M.L.T. Laboratory for Computer Science Request for Comments No. 217
March 18, 1982

BLAST, an Experimental File Transfer Protocol

by Dan Theriault

1. Introduction

BLAST is a file transfer protocol implcmentéd using the User Datagram Protocol
(UDP). It is an attempt to take advantage of bandwidth in high-speed local networks. The
protocol was designed by David Reed. A prototype implementation has been written by
Dan Theriault in Mesa 5.0 for the XFROX Alto. This document provides a sketchy
description of the protoco], to disseminate the basic ideas and stimulate comments and

further thought.

The underlying idea in the protocol is to minimize the number of round-trip delays in
communication between hosts. Data packets to be transferred are transmitted unreliably to
their destination. The receiver acknowledges full transmission of a. file or requests

retransmission of indicated packets.

A file is transferred in blocks of 512 8-bit data bytes. Only the last block of the file may
contain fewer significant data bytes. These blocks are labelled with integers starting from
zero. The convention used for indicating successfully transmitted blocks is a bit-vector in
which a set n-th bit (where "n" is zero-based) implies a successfully transferred n-th data

block of the file. The current maximum length of a file transferred by BLAST is 4096

WORKING PAPER — Please do not reproduce without the author’s permission and do
not cite in other publications.

blocks, which is stightly over 2 megabytes of data. A file of that size would make use of 512

bytes worth of bit-vector in the acknowledgement/retransinission-request packet.

The Blast protocol does not in any way interpret the contents of the data it transmits.
This data is just sent as a collection of 8-bit bytes. It is assumed that the hosts will agree on
the meaning of the transmitted data, and that a higher level protocol may filter or
transform the data before sending or after receiving it using Blast. Blast is only intended to

be a means ol quickly getting bytes of data from one host to another.

The first word (2 bytes) of each Blast packet contains an opcode indicating the purpose
of the packet. A value in the range [0..4096) indicates that the packet contains a data block,
and indicates which block it is. A few of the remaining values indicate the various special

packet types in the protocol. Packet formats are described in the appendix.

2. The Protocol

We will describe the protocol for a user sending to a server.

In brief, the scenario consists of:

1. A reliable exchange of packets in which the user indicates its wish to send a
specified number of data bytes to the server for storage under a specified file
name; and the server acknowledges, indicating a minimum delay the sender
should allow between packets in order to allow time for storage.

2. Unreliable (unacknowledged) transmission by the sender of the entire sequence
of data blocks, wrapped in self-identilying packets.

3. A reliable exchange of packets in which the sender indicates completion of data
transmission; and the receiver cither indicates successful reception of the entire
sequence, or indicates which blocks it has and which blocks it has not
successfuilly received. ’

4. If the receiver as successfully received all data, the transfer is complete. If not,
the sender (unreliably) transmits the data blocks indicated as unreceived. GO
TO 3.

- As promised, a more detailed description follows.

2.1. UDP Connection
The User Datagram Protocol is connection-based. The user opens a connection with the

server on port 71 (decimal), by convention.

2.2. Initial Handshake

Th\e scnder transmits a WishToSend packet to the receiver. This

-packet contains the number of bytes of data to be transmitted and the

.ﬁle name with which it is to be identified on the receiver’s end. The

sender then waits for a response from the receiver, retransmitting the

packet if sufficient time clapses. _
The receiver initially waits for packets. Upon receipt 'of a
WishToSend, it begins preparations for the transfc.r, and responds
with a StartSend packet. This packet indicates the minimum delay
which the sender should allow between transmission of packets. This
delay is merely an optimization to reduce the number of packets.lost,

if the receiver is slower than-the sender (which is most often the case).

Upon receipt of a StartSend packet, the sender begins transmission of

data.

2.3. Transmission of Data
First Pass
Each data block to be transmitted is, in turn, copied by the sender into
a data packet whose opcode is the number associated with the block.
Each packet is sent, with at least the inter-packet delay requested.
The receiver accepts all data packets and stores the data in an

appropriate location. [t maintains a bit-vector recording which blocks

were successfully accepted.

Handshake After a Blast

 After tmnSmitting all data packets, the scnder transmits a

FinishedSending packet to indicate complction of the current pass,

then waits for a response. It retransmits the FinishedSending packet

when sufficient delay occurs.
Upon receipt of a FinishedSending packet, the receiver composes a
Retransmit packet containing its bitvector indicating blocks
successfu]ly reccived and a new inter-packet delay. Alternatively, if it
notices that it has received all blocks, it may send a ReceivedAll

packet instead.

Subsequent Passes

Subsequent passes are quite similar to the first. The sender scans a bit-vector for zeroes
indicating blocks needing transmission, and sends them off. Transmission terminates when

the sender receives a ReceivedAll packet or a Retransmit packet with no significant zeroes.

Frrors

The file transfer can be aborted by cither the sender or the recciver by sending a

FatalFrror packet, which contains a string indicating the problem.

3. Some Implementation Details
Diablo disk pages are 512 8-bit bytes long, which is the same size as the data blocks used
in Blast. |

Signiticant gains in speed can be gained with a few optimizations. As it reads pages from
the file.it is Sé,nding, the sender establishes a mapping from block number to disk address.
On subsequent passes, it can make use of this information to form disk requests that read
pages from the same cylinder during the same disk rotation. The receiver also does this to

group its writes.

A. Packet Formats

WishToSend

sent by: Sender

contains: ‘
opcode " 2 bytes
nBytes 4 bytes
fileName >=1 bytes

where: '

opcode 177777 (octal). .

n 4

nBytes number of bytes in the file.
fileName = what the receiver should name the file.
This is a string in the following format:

1 byte number, e.g. n, of characters in string
n bytes the ASCII characters in the string.
StartSend
sent by: Receiver
contains:
opcode 2 bytes
delay 2 bytes

where:

opcode = 177776 (octal)

delay = number of milli-seconds which sender should let elapse between
transmission of packets,

Data

sent by: Sender

contains: : :
opcode 2 bytes
data (=512 bytes

where:

opcode = J means this is the J-th block of the file (this is 0-based).
data = the data bytes composing the J-th block of the file.

A11 blocks but the last will contain 512 bytes.

The last may contain fewer.

FinishedSending
sent by: Sender
conlains:
opcode 2 bytes
where: .
opcode = 177775 (octal)

Retransmit
sent by: Receiver
contains:
opcode 2 bytes
delay 2 bytes
ack (=512 bytes
where:

opcode = 177774 (octal)
delay = number of milli-seconds to allow between packets.

ack = a bit vector,
N-th bit = 1 implies N-th block has been successfully transmitted.

ReceivedAll
sent by: Receiver
contains:
opcode 2 bytes
where:
opcode = 177773 (octal)

FatalError
sent by: Sender, Receiver
contains: '
opcode 2 bytes
reason <=512 bytes
where: :
opcode = 177772 (octal)
reason = a string (same format as the one in WishToSend)
WishToReccive
sent by: Receiver
contains:
opcode 2 bytes
fiteName {=512 bytes
where: '

opcode = 177771 (octal)
fileName = a string (same format as the one in WishToSend).
It contains the name of the file which the sender should transmit.

