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1. Introduction

The data repository described in this paper is a remote server for a distributed system of highly
- autonomous machines. The repository itself is a component of a distributed data storage system
called SWALLOW, described in [REED 80]. SWALLOW supports multiple repositories. Further,
it includes another type of component, a software package called a broker that must be installed in
each client machine. The brokers mediate all accesses to the data in the repositories.

'

SWALLOW implements atomic actions for its clients on the data stored in the repositories.  An
atomic action is a control abstraction that makes the program that forms its body appcar indivisible
with respect to other concurrent computations and with respect to failures.? It is up to the client to
decide what constitutes an atomic action and to make sure that all requests that arc part of it are
properly acknowledged before the atomic action is committed, but the broker in the client machine
will set up all the mechanisms needed to achieve atomicity.

Most of the client computers are assumed to be personal computers that do not have adcquate
facilities to store large amounts of data reliably for long periods of time. Further, it is assumed that
the information stored in the individual client computers is not directly accessible from other client
computers, or at lcast that it cannot be guaranteed that such information is always accessible; the
requirement of autonomy is one of the main reasons bchind this assumption. Thus the main
functions of the rcpository are:

1. to provide large rcliable long-term storage;

2. to support sharing of data among client computers.

Long-term reliable storagé and sharing of data in a distributed system have been a subject of several
research projects [SWIN 79, PAXT 79, LAMP 79, ISRA 73, STUR 80, DION 80].3 The design
presented in this paper differs in three important aspects:

1. the repository stores objects of arbitrary sizes; in particular, cven small objects are
handled as separatc entities;

2. the repository supports a novel model of objects that incorporates synchronization and
recovery mechanisms nceded to update atomically single or multiple objects;

3. the repository is designed so that the principal long-term storage can be provided by
optical disks. ’

The repository is an object-oriented system not only in the sense that it manages objects of arbitrary
sizes but also because the synchronization and recovery mechanisms for an object arc part of the

object model rather than provided on top of it

‘The object model that forms the basis of the design of the repository is described in the next



section. The decision to design the repusitory so that the objects can be stored on optical disks has
had important implications, as discussed in the successive scctions. Section 3 prescnts an
implementation of the object model that renders the cssential part of the object representation
immutable. Section 4 concentrates on the problem of management of the Version Storage, the
append-only stable storage that contains the actual data as well as all the information needed for
crash recovery. Section 5 discusses an implementation of the mechanisms that coordinate updates
of multiple objects in one or more repositories. Section 6 describes the crash recovery procedures
of the repository. Section 7 summarizes the major aspects of the design. An cxperimental
implementation of this system is under way.

2.  Object model

The repository supports, with some minor modifications, the object model developed by Reed
[REED 78, REED 79]. Every time a client updates an object, the repository creates a new version
of the object; the versions are linked together to form a history of the object. More precisely, a
write operation first creates a tentative version called a foken, which must be committed to make it a
permanent version. A token also can be discarded, which returns the object history to the state that
existed prior to the cxccution of the write operation.

In addition to having a value, a version has a timc attribute that spccifies its range of validity; all
operations on objects include an explicit time paramcter, which spccifies the exact point in the
object’s history to which the operation refers.t The start time of a version is the time specified in
the write request that created the token. The end time of a version is initially the same as its start
time, but it is extended by both read and write operations to the time specified in the request; when
a new version is created, the cnd time of the preceding version is frozen.d

If a valid version already exists for the time specified in a write request, the repository rejects that
request.  When an object has a token, the repository delays any write operation on the object until
the token is cither committed or discarded.® A read operation sclects a version that has the highest
start time that is lower than the time specified in the read request. If that version is not yet
committed (it is only a token), the repository delays the read operation unless it is part of the same
atomic action that crcated the token.

2.1.  Implementation of atomic actions

Fmbedded in cach token is a reference to a special object called a commit record. The commit
record contains the state of the client’s atomic action that created the token. A commit record is
created with the state set to unknown. Eventually, the state of the commit record will be changed to
committed or ahorted. This change is irreversible, and it implicitty commits or discards any token

that contains a reference to that commit record.



The set of tokens created as part of the same atomic action is called a possibiliry. Since all tokens in
a possibility contain a'reference to the same commit record, a possibility is either committed or
discarded as a whole. This simple mechanism thus makes it possible to update several objects
atomically. Morcover, these objects can be stored in different repositories.

To be able to execute clients’ computations atomically in the presence of other concurrent
computations, it is necessary to provide mutual exclusion mechanisms that give each atomic action a
consistent view of the data on which it operates, and a simultancous cxclusive access to all the
objects that it updates. The principal mechanism used here is the time parameters that appear in
both the requests and the stored versions. Requests that belong to the same atomic action are
assigned times from a time range which either completely precedes or completely follows the time
ranges used by other atomic actions;7 this is a simple extension of a transaction timestamp as used,
for example, in [THOM 79, BERN 77, TAKA 79}

~The repository implements two types of entities: the object histories and the commit rccords. The
set of operations supported by the repository is summarized in Figure 1.8 When a client starts an
atomic action, its broker first assigns a time range to that atomic action and scnds a request to some
repository to create a commit record. The commit record id returned by the repository is not used
dircctly by the client; the broker translates client’s requests to create, delete, and access objects to
those given in Figure 1, and inserts both the commit record id and the time parameter. Once the
client indicates that the atomic action has completed successfully, the broker sends a commit request
to the repository that contains the commit record. Since that atomic action might have been already
aborted internally (for example, because of a timeout), the repository may reject the commit request.
Of course, the client also can request that the atomic action be aborted.

3. Implementation of objects

IFrom the point of view of implementing atomic updates, object historics provide a natural backward
recovery mechanism: if a write operation on an object fails or if the computation which updated the
object does not succeed, the previous version can resume its status as the most current version of
the object. Clearly, for recovery from this type of failures it would be sufficient to maintain only
the last committed version of an object, in addition to a possible token. However, there are many
applications, particularly business applications, where it is actually desirable to store the entire object
historics, cither for auditing purposes or to aid in the recovery from certain types of errors at the

application level.

Because of the large quantitics of storage required, it is important to utilize storage devices that are:
1) incxpensive and 2) casy to store offline. To provide fast access to any of the many objects
dispersed on the storage medium, a random access device i$ needed.  Optical disks look promising
in all these aspects, although their presently attained access speed is inferior to that of magnctic

disks. But optical disks have a more severe limitation: they are "write-once™ devices, that is, the



iformation stored on them is not updateable. Consequently, it is not sufficient to make the object
versions logically immutable (object versions appear to be immutable to the clients in the sense that
a client cannot change the value of any version), but it is nccessary to make immutable also their
physical representation (the representation includes some control information).

There is another good reason to make the physical representation immutable. To ensure that stored
data are not damaged while being modificd, the update operation must be atomic. Since no
physical storage device guarantees atomic write (an error might occur during a write, leaving the
stored entity in an undefined state), it is necessary to add some redundancy for error detection and
recovery. The technique described by Lampson and Sturgis [LAMP 79] is to maintain two copies
of stored data, where the two copies must be changed strictly sequentially, that is, the first write
must complete successfully (correct data written to correct address) before the sccond write is
initiated.  If the storage model does not have to support an update operation that involves
overwriting the physical representation, the problem of achieving atomicity is simplified. It is still
desirable to have two copics (or equivalent redundant information) in order to be able to cope with
spontaneous device failures and decays of stored information, but the required writes can be done

concurrently.

The data structurcs that represent an object history in the repository are shown in Figure 2. 'The
information that controls access to the object history, which changes as the history cvolves, is
concentrated in the object header. In addition, some information already present in the object
versions is duplicated in the object header for better efficiency. The entire object header i,
however, only a hint: object headers are important for good performance, but they are not essential
to guarantec correct operations on the stored objects. Designing the object header entirely as a hint
means that it can be kept in fast but volatile storage without having to take special precautions to

assure that it survives a crash.

3.1, Version images

The entities (data structures) that represent versions are called version images. A version image
contains, in addition to the value ficld, the start time tg, a reference to the immediately preceding
version in the history, the unique indentificr (uid) of the object of which it is a part, and a reference
to its own commit record. The last two items make version images fully sclf-identifying; this
property is nceded for crash recovery as will be explained.

It is important to distinguish between object versions and the representation of versions, that is,
version images. A version is a logical concept; it is the value of the object during a specific time
interval in the object’s history. A version image represents either a version or a token; to determine
which of these two it represents, it is necessary to inspect the object header or the commit record
specified in the version image. Scveral images of a version may coexist in the repository, as a

consequence of storage management (see Section 4). Also, a version image of an aborted token will



remain in the repository; an aborted te'sex is removed from the history simply by omitting it from
the normal chain of references originating from the object header.

Version images are stored as stable immutable entitics in the Version Storage described in Section
4: a version reference or a token reference is always the physical address of the representing version
image in VS. By using a careful object update protocol and duplicate storage, the probability of
losing a version after a writc request has been acknowledged to the clicnt can be made negligibly
low. Note that tokens, although they represent tentative versions, must be stored in stable storage.
In fact, a version image of a token must be written into stable storage before a create-token request
is acknowledged.

3.2.  Object headers

The object header contains a reference to the current version of the object and the end time of this
version.9 This time is updated every time the current version is read by an atomic action with a
read time that exceeds the current end time of the object. The object header also includes a
potential token reference which is null if the object does not have a token. 10 Finally, it contains a
reference to the commit record for the current token. Besides this information, which is part of the
object model, the object headers include additionat fields (not shown in Figure 2) that are used for
management and recovery of the object headers. Two of these ficlds will be discussed later: the
hash table link and the Recovery Epoch Number.

The object headers play a very important role in controlling accesses to objects and locating proper
versions. Nevertheless, the repository does not provide for them the same reliability as for the
version images, because of the associated cost. The object header is updated twice for cach update
of the object (in create-token and commit/discard token), and may have to be updated when the
current version is read (to extend the end time). An object header must be updated in place,
otherwisc it would be necessary to change also the table used to map object uids to the addresses of
the object headers. Two disk writes for each update of an object header needed to make the object
headers stable would increasc significantly the internal overhead and the response time of the
repository.  Thus, as already explained, the object headers are designed to be only hints.

The object headers are stored on a nonvolatile storage device that provides updatcable storage (c.g.,
magnetic disk). This device will be referred to as Object Header Storage, or OHS. Object headers
are brought into main mecmory as nceded, but the changes made to an object header are not
propagated into its image in OHS until the object header is purged from the main memory. The
current object header, that is, the instance of the object header that reflects correctly the current
state of the object thus might get lost if the repository crashes. However, the object headers can be
reconstructed entirely from the information contained in the version images. This mcans that the
OIS images arc not essential for correct operation, but the availability of even an obsolete object
header in OIS reduces the amount of work it takes to put together a correct object header afier a



crash. The crash recovery will be discussed in more detail in Section o.

OHS is divided into fixed-size pages where each page contains several object headers. The object
headers in OHS are organized into a non-coalesced chain hash table. The hashing function maps
the object id into the physical address in OHS. The headers of the objects that map into the same
bucket are chained together using their hash table link field. When an object is created or deleted,
it might be necessary to change the hash table link in scveral object headers. These changes are
not performed atomically; instead, recovery procedures were designed that detect inconsistencies
caused by crashes [AREN 81].

Since they contain mutable data, the object hcaders must be protected from incompatible
sitnultaneous accesses. However, the repository should be able to handle concurrently several
requests that pertain to the same object, since most requests will require one or more disk accesses.
In particular, it should be possible to read an old version while the repository is in the process of
creating a token for the same object. Thus each object is protected by a monitor that locks the
object header only for the minimum time necessary; in most cascs, it is only a fraction of the time
needed to complete the entire operation on the object. The monitor state is kept only in the

primary memory and thus all objects are automatically unlocked after a crash.11

4. Version Storage

The core of the repository is the stable storage called Version Storage (VS). Abstractly, VS is an
infinite append-only address space. The append-only model of storage supports naturally the
append-only model of object histories. In addition, this append-only model is well suited for an
implementation on optical disks. In a sense, VS is similar to the transaction log of databasc
management systems [GRAY 79]. However, there is an important difference: VS is used not just
for recovery, but it is where the actual data are.

The VS address space is mapped in a straightforward fashion onto physical devices: a VS address is
the number of the device and a sequential offset on the device. Histories of different objects are
interleaved in VS. Versions of the same object appear in VS in the right scquential order, but
versions of different objects are not necessarily ordered in VS by their start time. VS can be
duplicated to prevent loss of information due to device failures, but since update docs not involve
overwriting old data, the two rcquired writes can be concurrent.

Although the rcpository accepts objects of arbitrary sizes, the physical storage is allocated and
accessed in fixed-size blocks. The issues of transfering data received from the brokers into VS are
discussed in the following subsecction. Since VS might grow arbitrarily large, it is infeasible to keep
it onlinc in its entircty. The issucs of what information should be kept online and how the online
storage is to he managed arc discussed in Scction 4.2, Since it is assumed that the physical storage
(offline) is incxpensive, no attempt is madce in this design to save on storage.  Finally, Scction 4.3



discusses the problem of errors in physical writes.

4.1. Transfer of data from brokersvto VS

For casier management of VS, in particular, for faster VS address resolution and object location, it
is desirable to allocate VS in fixed-size blocks. These fixed-size blocks, or pages, arc the units of
atomic write into VS. However, the repository has to handle objects of greatly varying size, from
very small ones (< 100 bytes) to very large ones (>100 Kbytes). Thus it is necessary to:

1. pack small object versions before writing them to VS,
2. fragment large objects versions before writing them to VS.

Large object versions are partitioned invisibly to the brokers and stored as structured version images
(Figure 3). This partitioning is not performed solely by the repository, but starts at the level of the
communication protocols, since the amount of data that can be sent in a single packet is limited. [f
this amount is more than the page size in the repository, the data received in individual packets will
be further divided. In cither case, the fragments of a new object version (token) reccived in
different packets can be processed and written into VS as they arrive, regardless of their actual
order, and without first reassembling the entire version as sent by the broker. This is an example of
a data transfer protocol that applies very strongly the end-to-end argument [SALT 81}

A structured version image consists of a header that contains a list of references to data images that
represent the individual fragments. A type ficld was added to distinguish these two substructures
and the simple version images. Finally, a size ficld had to be added. As an object changes size, its
individual versions might be cither simple or structured, as shown in Figure 3. The fragmentation
can also change because of changes in the lower level protocols. The repository always creates new
images for the entirc new version; that is, no attcmpt is made to share data images between

versions.

The create-token operation is finished when the header of the structured imagc is writtcn into VS,
At this point all respective data images must have been written into VS, since the VS address of a
version image is not known until that time. 1f a transfer of the entire version does not complete
successfully, the alrcady processed fragments (data images) will remain in VS, Data images are
ignored by the crash recovery procedures.

Let us look now at the packing problem. Basically, as tokens are created, their version images (or
data images that represent fragments of large versions) are placed into a buffer in the main memory.
This buffer consists of one or more pages, or rather, there are several one-page buffers as shown at
the top of Figure 4. When a buffer page is full, it is written atomically into VS. However, creation
of a token is a commitment that, regardless of processor, memory, or device failures, if and when

the the atomic action that created the token is committed, that piece of data is in the repository,



undamaged. Thus creation of a toker cunnot be acknowledged until the cntire token has been
written into stable VS. Acknowledgement is thus delayed by the packing process; since new tokens
will not be created at a constant rate, on occasion, it might take a long time to fill up a page. Thus,
a timeout is associated with each buffer. The timeout is set when the first version image is placed
into the buffer. If the buffer is not filled up before the timeout, it is written into VS partially
empty, and acknowledgements can be returned.

New version images can be placed into any of the existing buffers, or, if no buffer offers enough
space, a new buffer might be created, subject to a limit on the number of buffers allowed. [f no
morc buffers may be created, onc must be written into VS before the new version image can be
placed. No precedence constraints exist among the buffers, so they can be written into VS in any
order.!2 Thus the VS manager may select the buffer which is most full, or the one which is closest
to its timeout. That buffer is then assigned the next sequential VS page address.

4.2. Management of Online Version Storage

Only a fraction of the information contained in VS can be kept online. One possible approach is to
use a two-level arrangement where the Online Version Storage (OVS) is a demand-driven cache.
This type of organization always has the unpleasant side effect that it is necessary to do address
translation. It is assumed that the online storage itsclf will be very large, and conscquently the
address mapping tables could grow very large; the management of these tables is a non-trivial
problem in itself. Also, in this kind of environment, it is not possible to rely on locality of
reference that normally makes such multi-level storage organizations effective.

An alternative approach that will be pursued here is to let OVS hold the "top of VS", that is, the
most recent 2K pages of VS. This approach has two pleasing properties. First, the location of
version images in VS is very simple. Let A be the VS address of the beginning of the online
portion of VS. Then given the VS address A,; of a version image, this version image is in the
online storage if Ay; >= A, and Aj-Aq specifics the offset in the online storage. Second, the
entirc storage for version images can be implemented with the same type of device, and particularly,
with optical disks.

Of course, there are also some problems with this arrangement. At each moment, the most recent
2k pages of VS will contain version images created during the last  time units (of real time), where
7 is a function of k, the version creation rate, and the size of version images. Unfortunately, since
some objects may not be modified for a long time, their current versions might disappear from OVS
even though they arc frequently read. To make surc that objects retain their current versions
online, it is nccessary to copy version images to the top of VS. As a result of this copying process
VS may contain scveral version images that represent the same version, but multiple images of a
single version cause no confusion since only one of these images is ever accessible by following the

chain- of pointers starting from the object header.



Two different policies for retaining version images in OVS were investigated [SVOB 80]: one policy
is to keep the current versions of all objects in OVS; the other is to keep in OVS only the current
versions of those objects that have been used (recad or modificd) in the rccent past. Only the
second policy and its implementation on optical disks will be described here.

Let Ac be a VS address that specifies the copy point in VS (Figure 4). The copy point divides OVS
into two partitions that will be called the LOW space and the HIGH space. The end of VS (Ag) is
in the HIGH space, that is, tokens are created originally in the HIGH space. When a current
version is read, and when a token is committed, the repository compares the address of the
representing version image to Ac. If the address falls below the copy point, a copy of that version
image is appended at the end of VS. Thus current versions are copied from the LOW to the HIGH
space as they are accessed. Moreover, if the current version of an object is not represented in OVS,
its version image, when retrieved from the offline VS, is copicd to the HIGH space of ovs.13
Thus current versions of objects that have not been read for a long time can be reinstalled in OVS
with this simple mechanism. If some objects should always have their current versions online, a
simple "refresh” process can be provided that will periodically read such objects to force their
copying in OVS.

The two-partition scheme with copying resembles a copying garbage collector [BAKE 77], however,
the copying in OVS is much more restrained and consequently much simpler. Since only the
current versions of objects are ever copiced, it is necessary only to change the appropriate reference
in the object header; the rest of the stored history remains unchanged. A simple copy flag is
sufficient to guarantee that the current version will not be recopicd if it is read again before its new
image is written into VS and the reference in the object header is changed to the new address.

If VS (and OVS) is implemented with write-once storage devices, OVS requires a minimum of two
devices, one for each of the two spaces. The copy point is always at the starting address of the
device representing the HIGH space.  When the HIGH space fills up, the device representing the
LLOW space is rcmoved from online and replaced with a fresh device which becomes the new
HIGH space, while the old HIGH space becomes the LOW space. To avoid long delays during
manual replacement of the storage devices, at least three devices should be available online. This
completes the picture as given in Figure 4. If VS is duplicated, another scheme could be used that
takes advantage of the fact that the duplicate of the LOW space does not have to be available
online; then it is sufficient to have four devices online rather than six. The details can be found in
[SVOB 80].

The outlined scheme for the management of OVS raises important performance questions. Copying
of version images represents time overhead, but since this copying can be performed afier the value
of the current version has been sent to the requesting broker, it does not directly affect the response
time for the read requests. Also, as said before, later read requests can be satisfied while the
representing version image is b(‘ing copicd. ‘T'he presence of multiple copies, however, reduces the
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e*iective storage capacity of VS. More seriously, it reduces the effective online space available, since
two copies of the current version of ar object might coexist in OVS for a long period of time, one
in cach OVS space. However, in the more conventional cache-like scheme, to make the online
space management problem and particularly the address translation problem manageable, it would
be necessary to make OVS paged. This means that when a particular version is read, the entire VS
page must be brought into OVS. Since it is unlikely that the version crcation pattern and the
subsequent read demands will lead to good locality of reference within VS pages, the amount of
online storage "wasted” in this fashion could be much higher than in the "top of VS§" model. On
the other hand, the copying process might in itself improve the locality of reference.

Other performance questions pertain to the physical accesses to the online devices. Unfortunately,
since write operations are multiplexed with random read accesses, the low overhcad of the
sequential write (append) is lost. It might be possible again to take advantage of the duplication of
VS. Unless an error is detected, it is sufficient to read only one copy of the requested version; thus
the load of rcad requests can be divided between the two devices. However, the best solution
would be to use a device with multiple heads, adapted to this mode of operation.

43. Problem of write errors

To ensure that the version storage is stable, the entire VS should be duplicated on two scparately
controlled physical devices. As discussed carlier, since old data is never overwritten, the two write
operations to duplicate VS can be performed concurrently, thus the response time performance does
not have to decgrade significantly as a price for stability.

To be able to test integrity of information in VS, a checksum is associated with each VS page. Each
write to the physical devices that implement VS is followed by a recad and test operation (called
careful write [LLAMP 79]). If it is decided (after possibly several read and test attempts) that the
write was incorrect, the write operation must be repeated. However, if the physical device is write-
orice only, the repeated write has to write the data to a new address! This might happen even with
devices that allow multiple writes to the same location, since some arcas on a device could be faulty,
and consequently a writc operation to such a location would never succeed.

This problem can be handled in two ways. One is to leave a "hole” in the VS address space. The
other one is to mask the bad write on the device level by writing into an alternative address in an
arca specifically reserved for this purpose. In combination with the duplication of VS, the first
strategy is awkward. To preserve the simple mapping from VS addresses to addresses on the
physical storage devices, the offset of a VS page should be identical on both devices. 'Thus, if a
write operation to onc of the devices does not succeed, the other one would have to be invalidated
too. In other words, the same "hole” (bad data) would have to be crcated on both devices.
Recovery from later decays presents additional problems. V
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The strategy chosen for the repository s (o reserve on each device an arca that provides substitute
locations for VS pages that could not oc written into their actual home address. If the repository
discovers, when it attempts to read a VS page, that the corresponding physical page is bad, the VS
address is mapped into the reserved arca, using a simple hashing function. Conscquently, both
write and rcad operations on VS might require scveral device accesses, but presumably the reserved
arca will be used only in rare cases, so the performance penalty should be low. However, the fact
that the device manager decides that a write was unsuccessful after it rcad a just written page back
is not a sufficient guarantee that a later read will detect that the same page is bad. Thus, the device
manager should explicitly mark (overwrite) the area corresponding to the bad page so that this fact

can be detected reliably in the future.14

5. Coordinating updates of groups of objects

The key mechanisms used to coordinate updates of groups of objects are the commit record and the
commit record references embedded in the individual tokens. Whether or not a token can be
converted into a version always can be determined by inquiring about the state of the commit
record specified in its commit record reference. In addition, a commit record can include a list of
tokens in the possibility, to make conversion of tokens more efficient.

In Reed’s original model [REED 78], the token list was used also to determine when the commit
record can be deleted 1 n the present design, the question when a commit record can be deleted
is more complicated. The conversion of tokens is done mercly by changing the references in the
object header, and, as discussed in the preceding section, object headers are not stable. If the
repository crashes, objects will be recovered individually by locating their latest version images in
VS. Once a version image is found, it is necessary to determine whether it represents a token or a
committed version; the only way to distinguish between them is to inspect the appropriate commit
record. Thus commit records have to be available for inspection for a possibly long time after all of
the tokens have been processed as part of the normal operation of the repository. A commit record
could be deleted once all of the objects that refer to it have new versions, but clearly this is difficult
to know. Thus the simplest solution is to keep the commit records in the repository forever.

5.1. Implementation of commit records

A commit record contains the state of an atomic action, and therefore the state of the possibility
created by that atomic action. In addition, it includes a timcout, and a list of tokens (references to
tokens) in the possibility. However, the list of tokens is only a hint.

Commit records of atomic actions in progress arc maintained in the main memory, in a hash table.
To commit or abort an atomic action, the repository must write the final version of the commit
record into VS, More precisely, it is sufficient to include in this stable version the uid of the
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commit record and the final state. A commit record can be dcleted from the cemmit record table
once all of the tokens on the list have been processed, since it can be reconstructed by the recovery
procedure.

5.2. Commit record representatives

The mechanisms presented thus far are sufficient to implement cven atomic actions that span
several repositories, but treatment of non-local tokens would be rather costly. Thus for a distributed
possibility, that is, a possibility that includes objects in more than onc repository, a primary commit
record is created in one repository, and commit record representatives are created in cach other
repository that contains a token that is part of this possibility (Figure 5). When a possibility is
committed or aborted, this state is encached in the commit record representatives in all involved
repositorics, and the commitment or deletion of tokens is donc locally. The repository that contains
the primary commit record maintains also a list of the representatives, but again this list is viewed
only as a hint. ’

A commit record representative carrics the same id as the primary commit record. Thus the tokens
in cach repository refer both to the local representative and to the primary commit record. A
commit record representative is kept in the local commit record table. Since the uid of a primary
commit record (in fact, of any object) includes the uid of the repository that contains it, it is casy to
tell whether or not a local version of a commit record is the primary commit record or only a
representative (a representative carries a "foreign” uid). A commit record representative includes a
list of local tokens of the possibility, but it does not inlude a timeout.

Commit record representatives can be viewed as a mechanism that groups together tokens in the
same repository and thus reduces the number of messages that must be cxchanged among the
repositorics in order to convert properly all of the tokens in a distributed possibility. Also, once the
state is encached in the local representative, crash recovery is localized to the repository that failed.
It is not necessary to use a two-phase commit protocol to coordinate the involved repositories as it is
done, for example, in XDFS [ISRA 78, LAMP 79, STUR 80], sincc the essential information is
written into VS when individual fokens arc created.

53. DProtocol for distributed possibilities

A protocol for distributed possibilities is outlined below:

Beginning of an . atomic action:
"The broker of the client creates the primary commit record in one of the repositories. "The uid
of this primary commit record is then included in every request that is part of this atomic

action.
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Token accumulation phase:
When a repository reccives a recuest to create a token forobject x, it examines the commit
record id contained in the request; this is always the uid of the primary commit record. If the
respective object does not already have a committed version for the specified time, or another
token that is part of another possibility, the repository will proceed to create the token. 16 If
this repository does not contain the primary commit record, it checks whether it alrcady has a
representative for this possibility. If not, it creates a local representative and sends a message
about this fact to the repository that contains the primary commit record. The repository then

adds the rcference to the new token to the token list of the local represcntative.

When the repository that holds the primary commit record receives a message that a commit
record representative was created in another repository, it adds the uid of that repository to the
list of representatives kept with the primary commit record. Note that no provisions are made
to guarantee that these messages arc properly received and processed.

If a repository previously had a local representative for a particular atomic action but lost it in
a crash, a request to create another token for the same atomic action will simply recreate the
representative. The accompanying message to the repository that contains the: primary commit
record has no cffect if the sender is alrcady included in the list of representatives.

Commit point:
Requests to commit or abort a possibility must be sent to the primary commit record. When
the repository that contains the primary commit record receives such a request, it creates a
stable version of this commit record, with the possibility state being cither committed or
aborted. This version may contain also the list of the local tokens and the list of the
representatives in other repositories.

Conversion of tokens:

After the commit point, the tokens at the same repository as the primary commit record are
converted into versions or discarded and at the same time removed from the token list of the
commit record. A message specifying the final state of the possibility is sent to each repository
that according to the local list contains a representative for this possibility.  Each repository,
when it receives such a message, creates a stable version ofits local repfesentative that carrics
the same state, sends an acknowledgement to the primary and starts converting the local tokens
and rcmoving them from the token list of the local representative.

Determining the state of a token:
To determine the real state of a token when an object is accessed, the commit record reference
in the token is used to find the local commit record representative.  If the local representative
is in the unknown state or if it cannot be located, it is necessary to inquire at the primary

commit record.
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'The fact that all information necessar; to finish an atomic action once the final state is set is
cmbedded in the updated objects thenusclves makes the update protocol very simple and robust. A
computation that a client wants to perform as an atomic action never needs to be aborted because
of a failure of a repository, even if the failure occurs during the token accumulation phase. The
commit record in the main memory is lost if the repository crashes, but if the final state of an
atomic action has already been set, there is a stable version of the commit record in VS. Absence
of such a stable version indicates that the state of the atomic action has not yet been finalized.
Thus the state of a commit record always can be determined reliably, and the commit record can be
reinstalled in' the commit record table. If the list of tokens is lost or damaged, be it during the
token accumulation phasc or after the commit point, the tokens will be converted individually
following the procedure outlined above as later computations attempt to access those objects.

In case of distributed possibilities, messages sent between repositories can get lost without affecting
the correctness of the protocol, since in the worst case a repcated inquiry at the repository that
contains the primary commit record will reveal the actual state of the possibility, However, if the
primary commit record was already deleted or if it was lost in a crash, the rccovery procedure has
to be invoked to determine the state from the information in VS, The dependency on recovery
procedures can be reduced in a varicty of ways [AREN 81}, but the simplest and possibly also the
most cffective cnhancement is to postponce deletion of commit records from the commit record
table.

If the repository that contains the primary commit record crashes before the final state is propagated
to the representatives, objects in other repositories that have tokens created by that atomic action
are cssentially inaccessible to other computations. until that repository recovers. This problem exists
also in the classical two-phase commit protocol, but the "critical window", that is, the interval
during which the individual nodes involved in an atomic action (transaction) arc dependent on the
coordinator is shortened by a special "prepare” message [GRAY 78, LAMP 79]. In the scheme
described here, the other repositorics can never abort an atomic action on their own will; for a
particular repository the critical window starts with the creation of the first local token. A possible
solution is to replicate the commit record in different repositories. Since the commit record is not a
general data object, but onc that goes through a predictable and simple sequence of stable changes,
it is possible to devisc a fairly simple replication algorithm for it. A voting algorithm for sctting the
final state in a replicated commit rccord is presented in [REED 78]

6. Crash recovery

The major part of crash recovery is reconstruction of the object headers. At the time of a crash the
correct object headers of the recently active objects might have existed only in the main memory.
Since it is assumed that a repository crash invalidates the entire content of the main memory, all
such object headers are lost. Further, the OHS imuges of object headers might get lost or damaged,

either because the repository crashed during a write to OHS or because of a decay of a block of
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OHS. In both cases the object headers can be reconstructed from the inform:icn in VS to reflect
correctly the current state of the stored objects.

The only piece of an object header that cannot be reconstructed from the version images in the
object history is the end time of the current version. It is acceptable, however, that this field be set
to the time of recovery within the repository so long as that recovery time is equal to or greater
than the highest time specified in any of the already processed requests. Thus a repository must
keep track of this highest time in some form of stable storage or else be able to derive it externally,
from the brokers or other repositories.

The recovery process should be as efficient as possible so that the delays experienced by the clients
will not be noticeable. The repository can limit the extent of crash rccovery by checkpointing the
object hcaders in VS. In addition, rather than rccovering all objects in the repository before
resuming normal processing, the recovery can be distributed over time, since an object header does
not have to be up to date until the time when the object is again accessed.

The history of a repository is divided into recovery epochs. Every time the recovery process is
started, the repository is assigned a new Recovery Epoch Number (REN), It is sufficient that cach
REN be unique in the history of the repository, but normally these would be numbers that
monotonically increase in time. To begin recovery, the repository writes a recovery mark into VS
that specifies the beginning of a new recovery epoch; this mark contains the new REN. 'The
recovery marks are chained together in a similar way as the histories of the individual objects, but
they are not copied.

6.1. Reinitializing the repository

The minimum repository state that has to be reinitialized before a repository can resume processing
of requests from brokers and other repositorics consists of the following items:

the current REN,

the VS address of the last recovery mark,
the next available uvid,

the current time,

the VS write pointer.

The VS write pointer is esscntially the address Ap that marks the end of VS (Figure 4). The
unique identificrs for new objects and for commit records are assumed to be generated as a
monotonically increasing scquence of numbers; the next available uid is thus sufficient to reinitialize

the uid gencrator.

Ideally, the hardware of the repository should contain a small amount of fast atomic stable storage

o hold the state of the repository.  1f such special storage is not available, the first four items can
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te determined by examining VS from its end to the last recovery mark, but a more cfficient
alternative is to include them in cach page written into VS. Thus it suffices to find the end of VS
in order to be able to restore the rest of the repository state, and the only item that has to be
recovered from outside of VS is the write pointer. An interesting possibility is to maintain the write
pointer in the device controller. Otherwise the device will have to be scanned to find the last page
written (the beginning of the free area).

6.2. Recovery of individual objects

To rebuilt an object header, it is sufficient to find a version image of the latest version of that
object, be it a committed version or a token. This version image is found by a sequential backward
scan of VS. When a version image of a particular object is retrieved from VS by this mcthod, it
must be decided if it is a committed version or a token: it is necessary to consult its commit record,
which itself has to be recovered.

If the retrieved version image represents a committed version, there cxists a stable version of its
commit record in VS. However, the copying of version images uscd to keep the current versions
online could place a version "ahcad” of its commit record in VS. A simple solution that at the
same time reduces the need to check commit records during recovery is to replace the commit
record reference in a copied version image with the actual state, that is, committed. Thus if the state
of an atomic action was finalized before the crash, a stable version of the commit record will be
found before any version image with a reference to this commit record is retrieved.

To be able to reconstruct object headers individually, the REN must be included also in cach object
header. When an object is created, it is assigned the current REN. When an object header is
accessed as part of any of the opcrations listed in Figure 1, if its image in OHS is not damaged, the
REN in the object header is compared to the current REN of the repository. 1f they differ, the
object hcader must be updated to reflect the changes since the time it was written into OHS during
the recovery epoch as given by its REN. If an object has not been accessed for a long time, several
crashes (and recoveries) could have occurred since the object was created or recovered.  However,
since the object was not recovered earlier, it could not have been accessed since the recovery cpoch
given by its REN, and thus to recover such an object, it is not neccessary 10 scarch VS from its
current end, but only from the point that corresponds to the end of that cpo«.:h.17 As said carlier,
the recovery marks that delimit individual recovery epochs arc linked together, thus the recovery
procedure can get to the right section of VS rather quickly.

When an object is recovered, its REN in the reconstructed object header is sct to the current REN
and the object header is written into OHS. Only after this point can the requested access be
honored.  In addition, the reconstructed object header should be checkpointed in VS:  this will
delimit the extent of the next recovery should the OHS image be damaged. In such a case, the

recovery must start from the current end of VS since the REN of the object is unknown. Object
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headers also can be checkpointed in VS during ‘normal operation, as a background process.

The reconstruction of object headers from version images is discussed in more detail in [SVOB 80}.
A more recent report by Arens [AREN 81} covers recovery of the hashed object hcader table
(breaking of merged and cyclic hash table chains) and the checkpointing of the object headers.
Arens’ report also includes a model of the cost of the recovery procedures.

7. Conclusion

The design of the repository explores several new techniques of data organization and storage.
First, the repository implements the history model of objects with its associated mechanisms for
detection of access conflicts and for coordination of updates of groups of objects. Second, it can
use write-once storage devices as the principal stable storage medium. The actual representation of
object histories had to be adapted to this type of storage medium.

The choice of the representation of object histories was influenced also by the desire to avoid
implementation-based dcpendencies between the brokers and the repositories. The repositories
handle objects of arbitrary sizes, although internally the object versions might have to be packed
together or divided into smaller pieces. The broker/repository protocol for reading and updating
objects is independent of the lower level data communication protocols, yet if a large object version
is broken into pieces by the lower level protocols, these pieces can be processed immediately as they
arrive.  Finally, objects updated by a single atomic -action can be distributed over several
repositorics; all the necessary coordination of the repositories is done invisibly to the brokers.

Throughout the design, strong emphasis was put on minimizing any reliance on the knowledge of
the global state of the entitics used to implement atomic update and cven on the knowledge of the
precise statc of the individual objects. The design uses to advantage the notion of a hint, an
information entity that does not have to be stored reliably cither because it is recontructable from
the basic data stored in stable storage or because there exists another mechanism that will eventually
accomplish the same task as the mechanism that uses the hint.

A major challenge in the design of the repository is the management of the Version Storage. An
append-only model of storage was chosen in accordance with the basic object model.  However, to
keep the current versions of objects online, it is necessary from time to time to copy their images to
the top of VS. In spite of this complication, this scheme is attractive because of its simplicity.
Performance of this scheme has not yet been evaluated; clearly, it is the next important step.

An implementation cffort was undertaken at MIT to study the feasibility of the described solutions
and of the underlying assumplions.]8 Notably, the design relics implicitly on the assumption that
crashes will be so infrequent that it should be much less expensive to reconstruct the hints than to
store that information reliably. A crucial assumption, of course, is that optical disks will be very
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inexpensive and sufficiently fast and reliable. Finally, it remains to be seen to what extent multi-
object and in particular multi-repository atomic updates are desired by uifferent applications.
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Footnotes

1 This paper was written while the author was a visiting scientist at the Institut National de
Recherche en Informatique et en Automatique in Rocquencourt, France. The actual rescarch was
done at the Massachusetts Institute of Technology, where it was supported by the Advanced
Research Projects Agency of the Department of Defense and monitored by the Office of Naval
Reseach under Contract No. N00014-75-C-0661.

2 Atomic transactions as defined in the context of database systems [GRAY 78] are an example of
atomic actions. However, the concept of an atomic action is more general. For example, any
operation on an abstract data type should be an atomic action.

3 The remote shared component that provides these functions is called usually a file server. This
term might be somewhat confusing, since most of these so called file servers include neither file
directories nor specialized file access mechanisms: they simply store data in objects that have very
primitive, machine readable names. '

4 In Reeds model, this time parameter is called pseudo-time. The pscudo-time plays two roles: it
serves as ordering information for resolving access conflicts, and it delimits the states in the object
history. To fulfill the first role, it would be sufficient to use a monotonically increasing counter. In
its sccond role, however, pscudo-time should correspond to teal time.

3 As presented in [REED 78, REED 79], an object history can have gaps, that is, time intcrvals for
which the object does not yet have a valid version. A new version can be created in any such gap
by creating and committing a token. When a read request is executed with t. that falls into a gap,
the end time of the immediately preceding version is exended to t, as it is done for the last version.
However, the need for this feature in typical clients’ applications does not seem to be strong enough
to justify the increase in the complexity of the implementation.

61t is easy to extend this model so that it allows multiple tokens to be created by the same atomic
action.

7 In Reed’s work, these time ranges arc called psedo-temporal cnvironments.

8 Ihe parameter lists as shown omit certain non-cssential details. Specifically, where the figure
shows a general acknowledgement, the repository returns enough information about the request and
its result to make the response sclf-identifying. If the requested operation cannot be performed, the
Tepository returns an error message.

9 Unless an object has a token, the end time of its current version is also the end time of the entire
object.

10 Having references to both the current version and the token in the object header makes it casier
to discard a token (remove it from the object history).

1T Note that these Tocks are entirely an internal mechanism of the repository; they mediate accesses
to the implementation of objects.  Accesses o objects as viewed by the clients are controlled, as
discussed carlier, by the time parameters in the object model.
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12 potential precedence constraints arc resolved automatically at the next higher level, due to the
simple fact that the VS addresses of images in the buffers are’ not known until the buffers are
written into VS.

13 The same would happen in case of committing a token, but it is very unlikely that a token would
remain unresolved for such a long time as to lose its online version image.

14 Although optical disks are called write-once devices, it is possible to write into the same area
more than once: a block of storage can be overwritten with additional 1's, but the results are
unpredictable. Thus it would be difficult to leave certain ficlds on a page blank and overwrite a
page so that only those fields are changed, but hopefully this form of overwrite is sufficient to
ensure that a given page is always dctectably bad.

15 Consequently, it was necessary to make the token list stable and to guarantee that it includes all
of the tokens in the possibility before an atomic action could be committed, because once the
commit record is deleted there is no other mechanism to insure that all tokens will be properly
resolved.  Such a requirement greatly complicates implementation of atomic updates that involve
multiple repositorics. '

16 The create-token operation still might fail, if the repository finds out that the state of the commit
record specified in the tequest has already been finalized. Normally this would mean that the
transaction was aborted because of a timeout. However, if a client does not wait for
acknowledgements to all of its create-token requests before committing a transaction, it is possible to
get into a situation where a creatc-token request fails because that transaction has already been
committed in the repository.

17 The search might have to be extended to more recent recovery epochs if the final version of the
commit record specified in a retrieved version of the object being recovered was not found in the
same recovery epoch.

18 Since the implementation is still in progress, it is incvitable that the system as implemented will
differ somewhat from the design described in this paper, but the concepts that have been presented
actually drive the implementation. VS is simulated currently on an ordinary magnctic disk.
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Operations on object histories:

create (time, commit-record-id) returns (object-id)
read (object-id, time, commit-record-id) returns (value)
create-token (object-id, tfme, commit-record-id, value) returns (ack)

delete (object-id, time, commit-record-id) returns (ack)
Operations on commit records:

create (timeout) returns (commit-record-id)
test (commit-record-id)  returns (commit-record-state)
commit (commit-record-id) returns (ack)

abort (commit-record-id) returns (ack)

Figure 1: Operations supported by the répository
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