CUMUILT. LABORATORY FOR COMPUTER SCIENCE : May 21,'1982

'Computer Systems Research Request for Comments No. 223

| Athlteknatjve Protocol Implementation

by David D. Clark

‘The attached document was recently written by David Clark at the

Computer Laboratory in Cambridge, England.

N - ” . TR [
Q.‘w\ P f R :f el e (v\(. A
: - {

- A*yﬂ o &%i‘\(“h> (/ et ey AP als

-

2

(«w"wcﬂ.? Joied L tepde Bleo e

/) t B e
PR Y PR S HRE A Lt
!
£l e o
Lyo S
\J
Nyt e i
.- 3
PP Lo ch e
CMOT it t
-
v Jne T

WORKING PAPER -- Please do not reproduce without the author's permission,
and do not cite in other publications.

COMPUTER LABORATORY, CAMBRIDGE

Systems Research Group Note

David D. Clark - 10 May 1982

An Alternative Protocol Implementation

1. Introduction

- There is a serious design problem that arises in the implementation
of a network protocol on an operating system, which is how to emplcy the
facilities of the operating system in structuring the implementation.
There are two facilities normally available in an operating systen, the
procedure and the process. Unfortunately, protocoels, because of their
particular requirements, do not map well onto either of these mechanisms.
The purpose of this note is to discuss why this is so, and to describe an
experimental implementation that attempts to explore a new structuring
technique well suited for protocols.

Protocols are always specified as being layered, which tends to
'suggest to the implementor that each protocol layer should be a distinet
module of some sort in the implementation. Unfortunately, the two
obvious module types, the procedure and thé process, both fall short. If
a layer is realized as a procedure, then the client of that layer views
the layer as a subroutine package to be called as needed in the process
of the client. This provides a very efficient interface between the
client and the layer, since a subroutine call is usually inexpensive, but
it does not provide any means by which the layer can run except when
called by the client. Unfortunately, most protocols contain the concept
of an asynchronous action, something the protocol layer performs as part
of its own operation and not at the request of the client. For example, a

unit of data transmitted may produce a returning acknowledgment. The

client is not interested in this acknowledgement, but the protocol must
run at the time it arrives to process it. This need to run
asynchronously means that the abstraction provided by the routine is not
sufflclent for most protocol layers.

The alternative is implementing the layer as a separate process.
This clearly provides the necessary asynchronous execution, but now fails
to provide an interface to the client that is efficient or flexible.
Process scheduling, which is now required to invoke the layer on behalf
of the client, is usually more costly by far than subroutine invocation.
Moreover, ‘interprocess communication is usually implemented with
sufficient llmltatlons that it does not really support the needs of the

SRG Note -1- 10 May 1982

layer interface. On some systems that do not share memory between
processes, a layer invocation may even require a copy of data through the
~kernel of the system, which c¢an cause unworkable overhead. The
difficulty of dealing with this interprocess interface contributes to a
rather surprising result, which has been repeatedly observed in protocol
implementations: the amount of code required to deal with the foreign
machine is found to be much smaller than that required to deal with the
client layer above.

There is a third way in which a protocl can be realized; it can be
made a part of the operating system kernel itself. Inside the Kkernel,
things usually get somewhat less structured, so it is possible to provide
a special mechanism to support the protocol layer. However, some systems
have severe restrictions on the address space of the kernel, so that the
layer and its data simply will not fit. More importantly, the facilities
available in the kernel are often a subset of what is available to the
user; for example, there may not be the concept of processes within the
kernei, so that the only mechanism available for asynchronous actions is
the interrupt handler. Thus, kernel implementations are tricky to build
and hard to maintain or change. Finally, when the trend in operating
system design is to try for a very small kernel with almost all the
function moved elsewhere, the idea of a very large protocol package
moving inte the kernel is very hard to accept.

2. Modularity vs, Efficiency

. Part of the justification for the design presented in this paper is
the claim, to be discussed below, that traditional layering techniques
produce a protocol modularity that is unsuitable for high performance.
An examination of the performance constraints on protocols will show that
they are very severe. Thus, it is worth taking a moment to consider the
issue of efficiency, before considering how it conflicts with modularity
and layering.

There are many aspects to efficiency. One aspect is sending data at
minimum transmission cost, which is a critical aspect of common carrier
communication, if not in ‘local area network communication. Another is
sending data at a high rate, which may not require special effort if the
net itself is very slow, but which~vméy be - the -one central. design
constraint when using a net with high raw bandwidth. The final
consideration is doing the above with minimum expenditure of computer
resources. This last may be necessary to achieving high speed, but in the
case of a slow net may be important only in that the resources used up,
for example CPU cycles, are costly or otherwise needed. It is worth
peinting out that these different goals often conflict; for example it is
often possible to trade off efficient use of the computer against.
efficient use of the network. Thus, there may be no such thing as a
successfull general purpose protocol, either in implementation or design.

SRG Note -2~ . 10 May 1982

e e el e

There -are two general rules that help to achieve any of the atove
' goais. First, send the data using the minimu¢'number of packets, and
second, process each packet with the minimum overhead. Clearly, one must
process with low overhead. A simple computation will show that the
restrictions are very severe. Consider the following table, which shows
the maximum average interval between data packets which must hold if one .
is to achive a particular throughput with packets of various sizes.

Packet size in bifs.
1K 10K -

~ Throughput 10KBPS =~ 100ms. 1sec
100KBPS 10ms . 100ms

. IMBPS 1ms -10ms
10MBPS .1ms 1ms

The point of this’yery simple table is that if one wants, for example, to
send data at an actual rate of ‘1 megabit per second, and each packet has
10,000 bits in it, which is about as large as packets get in practice, each
data bearing packet must follow the last within 10ms. This 10 ms
includes not only the actual data transmission time but the system
processing time. The sending host must prepare the data and format the
packet, and the receiving host must do the reverse. In some protocols,
there may also be the overhead of an acknowledgement packet which must
flow back from receiver to sender. If we assume that the sender and
receiver have equal prdcessihg.costs, and we assume a 10MB raw data sp=ed,
then 1ms of the 10 available is used in transmission, and the rest is
divided equally, giving 4.5ms at each end. Of course, cunning design can
allow both machines to execute at the same time, but even then there is at
most 10ms, which is a very hard limit to meet in practice.

One does not usually find 10ms of protocol related processing per
packet. In fact, the important cost often turns out to be system
overhead, and not protocol related costs: There exist systems which take
most of 10ms just to do a process scheduling, and protocols implemented
as processes may require many process schedulings. For a variety of
protocols and systems, examination of actual implementations suggest that
throughput is limited by the system cost dictated by the modularization
of the protocol, rather than by the details of the protocol processing at
any one layer. : ' '

This last point makes clear why efficiency and modularity relate to
each other. Aside from the obvious point that good throughput requires
large packets, all the issues above are influenced by modularity
considerations. ' o '

First, a protocol should be structured, in implementation if not in
design, to reduce the number of system operations (such as process
swappings) that occur on each transaction. No protocol, to my knowledge,
has taken this into account in the design of its layering, so it fellows
that one cannot expect the layering boundaries to be obvious in the
realization. '

SRG Note -3- 10 May 1982

Second, protocols should be structured te minimize asynchrony. This
- point is not as obvious, but 1is critical. The term asynchronous
operation was used above with respect to a layer to describe an action
that layer takes.as part of its own operation, independent of the
immediate desire of the client layer above., The example was processing

an acknowledgement. In traditional protocols, most layers have some

functions that require this sort of action. The problem is that a packet
sent as part of an asynchronous action, precisely because it is
asynchronous, does not have client level data in it.

Of course, one can hope that an outgoing packet can be shared by

several layers, assuming that several 1layers happen to have an
asynchronous action to perform at the same time. The most common
expression of this hope is found in protocols where an acknowledgement'is
capable of being carried on a reverse direction data packet. In fact, it
is hard to find an implementation in which this reverse direction "piggy-
back" is actually achieved. The problem in making this work is precisely
that the layer boundary creates a restricted interface across which the
lower layer is incapable of asking the client if there is any use that
the client can make of an asynchronous packet which the lower layer is
sending out. In practice, then, sharing of a packet by different layers
does not occur. Each layer sends its own packets, which contributes to
processor overhead and to packet related communications costs.

The last problem of modularity relates to the observation above that
it is often harder in practice to provide a suitable client interface

than to provide the protocol implementation to talk te the foreign

machine. The reason for this seems to be that a layer is viewed as
supporting many different clients with different per formance
requirements, which implies that the layer must be general enough to meet
all of these different performance requirements in one realization, For
example, a reliable stream package may be called on to support remote
login, where the prime consideration is low delay for packets with one
byte of data, and at the same time to support file transfer, which

requires efficient handleing of the data in maximum size packets. To~

meet goals of this diversity requires very sophisticated buffering and

coordination algorithms, which are more bulky and complex than the

~ protocol itself.

‘3. An Alternative Approach

The preceding discussion provides the justification for a protocol
implementation with a rather novel architecture. The design goals were
the following. First, the implementation should provide a structure
which permits necessary asynchrony while providing an efficient
interface between the several layers. Second, it should permit several
clients to share a common layer without complex programming in that
layer. Third, it should permit sharing the overhead of asynchronous
actions by different layers.

QDM Mot A N AR Mo we 400"

~

e

The structure devised for the implementation has two important
aspects, the use of processes and the client interface. In this
realization, a single layer is not represented a either a set of
subroutines or as a process, but as both together. The client is provided
with a set of subroutines which it may call in its process. Along with
these routines are some number of separate processes, which perform any
asynchronous actions. All communication between processes is internal
to a single layer; layer crossings are done via subroutine calls. For
some layers, all of the work can be done in the subroutines, an¢ no
processes are used. A :

The client interface is the other odd aspect of this structure.
Traditionally, one thinks of a client invoking a lower layer by calling
it. That is, calls proceed downward through the layers. This, however,
is not always the right direction. It is often better for the call to
come from the lower level to the client. This is the obvious struciure
when a packet arrives. The packet must first be processed by the lowest
level, and the higher level must be called into play only after valid
higher level data has been determined to be in the packet. An up call to
the client is the obvious way to obtain this structure. It might be
thought that on sending a packet the structure would be upside down from
receiving it, but this is not so. A packet to be sent is built from the
front back, or (in terms of layering) from the bottom up. That is, the
first part of the header is that belonging to the lowest layer. An up
call is thus quite natural for building a packet to send. The bo%“tom
layer fills in its header first, and after deing so, calls up to the
client to fill in its part at the proper offset. The only ways to do this
if down calls are used are either to let the lower layer copy the client
data into the packet, which is a useless copy needed only for reasons of
bad layering, or to build in to the client the knowledge of the lower
layer header size, which is clearly a bad layer violation and may not even
work if the lower level header can be of variable size. Thus, up calls
rather than down calls turn out to be a much more natural structure.

In fact, up calls have a second advantage, perhaps as important as
the natural fitting to function claimed above. The up call structure
" makes it much easier for a layer to ask advice of its client as it is
needed. The problem here is that in traditional down call structures,
the client asks the lower layer to do something, but that action may not
occur at once. For example, the client may wish to have some data sent,
but the lower layer may not be able to send it just then because of a flow
control restriction. S0 the data is sent some time latér as an
asynchronous action. By the time the data is sent, the client
requirements may have changed. For example, the client may have
additional data by now. It would be more straightforward if the lower
layer were to call up to the client only when the packet were actually
being sent to ask what use the client could make of it. This means that
up calls should be allowed to occur when the lower level needs them, not
when the client 1level wants them, In other words, up calls are
asynchronous with respect to the client.

SRG Note 5) 10 Mav 1982

The clearest example of the advantage of asynchronous up calls
occurs when an incoming packet arrives. The lower level, on determining
that a packet contains valid client data, must get that data out of the
packet and into the client. 1In traditional structures, the client is not

" assumed to be on call at the moment a packet arrives, so the lower layer
must put the data into a buffer until the client can be notified to get
it. This buffering algorithm used by the lower layer must be very
general, for it must be suitable for whatever sort of client wishes to use
it., It is for that reason that the interface between a layer and its
client is traditionally so complex. In contrast, the up call appreoach is
extreamly simple. At the time that the lower layer wants to remove the
data from the packet, it simply calls up to the client and instructs the
client to remove the data now. Of course, this does not remove all need

for buffering. What it does do is move the buffering function from the
lower layer to the client. This structure is much better. The lower
layer, in this approach, will be found to consist of only the actual
protocol processing parts, those related to dealing with the foreign

machine. This makes most protocol packages get much smaller and easier
to understand. The client can implement a buffering strategy that is
tailcred to its needs, which can be expected to be much simpler than the
general mechanism the lower layer would have otherwise provided. Thus
the client does not grow nearly as much as the lower level has shrunk.
This general reduction in bulk and complexity does seem to occur in
practice.

There is one further aspect to this structure, which is that it
provides a way to promote the sharing of packets between several layers.
A sﬁecific example will make this clear. When an incoming packet
contains data, a stream layer will want to acknowledge that data. It may
also be the case that a higher level will want to send data in return,
When providing remote login service with remote echo, for example, the
stream layer will want to acknowledge each character arriving, and the
next level up will want to echo each character arriving. To reduce
overhead, it is quite important to get both of these returing items in one
packet. As discussed above, in traditional structures, this is very hard
to do, since the stream layer, knowing nothing about the client layer,
does not know that an echo is an almost inevitable response to an
incoming character. It has no way of asking. Either it must wait and see
if thre client provides a response, which injects needless delays if the
goal in this particular case was throughput, or it can just igrore this
sharing and send an acknowledgement on its own. In the up call structure,
this problem can be approached in several ways. The simplest is for the
stresm layer to call up to ask whether data will be soon available. Even
more direct is to have some of the client code run as part of the up call
to compute the echo value right then. In any event, it is easy for the
lower layer, by using. up calls, to tailor itself to different client
modules without building hugh general purpose interface packages.

SRG Note -6~ 10 May 1982

4, An Example: BSP

An experiment was carried out on this protocel structure using the
Tripos operating system, and the family of protocols developed by the
University of Cambridge: BSP, a byte stram protocol, and VTP, a protecol
supporting remote logon., A brief description of this implementation, BSP
in particular, will help make the above discussion more concrete.

Tripos has two mechanisms for producing asynchronous or parallel
actions, the task and the coroutine. The task is a system level process
with a system specified address space and scheduling mechanism.
Coroutines are a language level multiplexing of one task. Coroutines are
very inexpensive to schedule, and it was possible to build a per task
coroutine scheduler that implemented the particular features required.
For these and other reasons related to details of Tripos, one task was
created for each network connection, with its own BSP, VTP, etc., running
inside it. 1Internal to each protocel in the task, coroutines were used tp
provide the asyenchronous actions.

The coroutine scheduler, which provids the operating environment to
tie together the parts of each layer, is sufficiently important to

_ deserve attention itself. The scheduler is not based on the idea of

static priority, but on the idea that, at the time one coroutine activates
another, the activating coroutine will specify how the other task is to
run. Four activation modes were supplied: -
Pre-empt: Suspend the activating task and run the other task. When that
task finishes, come back and run this task again. This form of activation
is somewhat like a subroutine call.

No Delay: Add the activated coroutine to the list that the scheduler has
of runnable coroutines. The scheduler will examine that list and select
another coroutine to run when this activating coroutine finishes and
suspends itself.

Short Delay: Mark the relevant task as runnable after a short fixed
period (currently 100ms.) has passed. This short period is used to
postpone sending an acknowledgement to see if the client layer will
generate data to combine with it. It has other similar uses.

Long Delay: Mark the relevant task as runnable after a longer period
(currently 5 seconds). This interval is used to control retransmission,

As the above suggests, the important idea in the scheduler is not
priority, but timers. In fact, much of what the scheduler does is setting
and clearing timers, which suggests that any system supporting this sort
of software should have a good package for timer management. In fact,
most timers never go off, for they are only to protect against some
failure. Thus, the efficient operations on timers must be setting and
clearing, and not responding when they go off.

- The BSP module consists of two coroutines and a set of subroutines
to be called from the coroutines of other protocol layers. One coroutine
waits for arriving packets from the net, the other sends 'packets to the
net. As discussed above the sending activity as well as the receiving

SRG Note ‘ L, - 10 Mav 1982

action is properly thought of as an asynchronous actlon, since a packet
cannot always be sent whenever the client desires.

There are severel sUbroutines that the.client (such as VIP) can call
in BSP. These are structured to do no actual work, but only to schedule
coroutines and set flags as necessary before returing. The calls are as
follows: ;

Send: Request BSP to run its send earoutlne to transmit some data. BSP
will do this as soon as flow control and foreign acknowledgement permit.
Receive: Request,BSP to undo a prevxously requested flow control halt to
- 'incoming data, so that more data may come. (In BSP terms, this causes the
BSP Ready command to be sent. This is only required if a NotReady was
previously sent.) : :
Send Reset: Requests BSP to resynchronise the stream. BSP will do this at’
once, using the send coroutine to do so.

Send Close: Requests BSP to start the exchange ‘to close the connection,
The send coroutine will attend to it. , , o
Abort: Request the BSP to free storage and finish, on the assumptién that
the cther side is dead. A drastic form of close.

Open: Request BSP to play the active role in starting a connection. In
this case the coroutine actually calling the subroutine is used - to
execute the sending and waiting associated with opening. In this.
protccol family, the opening sequence is not part of BSP, but is a
separate layer., It would thus unnatural to use the BSP coroutines for
this. The higher level client must expect that its coroutine may be
detained for some time inside the Open call. It will return only when
the open has succeeded or failed.

Listen: Request BSP to play the passive role in starting a connection. As
above, the action is performed using the coroutine of the calling client.

An examination of the above calls will suggest that not much
actually happens there. In fact, all of the interesting function is
performed as part of the up calls from BSP to the client. Those calls are-
as flollows: o :
TakeData(ptr,count): The client is given a pointer to count bytes which
are contained in a packet just arrived. The client 'is expected to
(quickly) remove the bytes from the packet.

GiveData(ptr,count): The eclient is given a pointer to an area in a packet
about to be sent. It is expected to put some data there and indicate the
actual number of bytes given.

TakeFlags(flags): The client is given the control flags that are
transmitted with every BSP data packet. It is assumed that it will in
turn request the proper action., 1In particular, if the Close Request flag
is on, the elient will probably want to call the Send Close subroutine of
BSP.

GiveFlags: The cllent is requested to supply the control flags to be
included in the packet now being sent.

ResetComplete(who): Indicates to the client that a resynchronisation has
occured. The argument indicates who asked that this happen (It could
have been the client itself, via the Send Reset down call.
CloseComplete(who): Indicates to the client that the connection has been
broken. The arguments indicates which end initiated this clese.

SRG Note -8~ 10 May 1982

TakeP: This call is a query of the client to determine if it can take more
data. If the answer is no, BSP will halt the foreign host (by sending Not
Ready instead of Ready as an acknowledgement of the packet currently
being processed). In this case, the client must call Receive at the time
when data can again be received.

GiveP: This call is a query of the client to determine if it has more data
to send. If so, the BSP send coroutine will be started to send that data.
HowFastAckP: This call is a query of the client to determine how fast the
acknowledgement of the last data should be returned. If the client
desires maximum throughput it will request immediate acknowledge. If the
client wishes to combine that acknowledgement with some outgoing data, as
often happens with remote login, the client will request a Short Delay be
used to schedule the send coroutine. (When the data is ready, the client
can use the Send Data call to override the Short Delay.)

Error(how many): This call imforms the client that "how many" errors have
occured since the foreign host did anything right. Errors include
timeout and retransmission, which is the normal error, but also include
mal formed packets received and similar misbehavior. This call will not
be made until "how many" reaches a set minimum. The client, unless it has
special knowledge that justifies these errors, should respond by calling
Abort.

These up calls can be grouped together according to when they are
called. TakeData,TakeFlags,TakeP,GiveP and HowFastAckP are called as
part of processing an incoming packet and deciding what sort of response
to send. ResetComplete and CloseComplete are called as part of
processing an incoming control packet. GiveData and GiveFlags are called
as part of actually sending a packet; Error may be called at any time.
This sort of information, which describes the timing or sequencing, is an
important part of the specification, since it allows the client to know
what to expect. The problems associated with sequencing are discussed
below. :

Inside BSP, the two coroutines and the subroutines communicate among
themselves by a shared area of storage, which also constitutes the state
information of BSP. It takes 22 integer variables to hold this state,
which seems reasonable. The particular operating system used, however,
does not provide any effective way to create a class of storage suitable
for this. The only option is to use the global storage that is allocated

_on a per task basis, which means that it is impossible to put more than
one BSP in a task, to avoid conflict over global storage allocation. This
is not a problem particular to Tripos, most operating systems do not have
exactly what is needed.

5. Problems

The structure described above has several clear advantages. The
various layers do not require much code, and they interact with each
other in a flexible and efficient manner. There are as well several
problems with this structure. Many of these problems do not relate to

SRG Note -9~ 10 May 1982

the limitations of this particular implementation, but rather to general
practices in the design of protocols and operating systems. It is thus
worth a careful study of these problems.

The multi-process structure used above is very different from
traditional practices in protocol modularization. Thus, packages
implemented in this new way to not interface well to packages done the
old way. This is not surprising, but it must be remembered when
contemplating the size of a redesign project. More importantly, this
structure, where one layer lives in several coroutines at once, some of
which are controlled by the layer itself and some of which are controlled
by other layers, is a complex structure which is hard to understand and
debug. One way of expressing the problem is that some of the protocol
structure is captured in the program, not as a sequence of statements on a
page, but as the sequence of scheduling events that occur. A scheduling
event causes some other piece of code to come into execution at some
unknon time. To understand the impact of this style of coding on the
programmer, on can usefully consider the scheduling event as similar to
an unstructured GOTO with only a probability of executing. Of course,
other styles of protocol implementation have this same problem.

The problem of linking the various coroutines of a layer together by
means of shared variables was discussed above. This structure would not
work if the only means of communication between coroutines was by message
passing. Not only would that cause unworkable overhead, but it would
make the structure iompossible. If one puts part of the state of a layer
in a message and sends it to a coroutine, that part of the state has
become inaccessible for the time while it sits on the input queue of that
coroutine. The other coroutines must thus be prepared to do without that
part of the state information until that coroutine has run. But that
sort of constraint is inconsistant with the unpredictable order in which
things can happen when one is talking to the outside world. It would be
nice to think that message passing would eliminate the need for shared
memory, which is so unstructured. That goal does not seem possible.

Dispite the above, the message passing facilities of the system need
to be very powerful to support this structure properly. A companion
paper discusses what has been learned about message passing from this
project. '

Each coroutine, although it beleongs to one layer, makes calls out of
that layer into other layers as part of its normal operation. A layer
thus called may in turn call other layers, so the amount of stack needed
for each coroutine is difficult teo predict. Unfortunately, most
coroutine or task packages require the maximum size of each stack to be
known at creation time. The only way out is to create big stacks, which
'is hard on small memory systems.

Perhaps the most difficult aspect of creating this structure is
that, because of the up calls, a layer gives up control to another layer
in the middle of its execution., This was, in fact, the goal, because it
yielded a very flexible and efficient interface. The difficulty is that

SRG Note -10- 10 May 1982

one layer can never be quite sure what another layer is going to do while
it has been called. For example, when BSP calles its client to take some
data, the client may, while it is running in the coroutine of BSP, turn
around and call back down into BSP to request some other action, perhaps
to send a reset or a close. Having done this, the client will then return
to BSP, which will discover that all its state has unexpectedly chanrged.
It is difficult to create a program that knows how to go on under these
conditions.

There are several ways to solve the problem of the side effects of
up calls to the client, One is to prohibit, as a part of the layer
specification, any execution of a down call in that piece of client code
that executes on an up call. This, when tried, caused great complexity in
the client layer. There are several side effects that are really needed
as part of normal operation, The layer specification, instead of
prohibiting side effects totally, could list those that are acceptable.

‘The attempt to do this for BSP led to a very complex specification, which

seems wrong in spirit and dangerous in practice. The best solution
seemed to be for each layer to protect itself from whatever the layer
above could do.

BSP achieved this by making all the down calls do nothing but set a
very restricted set of flags and schedule the internal coroutines. BSP
is thus safe from side effects if it rechecks the relevant of these flags
after each outcall. In fact the number of such tests required is not
large, but the problem is hard to think about, and can easily lead to
difficult, timing related bugs. It is regretable to create a structure
in which this sort of disaster is a known feature. More experience wiht
this style may provide better . insight into dealing with up call side
effects. :

SRG Note S -11- ‘ 10 May 1982

