands any pattern matching characters in the command line, and replaces
command files (see below) with their contents. Typing Delete *$tX will show you
what files you are about to delete. If the files are the ones you wanted to delete you can
type CR, if not you can type DEL.

Control C aborts the processing of the command line. If you type this after a CR but
before the program has finished loading, then the command will be aborted. Similarly,
if the executive is processing commands in Rem.cm, tC will abort the processing.

3.4, Command Files _

Common command sequences can be put into files and invoked using the character 8. For
example @DumpSources® will exceute the commands in the file DumpSources.em. Reading input
from a file can also be used in the middle of a command file. Tor example FTP Ifs store/c
eMyFilos@ ret/c @HisFilosd will store all the files listed in the file MyFile.cm and retrieve all
the ones in HisFile.em. The name between the @'s does not have to be comiplete. The extension
Lcm s assumed. The second @ is not necessary il it would be the tast character on the line. Thus
ghumpSources and @DumpSourcas? are the same. See the scction on nseful command files for

intcresting applications of 8.

3.5. Aborting Programs

While a program is running it can usually be aborted by holding down the lelt-hand shift key and
the fower blank key (called the swat key) on the right hand side of the key board. To enter the
Mesa debugger hold down the control and swat keys, To enter the BCPL debugger, Swat, hold
down the left-hand shitt, control, and swat keys. For more information on the Alto Executive see

[HsKAToDoes> Executive.tty.

4.1. Sub Directorics

IS can support a moderately usctul notion of subdirectorics using its general pattern matching
scheme., To put a lile in subdircctory oo, you just store it as food>filenama. FTP has some
features to make this casier, scc below. A useful thing to do when you make a new directory is to
create a file called foo>, this way you can get a list of your subdirectory names by listing all files
matching *>. Such a list is probably more usctul to people trying to locale some file on your

jircctory than it is for you.

4,2, Deleling Backup Versions
IFS has a subcommand for the delete operation which allows you to specify how many versions

of a file to keep. To do this you have to Chat to 1S and say:

Dalote foo*,
koop 2

~’

Don’t forget the comma, there is no undelcte operation on IFS. 1f you do not want to confirm

cach deletion caused by the sequence above, use this onc instead;

Dolete foo*,
kesp 2
confirm

5. TP

5.1, Sub Directories and ¥1P

" To put afile in subdirectory foo, you just store it as foo>f1lename. The casy way to do this is
to usc the dirsctory command of FTP to set your default directory (o Youridamedfoo. The
default directory name is prepended to any file name that does not begin with a <, The diroctory
command prepends your name if the first character of the directory name is a >, So directory

>foo is cquivalent to directory YouritamedFoo.

5.2. Abreviations
Commands from either the keyboard or the command line only nced to he as long as necessary to
distinguish them from all other commands. For example, ret and retrieve arc the same,

Unfortunately, r is not enought to specifly retriesve, since it can be confused with Renama.

5.3. F'TP Commands on the Command Line

FTP commands can be given on the command line instead of typed in by the user. This feature
makes all kinds of command (cm) files possible. For exainplc, the command line FIP Seal
Dir/c AltoDocs Ret/c Executive.tty Pressedit.tty gets two documentation files from
Seal. The Jocal swilch, Z¢, after Dir and Ret indicate that these are commands and not lilc names,
Retrieve and Store take lists of files as arguments, so the /¢ is necessary to tell when a file list ends

and a new command begins,

Using the Dump command, several files can be compressed into one in order to reduce page
breakage or ditectory clutter. The Dump command takes two or more arguments. The first one is
the name of the dump file, the rest are the names of the files to put in it. The inverse operation of
dump, load, takes one or more arguments. 1 he first is the name of the dump file, the rest, if any,

are the names of the specific files you want to retrieve.

There are other switches besides Zc. For example, rot/o only retricves a {ile if it exists on your
disk (i.c., it is old). Similarly, ret/n only retreives new files, 'the /s switch renames a file as it is
being stored or retricved. For example ret/s PookUsor.cm User.cm gets a file called

PaekUser . cmand puts it on your disk as User. cin,

5.4. Selective Loading ¥rom Dump Files

To reduce page breakage several files can be stored under one name. These names typically end
in . dw and are made with the command Dump. To get all the files from a dump file you usc the
command Tead. However, from the command line you can el F1P to load only specific files from
a dump file. For example, the ling FTP Ssal Dir/c¢ Altosourca Lcad/c¢ CopyDisk.dm

Disk.docl Main.bep? will un-dump and retricve just the files Disk. dac and Hain.bepl.

FP has many switches and features, see [Hs]J<AeDocs > FTP. press for more information.
6. Fhe Pesa Debugger

A4 Interface
Windows, When the debugger starts op there are two overlapping windows on the sereen. One
accepts debugger comprnds and is used to print the results of those commands, while the other
displays an arbitrary source file. The Source Window is linked to the debugger in the sense that
you can sct break points by selecting a statement and bugging the appropriate menu command (see
"Menus). Pressing the left mouse button in the upper left hand corner of a window will toggle its
position along the Z-axis. That is, the window on top it will go to the bottom and vice versa. You
can cause the window to zoom to maximum window size and back by pressing the left mouse
button while the cursor is in the middle section of that window’s black header. You can also chunge
he size and shape of windows, create and destroy new windows and many other things. See the

section 2 of the Mesa Debugger Documentation for more information.

Menus. Commands can be invoked by key-strokes or by menus. invoking a command through a
menu is calling "bugging’ the command, Bugging is a three step process. Fitst you bring up the
“men stack by holding down the right mouse button in some window. Next you sclect the desired

menu from the stack of menus by moving the cutsor over the menu’s name and pressing the left

9

button. This will bring that menu to the top of the stack. [f the menu you want is already on top,
the previous step is not necesary. The st step is to move the cursor over the desired command and
release the right button. Releasing the right button exceutes the command. I you accidently bring

up the menu stack, move the cursoraway from the menus before releasing the button.

1oading Windows. A window can be loaded manually or automatically as the resuit of some

dcbu‘ggcr command. To manuvally load a window type a debugger comaand ol the form. --
Fi1aname, this is a comment and will have no cffect on the debugger. Next, select the file name by
pressing the middle mouse butlon with the cursor positioned over the name (see Selecting). Now
go into the window to be loaded and (after bringing up the Sourco menu), bug the "Load’

command. The file is assumed to end in .masa if no extension is given.

Command Completion. 'The debugger’s command language may be thought of as cither having
automatic command completion, or as being character-oriented. For example, typing the two letter
sequence "ds” will cause the command line Display Stack to appear, and will start the execution

ol that command. Actually, typing the words display stack in full will result in much confusion.

l(_l ting. The debugger uscs the standard Mesa (the system) editing conventions. 'The last
character is deleted by the 'BS’ key, the last word is delcted by umlrol W or the top blank key next

to the BS key. Wholt, lines arc deleted by the DEL key.

Selecting, Several commands work on a sclected piece of text. To select a region, position the

cursor over the first character then while holding down the left mouse bution, move the cursor to
the last character in the region and release the mouse button. The selected text will be surrounded
by a gray box. If you hold down the middle button, words, rather than characters, will be sclected.
At the end of cach line is a return character which displays as a space. 1t can be sclected by either

the left or middle mouse buttons,

Stuff It. The debugger has an additional editing command which can be invoked by a menu or
by a key-stroke (middle blank key on the right side of the keyboard). Stuff It takes the current
selection and appends it to the current command line. This is useful to avoid retyping a long
com mand and to copy the result of a previous command to the current command. For example, the

command List Processes produces a list of the octal addresses of the Process State Blocks. If

10

you then decide to SEt Process to one of them you can just select the appropriate address and

press the Stuff It key. This way you avoid typing mistakes,

Defaults. The debugger keceps an cxtensive list of defaults which it remembers from onc session
to the next. Typing ESC will give you the default for the current command context (not to be
confused with the name lookup context described below). The default is the last thing you typed in
that command context. For cxample, if a command calls for a process identificr, ESC will produce
the last process identifier you entered (typed or stuffed in). Using the ESC and Stuff It keys

make debugging much easier. Try using them,

Aborting Commands. Most commands can be aborted by holding down the control and DEL

keys.

6.2, Commanids

0.2.1. lntreduction
To increasc readability, debugger commands given below are fully spelled out. However, to
issue these commands to the debugger, only type the letters which are shown in upper case. For

example, the command Display Stack is issued by typing ds or DS to the debugger.

The debugger generally ignores the diffcrence between upper and fower case. 'This applics to
commands, module names and variable names, Of course you can change this with the commands

CAsa OH and 26°CAse OFF,

6.2.2. Starting Up

The debugger must be installed before the first time you use it on a new disk. The command file
MakeXMDebug. cm will retrieve the appropriate files from the file server and do the installation. To
execute this command file type @MakeXMdebug to the Alto executive. Installing the debugger or

getting a new Mesa.image can sometimes cure strange debugger behavior.

There arc three ways to enter the debuger. From the Mesa executive you can execute the
command Debug. To enter the debugger after a prograi is loaded but before it is running, you use
the Alto executive’s global switch /d. [or example: FooTest/d will load FooTest.bed into the
Mesa systemt and enter the debugger beﬁ:lreAexecuting it. Lastly, when a program is running,

holding down the contro1 and swat (bottom blank) keys will enter the debugger.

'

11

6.2.3. Contexts _

The Mesa debugger allows you to refer to modules and variables by names, Of course, for the
debugger to find a name it has to be in the scope of the current context. The debugger’s contexts
consists of 1) a root configuration which defines the context in which module names are looked up,
2) a stack for the current process which is used to resolve names of local variables, and 3) a module
name for looking up global variables and for finding sources statements to sct break points or call
procedures. To resolve a variable name, the debugger searches the stack of the current process in
LI-O orcle‘r. For cach procedure it first checks the local variublés and then checks the global
variable in the module whiéh implements the procedure. The lookup algorithm for module names
is similar, but is based on the order in which_ modules were loaded into Mesa. The last module

loaded in the current configuration is the first one checked.

When you enter the debugger the curent context is set to the running context. You can find out

what the current context is by the command CUrrent context.

The command SEt Reot configuration scts the context in which module names arc looked
up. Once the root is set, any module defined in that configuralion can be relerenced.
Configurations arc modulcs like any other, so if you have nested configurations you must first set
the root to the outer most one, and work your way inward. To get a list of all the configurations you
use the "List Configurations’ command. .

. When looking at local variables you will get the most recent instance of a particular name. This
‘can cause problems with recursive procedures. You can use the Display Stack command to
examine any local variable on the stack, but you can not assign to it using the debugger’s interpreter

(sce below), since it can only reference the most recent instance.

The module context can be set explicitly by the SEt Module context comrmand (the module
namc must be in the current cohﬁguration). After this command, the command Display Stack
can be used to look at the module’s local variables, and the interpreter will be able to reference
those variables by name. The module context is used to look up procedure names for break points
and interpreted calls (sce below). Tt is also used to find break points set at particular statcments in

the Source Window.

12

For information amout the process context see the section on Multiple Processes.

6.2.4. Examining Variables
There are two ways to examine a variable: with the Display Stack command and with the
interpreter. In both cases the trick is setting the current context to include the desired variable. Sce

the section on Contexts.

The Display Stack command can do many things. 1 quote from the Mesa Debugger

Documentation:

Display Stack follows down the procedure call stack. At each frame, the corresponding
procedure name and frame address are displayed. You are prompted with a >. A response of v
displays all the frame’s variables; P displays the input parameters; R displays the return values [the
name {(anon) is used for unnamed values]; 8 moves to the next frame; J jumps down the stack n
(decimal) levels (IF N 1S GREATER THN THE NUMBEUR OF LEVELS IT CAN ADVANCE, THE DEBUGGER
TELLS YOU HOW FAR IT WAS ABLE TO G0)); S displays the source text and loads the source file into
the Source Window; L just displays the source text: and @ or DEL terminates the Display Stack
command. When the current context is a global frame, the N and J subcommands are disabled.
When the debugger cannot find the symbol table for a frame on the call stack, only the J, N, and Q
subcommands arc allowed. For a comiplete description of the output format see section 6 of the

Mesa Debugger Documentation,

Variables can also be cxamined by typing their name to the interpreter. To enter the interpreter,
type the debugger command " . That's right, the spacc character is a command. The interpreter is
capable of evaluating a subsct of Mesa, so you can use it to evaulate expressions involving variablcs,
A useful special case of this is selecting sub-records and following pointers (c.g.,
listHead.next.next). The interpreter can also assign to variables, see the section on Assigning
lo Variables. For a complete description of the interpreter see section 5 of the Mesa Debugger

Documentation,

The commands Octal Read and Octal Write can be used to examine and change specific
memory locations. Both of them take an octal address and a decimal word count as their

arenenls,

13

6.2.5. LOOPHOLE

A very important feature of the interpreter is that it can display a variable using a different type
than the one it was declared with. This is mainly useful when you are using a CLU programming
style that hides the representation of objects from clients, To display a record of type Foo when all
“you have is a variable "bar® of type POINTER TO {hiddenFoo}, you give the interpreter the
cxpression bar%@Foot. The % says to treat the thing on its left (bar) as a variable of the type given
cn its right (@Fo00). The @ is short hand for POINTER T0. The @ must not be followed by a space,
or else it will bc confused with the AddressOf operator. The + dereferences the previous

expression, so the debugger displays a record of type Foo instead of a pointer to that record.

6.2.0. Assigning to Variables
The interpreter handles the back-arrow operator, so you can assign 1o variables. Assignment can
be used to overcome small bugs in the programn and thus avoid Mesa’s long edit-compile cycle for

small bugs. It can also be used for simple testing.

The commands Octal Read and Octal Write can be usced to cxamine and change specilic
memory locations. Both of them take an octal address and a decimal word count as their

arguments,

6.2.7. Address of Variables _

The unary operator @ produces the address of the thihg on its right, It must be followed by a
space to avoid confusion with the POINTER TO type specifier. For cxample, to aséign to the
variable bar (of type POINTER TO Foo), the address of the third clement of the array Foos, you
would have the interpreter evaluate the expression (assume that the := is a back-arrow character:

bar := @ Foos[3]

6.2.8. Referencing Items in a Defs File
Variablcs, types, and procedures which are defined in a Defs file can be referenced by using the $

operator. In the same way that foo.bar selects the bar component of the record foo, the term
StackDefs$StackObject sclects the type StackOb ject from the file StackDefs.bcd, This sort

of qualification is most useful in the interpreter and with the Interpret call command.

»

14 .

6.2.9. Calling procedures
The debuggeer has a primitive procedure interpreter. The command Intarpret call asks fora -
procedure name (which mast be in the current module context or qualified by a $), and then asks
for the arguments (in octal) onc word at a time. If an argument is a two word LONG CARDINAL,
you give the low order word first. Basically, you must give this command an image of what will go

onto the stack when the procedure gets called.

.2.10. Looking at the User’s Screen

~ There are two ‘ways to look at the user’s screen. The first is by the debugger comand
Usarscraen. This shows you what the screen looked like when the debugger was entered. Hf the
program is also kceping.a typescript file (the default for the procedures in 10Defs), then you can
examine that fite in a window. Just make a new window or re-use the source window and load the

filc Mosa.TypoScript.

16.2.11. Break and Trace Points
| Unlike most debuggers, Break points and Trace points are very similar. Trace points are useful
when you do notintend to do much looking around in the debugger. Whein a Trace point is hit, the
top of the stack is automatically displayed. Unlike the regular Display Stack command, typing q -
causes excecution to proceed rather than ending the Display Stack command. 1t you want to do |
anything beside look at tire stack, you have to type the command d to enter the regular debugger
~mode, Break points just enter the debugger with the context sct to the running environment.
SO
To sct either Break or Trace points you can use the commands SEt Break or SEt Trace,
Debugger commands can be used to set points at the entry to or exit from a procedure. To set a
point at a specific statement, you load the Source window with the appropriate file, and use the
commands on the "Source’ menu. Note that in both case the current context must include the name
of the procedure in which ‘the point is set. This is usually accomplished by the command SEt

Module context to the module which contains the procedure.

Othef related commands arc List Breaks, List Traces, CLear A11 Breaks, CLear A1l

Traces. These commands have the obvious effects.

15

6.2.12. Muliple Processes

When Mesa was extended (o handle multiple processes, so was the debugger. One problein with
this cxtension is that Mesa (the language) does not provide any way to name processes, thus the
main diculty with processes is figuring out which process is the one you want. Once you have done
that you use the command SEt Process context to identify which stack you want to look at.
Remember that all processes are in the same address space, and that the module and conliguration

context is unaffected by changing processes.

Fach proccés has a stack, To change the stack context, you change the process context. Not
surprisingly, this command is called SEt Process context. Mesa docs not have a high level way
of naming processes, so this command accepts as its argument an expression which cvaluates o the
address of a Process State Block (PSB). The value returned by the Mesa FORK expression is the
address of the new proccssﬁ’s PSB. Thus, the most convenicnt argument to SEt Process context
is the name of the variable which received the value returncd by FORK. Of course, the naming
context must be set to include that variable, To get a list of the addresses of all the PSB’s usc the
command List Processes. That command will also tell you the name of the procedure which is
on the top of each process's stack, [f that isn’t enough information to locate the process you want,
the sub-command Root of the Display Process command will give you the name of the
procedure which was Forkéd o start that process. Display Process takes an arguiment which

cvaluates o a PSB :_ddress.

A process is always on exactly one queue. There are three types of queues: the Ready List for
runnable processes, condition variable queues for processes waiting for notifics or timeonts, and
monitorlock queues for processes trying to enter a monitor. The Ready List can be examined by

the Display Ready 1ist command. Monitorlocks and condition variables arc discussed below.

6.2.13. Condition Variabies and Mouitor Locks _

. The debugger does not have a high level display for these primitive Mesa types. An obvious way
to display a condition variable is to show which processes. are waiting on it and how]bng until each
one times out. Instead, condition variables are displayed as two octal numbers. The low order 15
bits of the first word is a pointer to the tail of a circularly linked list of processes (actually PSB's)
waiting on that condition. The high order bit is only used by naked condition variables (i.e., onc

associated with hardware interrupts), and is set if a notify occurred while no process was waiting on

16

the condition. The second word is the initial value of the timeout timer. The time when a waiting
process will timeout (not how long until that time) is stored in the PSB for each process waiting on
the condition. For example, a condition which displayed as 0, 0 has no processes waiting on it and
1o timeout (zcro means that timeouts arc disabled); 32568, 144B has a process waiting on it and

an initial timeout of 144 {octal) ticks.

Monitor locks are displayed in a similarly primitive way. The most significant bit is one if it is
unlocked, and. zero ifit is locked. The low order 15 bits points to the tail of a circularly linked list of
processes waiting for the monitor lock. For example, a monitorlock which displays as 32568 is
locked (i.e., some process is in the monitor) and at least one other process is waiting for the lock;

1000008 is unlocked with no processes waiting for the lock.

The queune of waiting processes for both monitorlocks and condition variables can be displayed
by using the Display Queus command. - Its argument is cither the name of a queue variable

(monitorlock or condition) or the octal address of a queue.

For more information look at the Mesa system code. The modules: Process, ProcessDels,

PSBDefs, and ProcessOps are most relevant,

»n

Table of Contents

1. Introduction
2. Getting Started
2.1. Getting the Basic Mcsa Disk
2.2, Installing the Debugger
2.3, Editing
2.4, Compiling
2.5. Binding
2.6. Running
2.7. Debugging
3. The Alto Executive
3.1, Syntax
3.2. Com.cm and Rem.cm
3.3. Special Characters
3.4. Command Files
3.5. Aborting Programs
4. IFS
4.1. Sub Directorics
4.2. Deleting Backup Versions
5.FTP
5.1. Sub Dircctories and FTP
5.2. Abreviations
5.3. FTP Commands on the Command Line
_ 5.4. Selective Loading From Dump Files
6. The Mesa Debugger
6.1, Interface
6.2. Commands
6.2.1. Introduction
6.2.2. Starting Up
6.2.3. Contexts
6.2.4. Examining Variables
- 6.2.5. LOOPHOLE
6.2.6. Assigning to Variables
6.2.7. Address of Variables
6.2.8. Referencing ltems in a Defs File
6.2.9. Calling procedures
6.2.10. Looking at the User’s Screen
6.2.11. Break and Trace Points
6.2.12. Muliple Processes '

6.2.13. Condition Variables and Monitor Locks

(= A T LV B PSR DS R S B S i N R e

N N DN

OO0 ~J ~ ~I

10
10
11
12
13
13
13
13
14
14
14
15
15

