M.L.T. Laboratory for Computer Science Request for Comments No. 214
December 4, 1981

An Argument for Soft Layering of Protocols

by Geoffrey Cooper

The following is a Master’s thesis proposal.

1. Introduction

The technique of protocol layering has lately become a matter of contention. While the merits of a layered
design and implementation are clear, experience with the implementation of layered protocols has cast doubts
upon the potential for an efficient implementation of layered designs. This thesis will examine whether a
particular extension to the technique of protocol layering can decrease the implementation cost associated
with layered design.

2. Layered Protocols

A protocol is a mechanism by which cooperating processes interact. To allow a higher degree of functional
modularity, protocols are arranged in a layered structure, such that each protocol hides the layer directly
beneath it from the layer directly above it. An example of this is the Dol) standard set of protocols [Postel
80a). Tue way in which layered protocols interact is illustrated by arranging the protocols on a lattice, as in
figure 1. In this representation, protocols which are at a higher logical level are placed in a higher position on
the lattice.

Each protocol presents an interface to the layer above it. This interface is equivalent to the “fire walls” of a
ring protection scheme [Saltzer 74]. Each protocol also has a model of the layer directly below it. This
“model” is often no more than a protocol specification — when a protocol may only lie above one specific
protocol (as is the case with TCP) — but it might also represent a minimal set of common characteristics that
protocols beneath it must have, as in the Internet protocol [Postel 81], and the Telnet protocol [Postel 80b).

It has been suggested that protocols be defined as particular abstractions of a data communications link.
This definition suggests a parallel between protocols and computer languages, which is uscful to keep in
mind. Unfortunately, the logical extension of this definition to layered protocols fails to allow for some

WORKING PAPER — Please do not reproduce without the author’s permissior *nd do not cite in other
publications.

Figure 1: Layered Protocols, Arranged on a “layered-lattice”

(DARPA) Telnet

SFAP (MIT)

Chaos
Stream
Protocol (MIT)

BSP (Xerox) TCP (DARPA)
Angel (MIT)

UDP (DARPA)

Chaos
Packet
Protocol (MIT)

PUP {Xerox) Internet

Ethernet Arpanet L.CSNet Chaosnet
(Xerox) (DARPA) (MIT) MIT)

common situations in protocol design.1 For this reason, we prefer the more basic definition given above.

3. Problems with Protocol Layering

The greatest advantage of a layered design of protocols is the “plug compatibility” of different
implementation of layers, and of layers one to the other. In principle, a new implementation of a layer may
replace the old with no changes to lower layers, and a small number of changes to higher layers (or none, if
the interface is the kept the same in both directions). Yet this comes only at a cost. With each added layer, a
protocol implementation will become less efficient.

One way in which this happens is the added number of levels of procedure or system calls necded to

1F.xamp]c: The Gateway-to-Gateway (GGP) [Strazisar 79] protocol makes use of the Internet protocol to route send packets through
internetwork connections. Simulancously, the Internet protocol uses the information that the GGP protocol determines to do this
outing Dcpanding on how one views the situdtion, GGP i either 4 refining abstraction on the Internet pretocol, or an abstraction
which the Internet protocol refines; it would lic both above and below the Internet layer.

implement an extra layer of software. Cohen, Postel [Cohen 79] and others have pointed out that where this is
a problem, layers may be compressed in an implementation to achieve the desired efficiency, albeit at a cost
of the maintainability of a particular implementation. It is easy to see how special hardware (e.g. microcode)
can be used to further reduce this effect.

Of more concern is the loss of efficiency due to a lack of communication between layers. There are two
ways in which this problem shows itself. They are listed below:

The Asynchrony Problem:

Interacting processes are mutually asynchronous, so an asynchronous [/0 device
must be handled by some layer of a layered protocol scheme. It is common for
this layer to hide some of the asynchronous aspects of communications from
layers above it, to simplify their design and implementation. This mcans that the
different layers of protocol are potentially asynchronous, yet must cooperate to
send data. The central problem that arises is how to deal with the case where one
layer wishes to send data but the other(s) do not. This is usually approached by
allowing each layer to send data at any time, with the proviso that all data need
not be forwarded to or acted upon by every layer. The result is often a
duplication of effort, since layers might not realize that data need be sent in time
to encode their data into other layers’ packets.

In TCP-Telnet, for example, TCP may send packets, for the purposes of
recovering and sequencing data, which are never passed to Telnct. When Telnet
passes a character to TCP, TCP must transmit that character and make sure that it
was delivered correctly. This task requires at lcast onc additional packet. End-to-
end arguments indicate that Telnct or some protocol above it (in this case, a
person sitting in front of a terminal) must verify for itself that the data was
correctly transferred and acted upon, so at some point, the foreign Telnet will also
send a response. If the foreign TCP is lucky, the foreign Telnet’s response to the
data can be “piggy-backed” in the same packet as the foreign TCP’s verification
of the first data. If not, an extra packet will need be sent.

The Timeout Problem:

Because of end-to-end arguments, each layer which maintains any connection
state must set timeouts of its own. In an Internet-TCP-Telnet connection, three
levels of timeouts are needed. The Internet layer must set timeouts when
reassembling packets, the TCP layer to detcrmine if the foreign host is still alive,
and the Telnet layer to determine if the forcign Telnet layer is accepting the data
correctly (although the latter is usually left out, by relying on the human user of
the Telnet program to determine when this has occurred). Often many of these
‘timers are redundant, and slow down operations by causing unnecessary process
scheduling.

(h8)

M

4. An Extension to Conventional Layering
Each of the above problems rests in some way on so-called end-10-end arguments, as described in [Saltzer

M) 80]. End-to-End arguments push the responsibility for checking the veracity and sequence of transmitted data

to the uppermost protocol. Lower level protocols can guarantee no more than correct delivery of data.

A way of increasing efficiency in a layered environment is to use end-to-end arguments to advantage. If
the highest level must perform certain checks on the data, it should be possible to avoid doing what amount to
redundant checks at lower levels. The idea is to “soften” the boundaries between protocol layers so that each
layer has a better idea of the operations of the layers above and below it. We refer to this technique as soft
protocol layering.

In this thesis, protocol specifications will be extended to allow for soft layering. Specifically, a protocol
specification will consist of

1. A description of the protocol (as before)
2. A model of the layer beneath the protocol (as before)

3. A model of the layer above the protocol (new)

For a protocol to operate correctly (i.e., for data to be transferred in the desired fashion), only the first two
parts of the specification need be used. When the third part of protocol matches the application as well,
greater efficiency will result.

The manner in which soft layering deals with the problems of the previous section is straightforward.
Lower levels of protocol have some understanding of the nature of the data that they are passing to higher
levels, so lower levels will often know when a higher level response will be forthcoming. In this case, lower
level processing can be deferred until this data arrives, so that a single packet may be sent. This solves the
asynchrony problem,

The timeout problem is solved by having the different levels of protocol cooperate on determining what
timeouts are necessary, so that only a single timeout can be sent. The main utility in this approach is that it
allows a layer to hand the responsibility for setting timcouts to a different layer. For example, if a “carrier
protocol” (such as TCP) is implemented in the kernel of an operating system, it should be possible for a
process using TCP to block waiting for data, relying on the lower level protocol to wake up the process cither
when data arrives, or upon determining that there is an exceptional condition that requires the attention of the
higher level protocol.

Much of the work to be donc for the thesis will consist of the design and implementation of a protocol
called Angel [Cooper 81}, which supports soft layering in its specification as described above.

Angel provides a reliable message service. As described above, it has a model of the higher level protocol

that calls it. The higher level protocol, known as the letter-level, connects two processes for the sending of
higher-level messages called letters. A letter is a typed, tagged block of data, and the sequence of transmitted
letters is ordered. It is assumed that letters are never retransmitted at the letter level, since reliable delivery is

assured by Angel.

A letter may elicit a letter in response, although responses need not arrive in the same order as the letters to
which they respond. For example, if the letter-level protocol is a file access protocol such as SFAP ([Cooper
80, sec below), four letters might be sent, eliciting four responses from the foreign letter level:

Initial Letter Contents of Responding Letter
readBlock(1) <Block 1>

readBlock(15) <Block 15>

readBlock(2) <{Block >

readBlock(3) <{Block 3>

Let us assume that all four responses arrive at the server before any action is taken, as might be the case
with a large computer system, where process wake ups are expensive. The file access server would probably
benefit from reading the blocks from sccondary storage in disk order, rather than letter arrival order. Since
angel allows for letter-level responses to arrive out of order, the blocks may be read by the server in whatever
manner is most efficient, and can be sent over the network in the order they are read.

The interface between angel and the letter-level protocol is based on angel’s model of the letter-level.
When a letter is sent, angel is informed whether the letter is a response to another lctter, and whether the
letter will, in the norma! course of events, elicit a responsc from the foreign letter-level protocol. When a
letter arrives, angel can determine whether the letter is a response to a letter sent earlier. If a letter is sent,
with - response expected, and the response does not arrive, angel will timeout and report this failure to the
letter-level. This solves the timeout problem, as described above, by allowing the letter-level to delegate the
setting of timeouts to angel. Since all timeouts are set at the same level, timers which are redundant may be

eliminated.

5. Work for the Thesis

The following projects will form part of this thesis:
1. The Design of the Angel Protocol
2. An Angel implementation on an Alto computer in BCPL
3. A version of TFTP, modified for use with angel, on an Alto computer in BCPL

4. The Design of the SFAP 11 Protocol (SFAP: Simple File Access Protocol), a second version of the
SFAP protocol {Cooper 80}, suitable for use with Angel.

5. The implementation of SFAP Server and Uscr software on an Alto computer, in BCPL.

'The purpose of the implementations described above is to demonstrate that Angel can be implemented in a

way that allows the transfer of data at high speeds. A file transfer protocol implementation demonstrates this
in casc where the amount of data to be transferred is known well in advance.

In SFAP, data is transferred in more random fashion, as negotiations take place between the cooperating
processes. The efficient implementation of SFAP on top of the same Angel implementation that efficiently
implemented a file transfer will demonstrate that soft layering has not severely limited the range of different
higher level protocols that are suitable for use with Angel.

The implementations will be carried out on an Alto personal computer. Substantial network software
already exists for this machine, so reasonable comparisons between the efficiency of Angel and that of other
layered protocols will be possible.

The thesis is scheduled for completion in January, 1982.

References

[Cohen 79]
Danny Cohen & Jonathan B. Postel.
On Protocol Multiplexing.
Proceedings of the sixth Data Communications Symposium , November, 1979.

[Cooper 80]
Geoffrey Cooper.
SFAP: A Simple File Access Protocol.
Technical Report NIN-29, MIT-CSR, July, 1980.

[Cooper 81}
Geoffrey Cooper.
The Angel Protocol.
Technical Report RFC-213, MIT-CSC, December, 1981.

[Postel 80a]
J. Postel.
Internet Protocol Handbook.

Technical Report RFC 774, USC-ISI, October, 1980.

[Postel 80b]
J. Postel.
Telnet Protocol Specification.

Technical Report RFC 764/1EN 148, USC-ISI, June, 1980.

[Postel 81]
J. Postel.
DoD Standard Internet Protocol.

Technical Report RFC 791, DARPA, September, 1981.

[Saltzer 74}
Jerome H. Saltzer.
Protection and the Control of Information Sharing in Multics.
Communications of the ACM , July, 1974.

[Saltzer 80]
J. H. Saltzer.
End-to-End Arguments in System Design.
Technical Report CSR-RFC 185, MIT-CSR, April, 1980.

[Strazisar 79]
Virginia Strazisar.
How to Build a Gateway.
Technical Report IEN 109, BBN, August, 1979.

