M.I.T. LABORATORY FOR COMPUTER SCIENCE May 21, 1982

Computer Systems Research Request for Comments No. 224

‘Considerations of Message Based System Design

by David D. Clark

The attached document was recently written by David Clark at the

CdmpUter Laboratory in Cambridge, England.

Jar Gl

WORKING PAPER -- Please do not reproduce without the author's permission,
and do not cite in other publications.

COMPUTER LABORATORY, CAMBRIDGE

Systems Research Group Note

' David D. Clark - 10 May 1982

Considerations of Message Based System Design

1. Introduction

, A number of operating systems have been built in which processes
communicate with each other and/or the supervisor by sending and
receiving interprocess messages. Dispite this, there remains
considerable uncertainty as to what the details of message passing
semantics should be. This note discusses some specific observaticns
about message passing and related system issues, which arose during the
implementation of network protocol software on a message based operating
system, Tripos. The note suggests some directions for future operating
system design.

Network protocols provide a hard test for message passing systems,
because protocols are naturally structured as a number of cooperating
asynchronous processes that demand very: high efficiency in their
interprocess communication. A typical protocol module, running on a
minicomputer of average speed, may require only a millisecond or so to
complete its actions, after which another process must be invoked to
carry on, Since sending a message in many systems can take -longer than
that, the overhead of message passing can become the limiting factor in
good overall performance. Further, protocol modules tend to interact in
complex ways, which are often not properly supported by the system. This
can cause what might have been a clean structure of many processes to get
very messy. '

This note discusses three aspects of system support for network
software: the detailed semantics of message passirg, the scheduling
mechanism required, and the storage requirements for processes. Each of
these points relates to the way messages are used in the system, and to
the way that the basic structure of the system supports the intended
applications,

It will be argued that the features required to support network

protocols are in fact general requirements, which should influence the
design of new systems for a variety of purposes.

SRG Note ' C-1- ‘ 10 May 1982

2, Message Passing Semantics

. The most basic argument about messages is whether every message must

have a reply. One version of message passing has the sending process, on
sending a message, halt pending a reply. Other versions allow the sender
to continue, and to await the reply whenever convenient. Finally, some
systems have no concept of reply, and view each message as a separate
entity.

The argument between these is often based on what the perceived need
is.- Within 1limits, one structure can be made to resemble another,
Obviously, the pattern of message and reply can be adapted by the

-application, even if the system itself does not support it. On the other
hand, if the system requires a synchronised reply, the application can
provide a separate process to await it, and continue computing within
other processes. What is missing from most of these arguments is actual
experience,

This particular implementation project provided experience in the
specific domain of network protocols. In this case, it is clear that the
send-reply pattern is unneeded and unwanted.

There are several problems with the send-reply pattern. First, in
many cases, perhaps the majority, there is no natural use for the reply.
One process is telling another that it can take over the processing, and
the first process then goes on to something else, giving no more
attention to the matter of that message. A good analogy for this program
structure is the assembly line, with each process doing its part and
handing on the work. While the sending process could be built to expect
the reply, it would represent unneeded work for that process. That extra
work is especially undesirable because it is very costly. The reply may
come back at a time when the first process is suspended, so it must be
scheduled just to discard the reply. In a system in which this cost is
1mportant then, message replys cause a significant overhead.

The idea that a special process should be created to send the
message and receive the reply is not reasonable. Once that separate
process has been created, messages must now be used to talk to it. The
send-reply pattern thus continues to exist, but with the added confusion
and overhead of an extra process in the way. ﬂ '

In fact, the send-reply pattern sometimes comes into existence, not
to support an imagined application need, but because it solves a system
level problem, which is the creation and deletion of the storage of
messages. If the sender creates a message and the receiver destroys it,
then the message must be created in an area in which the receiver also

has medify rights. In general, this implies that messages are created in .

some sort of kernel area. This makes messages a shared system resource,
with all of the obvious management problems. In particular, it is now
possible for one malformed process to claim all of the message storage,
and crash the system. It would be much simpler if each process created

SRG Note -2 » 10 May 1982

its messages in some area local to itself. But this usually means that
the receiver is not in a position to delete the message. Hence the reply
action, which has the nice side effect of returning the actual message to
the process that can destroy it.

This approach seems weak. For this application, as was observed
above, having to deal with unwanted replies was a real burden. More
generally, what an operating system does is manage shared resouces., It
should not be unwilling to take on the task of managing tnessagas,
especially if they are the basic mechanism of the system semantic s,
Later, this note will present a specific proposal for system level
management of message storage.

There are a number of other problems with send-reply semantics, but
more background is required to discuss them properly. Thus, it is time to
consider some other aspects of message passing.

Waiting for a message is more complex than sending a message,
because of the uncertainty as to which message may actually arrive.
There are two general possibilities. First, the process can wait for a
specified message, and ask the system to hold any others that may arrive,
or it can wait for anything and sort what arrived on its own. Again,
arguments are often based on what the user wants. Waiting for .any
message places a burden on the process, for the process must essentially
create a private message handling mechanism which takes unexpected
messages and sets them aside for later processing. The idea of
specifying which message is next due attempts te put this burden on the
system instead of the application. Unfortunately, this does not work
completely, because the process may need to deal with whichever message
comes first. If the system will let a process specify more than one
message for which it is prepared to wait, this uncertainty can be handled,

- but now the process is again doing some of the'message sorting, which was
the burden the system was trying to take over in the first place.

This protocol project suggests strongly that waiting for any
unspecified message is the normal and desirable form. Most strongly, it
suggests that being able to wait only for one specific message in totally
unworkable, Several systems, including popular ones like Unix, have had
this defect. The evidence is quite strong now that a process must be
able to wait for any one of several events, whether or not these must be
enumerated. o e

When a system allows each process to wait for only one message, the
usual application structure suggested’is to create several processes,
each to wait for one event. In fact, in this project, this strucﬁure was
most natural. In normal operation, each process was waiting for one
specific message at any one time. For example, when a packet was send,
one process waited for a reply and another process waited on a timer. If
the timer expired before the reply was received the timer process would
resend the packet. Thus, the restriction of waiting on one message
almost worked. Only in one case did it fail, but this one case was a

" total failure. The particular case is cleaning up and shutting down the

SRG Note -3= ' 10 May 1982

process, especially after a protocol failure. In this case, it is

necessary to get every process, presumably waiting for some specific .

message, to stop waiting, free its storage, and'destroy itself. Creating
a special process for the shutdown message does not solve the problem,
for the shutdown message is of immediate interest to every process.

The handling of exceptional events has always been an area where the
proper semantics are unclear. It is an actual overhead and a programming
complexity to test constantly for all possible exceptions. Various
mechanisms have thus been created to signal a process when an exception

occurs, by diverting it from its normal execution path. This diversion -

has the problem that the signal, occuring at an unexpected time in the
program, can find the process unprepared to process it.

It is not surprising that the problem of exceptions, which has
always arisen as part of subroutine calls, should also arise as part of
message sending. While it is not surprising, it is certainly regretable,
for the suitable mechanism has never been clear even in that simpler
case. The general problem is complex enough to demand a separate
discussion below, but the first observation is that if a process can wait
for only one message, then there is no way, clean or dirty, to inform it of
exceptions, and this is an unacceptable restriction. Thus, a process must
be able to wait for more than one message. At the same time, things can
be arranged so that there are dnly a small number of messages expected
under normal circumstances, Thus, a complex system mechanism to sort and
filter incoming messages is not important. Thus the claim that waiting
for any message is the proper system semantics. ’

Note - that send-reply semantics cause problems with exceptions,
because a process waiting for a reply is a specific example of waiting
for one particular messége. This is an additional defect in send-reply
semantics,

3. Scheduling Implications of Message Passing

A most important issue related to message passing is the manner in
which receiving a message causes a process scheduling. In general, of
course, the required function is clear. If a process is waiting for a
' message, and a message arrives, then the process should be run to receive
-it. This statement is sufficient if the issue of performance is ignored.
If, however, the system 1is expected to run well, not just run, the
situation becomes much more complicated. This aspect of performance was
particularly troublesome for the network protocol software since
scheduling was such a large part of the total overhead in the first place.

The problem is that not all messages imply the need for immediate
processing. Processing later, in an idle moment, is sufficient. One
approach to this is to try to identify low priority processes, and have
the system take account of this priority ordering. This is not at all
sufficient for the network protocol project. What is required is a

" SRG Note =4 10 May 1982

-

priority related to the message, not the process. There must be nlgn
priority messages, causing the receiving process to run at once (perhaps
even pre-empting the sending process), and there are lower priority
messages, for processing later as time permits.,

Even this is not sufficient, for the sender and the receiver nay
'disagree as to the priority of a message. A sender may attach highest
urgency to a message, but if the receiver is otherwise prevented from
proceeding, there is no reason to schedule it when the high priority
message arrives. Thus, some sort of negotiated priority is required with
every message,

At a minimum it must be possible to send a message and avoid causing
any scheduliﬁé action as a result. Often, one process wants to send a
number of items to another. For example, one process may parse an
incoming data packet and find a number of lines of data within. If the
interface to the client process is in terms of lines, then one message
will be sent per line. Clearly, if performance counts, the eclient should
not be scheduled until all the processing of the packet is done. If this
simple control of scheduling is not possible, the code cannot be expected
te run well.

In the protocol project, for any given message, a particular
scheduling action that satisfies both sender and receiver could be found.
The system does not need an interface that resolves desires that are
actually conflicting. What is needed is a way for a waiting process,
while it is not running, to leave behind enough information about its
state so that a sender can figure out what should happen. It is hard to
design system semantics to support this in general. An alternative
structure, which shares the negotiating function between system and
application, is discussed below.

4, Process Storage Allocation

Operating systems can be divided into those with virtual memory, and
those without. For simple systems with only one address space, a number
of problems can be avoided. However, if different processes have
different address spaces, méssage passing gets more complex. First, as
discussed above, both the sender and the receiver must be able to create
and delete the message. More basic than that, both must be able to refer
to the message to read and write its contents. Second, the message must
be able to refer to associated information (such as a buffer of data) in
a way that is valid in both address spaces.

There are two common solutions to this problem. First, the data can
be made part of the message itself. In the case of network protocols,
this causes hopeless overhead, because the data must be copied twice a3 a
part of message sending, once into the packet and once out again. Actual
experience makes quite clear that this sort of overhead canrot be -
tolerated. The other approach is to put the data in a portion of the

SRG Note ’ -5= 10 May 1982

address space common to both processes. The only option usually
available is the kernel address space itself. This has the problem that
the kernel space, being shared, must be allocated with care, and must be
protected from being overwritten by defective programs. This control is
usually achieved at the cost of kernel intervention on the data access,
which can have the overhead of a extra copy operation,

~ In the protocol case, there is'a possible way out, because the
~patterns of sharing are not general. Which processes are going to pass
messages to each other is known in advance, and is determined by the
specific function of the processes. Thus, it will be sufficient if two
processes, knowing that they wish to communicate with each other, ask the
kernel to create a common data area which is specific to that pair (or
larger group) of processes. Within this area, buffers can be allocated
without a great deal of system concern, because a failure (such as
exhausting the store) will only be visible to the particular processes in
question,

'If such a shared storage area is created between processes wishing
to communicate, that area can be used for the allocation of messages
themselves. This solves the system level problem of controlling use of a
system resource. The hesitation in doing this sort of allocation is that
it prevents completely general message passing. Two processes with no
shared area cannot send messages. There is no strong body of experience
to suggest that general'unstructured message passing is important, and
some to suggest it is not. A small system area could be created to allow
for any special cases. This point will receive more consideration below.

The excessive overhead of data copying as a part of message passing
suggests that some sharing of address space must occur between co-
operating processes. In fact, such storage is required for other reasons.
As discussed above, sender and receiver sometimes need to share state to
determine whether one should schedule another. Since messages cannot be
used for this, the only obvious alternative is shared storage. It would
be nice 1if message passing could somehow be the only means of
communication between processes. Shared memory is very unstructured, and
unstructured communication between processes is known to cause program
‘bugs. Sadly, there seems no way out. The difference in overhead between
‘process scheduling (however well tuned) and a reference to shared
variables will always be enough to matter,

' 6. Cooperating Processes -- The Multi-Process Module

The traditional view of processes is that each process constitutes a
separate domain, with only restricted modes of interaction across process
boundzries. This note has assumed a rather different view, in which
processes know quite a bit about each other. They reveal to each other,
not cnly a shared data space, but information needed to control
scheduling. In fact, this programming project suggests a rather
different view of modularity in general, which helps to solve many of the

SRG Note -6~ 10 May 1982

traditional problems of cooperating processes.
In general,‘a collection of programs is divided inteo units which
have a well defined function and interface. The term "module" is
sometimes used to describe this sort of unit, (Other terms are "package"
and "layer".) In a companion paper, "An Alternative Protocol Structure",
it is argued at 1length that the traditional ideas of module and
modularity are not sufficient for protocols. Briefly, the argument is
that a protocol cannot be modularized using processes to define the
module boundaries, because that causes unacceptable cost and loss of .
flexibility in crossing the boundaries. Nor can a collection of
subroutines be viewed as a module, becausefof the specific need which
most"protocol modules have to execute asynchronously from their client
modules. What is needed is a hybrid between a subroutine and a process.
What was produced in practice was a module that consisted of one or more
processes together with some subroutines that could be called from
processes belonging to other modules, |

The resulting module boundary did not match any obvious system
'provided entity, which caused some implementation problems. The
structure was vey easy to deal with from a conceptual point of view,
however. First, since the module contained several internal processes,
it was possible to arrange for a separate process to wait for distinct
messages. As discussed above, this makes easier the internal dispatching
of arriving messages. Second, clients in external processes had a low.
overhead way to interact with the module, via the subroutines which they
were permitted to call in their processes. These external subroutines
provide the module interface that the clients can use, while the process
structure is hidden.

Shared memory was used both between modules and internal to each
module. Internal to each module, the memory was used as needed, to
provide common state information between the internal processes and the
external subroutines. Between modules, shared memory was used only in
constrained ways, as a way of passing data buffers with high efficiency.
Other constraints were imposed on the interaction between modules. In
particular, one module never scheduled the internal process of another
process. The only way one module could activate another was by calling
one of the available subroutines. All process scheduling actions occured
internal to one module, even if parts of the module were running as
subroutines in processes of other modules.

This multi-process module idea could be used as the basic
structuring tool of a system. Several substantial advantages seem to
result from doing so. In particular, several of the problems discussed
above can be solved if all modules can be assumed to have an exterral
part that runs in foreign processes. o

The problem of linking message passing to scheduling is solved if
one module never schedules another module, but only calls its exterral
subroutines. As was observed above, experience with protocols suggested
that in any specific case two processes can agree on the priority of any

SRG Note -T- ' 10 May 1982

scheduling action, provided that enough information can be made
available. The problem with this idea 1is making that information
available across a module boundary. When one process calls an external
subroutine of a module in order to have part of that module scheduled, all
scheduling decisions are pushed inside one module, where it is easy for
the various parts to interact however needed to provide the correct
decision,

The problem of exceptional conditions is also solved by this
structure, but it is necessary to consider exceptions in more detail in
order to see the real advantage. The usual approach to exceptions
(assuming that they are handled in any systematic way at all) is to
provide some set of exception identifiers, either integer cedes or
character strings, which can be returned to signal the exception. In the
context of subroutine calls, these can either be passed as an extra
return argument, which the program must explicitly test, or as a software
interrupt, for which the program must have provided a defined handler.
Extending this idea to message passing, either form can be added to the
system interface used to wait for a message: either a software interrupt
can occur at this point or a return with error code can occur. All of the
programming problems associated with either approach still occur, but no
worse than in the subroutine case.

The real problem with exceptions is that an exception can occur, not
when a program is itself running, but when it has called some other
program on its behalf. Returning to the familiar case of subroutines
again, an event of interest to one subroutine can occur when it has called
another, which is currently executing on the stack. The exception
usually means nothing to the subroutine, but it is expected to "do the
right thing" anyway, perhaps to clean up in some way and clear itself off
the stack. The real problem with exceptions is to get the other modules
involved to "do the right thing".

With message passing, the real problem oceurs when, inside a process,
some subroutine is called and that subroutine waits for a message. For
example, the system routine to read from the keyboard is called, and that
waits for a message from the terminal handler. If an exceptional event
occurs while that subroutine is waiting, it may be necessary to abort the
wait, even though the subroutine knows hothing'about the exception in
question, '

The multi-process module provides an elegant way to solve this
problem. When one process of a module detects an exception of interest,
it causes that event to be noticed in other processes of the module by
explicit action, If a process is currently in the external subroutine of
some other module, waiting for a message, this process will call another
external subroutine of that other module, provided for the purpose,
instructing it to abort the wait.

It may not be obvious that simplicity is best served by forcing
every multi-process module to provide various external subroutines just
to abort waits and so on to help with exceptions in other modules. In

SRG Note -8- 10 May 1982

fact, this is a very simple and clean idea. Most modules have a very

*limited number of exception responses. It is not a burden to design and
implement them. What is a burden'is-for a module to try and guess which
is appropriate to perform in response to an'exceptioh which is defined by
and meaningful to some other module. In this scheme, using the external
subroutine interface to the module, the module can be explicitly
requested, using terms meaningful to the module itself, to perform
whatever action is appropriate. o ' '

A final area where the multi-process module seems to help is in
resolving the naming of message types. When a process receives a
message, it must be able to tell which message arrived, so that it can
proceed accordingly. In some systems, every message has a unique id, but
this is not often helpful, because the real issue is what "type" of
message is it. Some systems, such as Unix, distinguish messages based on
the sending process. This is quite restrictive. What is needed is for
each message to carry some "type identifier" which the receiver can
examine.

If messages are sent in an unconstrained manner between all pairs of
processes, however, then the type identifiers must be globally assigned,
which creates fully as complex a naming structure as global file names.
Especially since a compact representation such as integers is needed for
message type identifiers, the management problem is ‘severe, But if
messages are sent only between processes of one module, then the scope of
type identifiers is restricted to that module, which is tractable.

6. - System Support for Multi-Process Modules

As discussed above, the multi-process module-was an abstraction that
was not directly supported by the system. What the system supported was
the various process abstractions, message passing, scheduling, etc. out
of which the module was built. However, if the multi-process module ware
officially supported by the system, a number of problems would be solved.

Most important, the system could supply a class of storage suitable
for communication between the processes of the module. In most systems
today, the idea of the external subroutine stresses the storage problem
hardest, because the external subroutine, running in the process of some
other module, must be able to find its shared storage. One way to look at
this is that the external subroutine links two address spaces together,
those of the calling and the called modules. In fact, the idea of address
space is totally altered by the multi-process module structure. There
are now two kinds of shared storage, the state information internal to a
module, and the communication area linking two modules, which is used for
shared data between them. The address space for any particular process
is thus a stack (or similar mechanism) plus the internal and external
storage and code segments of all the modules that may be run on taat
stack. Each external subroutine must be able, by knowing its module
membership, to find its storage in the ‘address space of the calling

SRG Note -9- 10 May 1382

proéess. This mapping would be made much easier if the system under stood
the idea of module and maintained the proper sort of mapping tables.

In fact, there are actually two forms of multi-process module. The
module "template" defines the needed internal processes, the external
subroutines, and the storage requirements. The module "instance" is one
particular version of the module, defined by one version of the storage.
when one module calls another, what is invoked is a particular instance.
The instance name is often one of the parameters of the call, so that the
called routine can figure out what is being called. For example, for a .
protocol layer there is usually one instance per connection, and the
layer is invoked with the connection name as one argument of the call.
Thus, the external subroutine of a module must be able to find the correct
address space based on which instance is currently being called.
. Instance names must thus be a system concept.

Normally, this idea of "instance" is found in the process
abstraction: the same program running in different processes is a
different version with different state. In this structure, where the
module is the system entity with multiple instances, the idea of process,
although still present, is much less important. A process has only a
stack to distinguish itself, except when it is waiting, in which case it
has certain messages in which it is interested. If every module is
viewed as existing in versions, and all versions are distinguished by
storage, then even the stack is not needed, except to keep the actual

-~ sequence of return addresses. Stack or automatic storage is replaced by
version storage. This idea could be helpful on machines in which the
hardware support of multiple stacks is somewhat weak, or the number of
address registers limited.

The programming structure of the module is another area in which
system support might prove useful. Experience coding in this style
suggests that the programmer will not use the internal processes and
external subroutines of a module in arbitrary fashion. In fact, one of
two patterns emerged. In one, there were no internal processes at all,
because the module had no requirement for asynchronous actions. Note
that in this case, the module is still multi-process, for it could be
called from any of the processes of the client module. In the other
pattern, all of the work was done in the internal processes, and the
external subroutines only did interface tasks, such as setting state
variables, adding messages to queues, and scheduling internal processes.
- In particular, the external subroutines never waited for messages. This
last pattern is a rather clean one, in that it is easy to specify the
behavior of the external subroutine interface. System support of this
structure might prove helpful. ’

SRG Note : , ~10- L 10 May 1982

7. Conclusion

This paper has proposed an operating system with some rather unusual
features. While it is based on message passing, it requires that
processes share memory, and that scheduling not be tied too tightly to
messages. It has proposed a new abstraction for program modularity,
called the multi-process module. This module provided a restricted
domain within which message passing was used, which solved various
otherwise difficult system problems, in particular efficient schedulirg,
multi-process exception handling, and storage management for shared
memory and messages. The storage requirements of the multi-process
module in turn implied a rather different view of system storage
management, which separated the ideas of address space and process, and
associated storage with module instances rather than processes.

In fact, the message seems a rather unimportant aspect of the final
design. It could be argued that the real conclusion of this paper is
that message passing semantics are not very useful. 3Such a conclusion
might be defended, but seems to overstate the case. In fact, message
passing plays an important part in this structure.

First, messages can still be the vehicle for scheduling. Just
because it must be possible to send messages without triggering
scheduling, it does no, follew that the two are unrelated. One idea that
is consistent with these proposals is te have scheduling controlled by a
parameter to the send niessage roubtine.

Message queues must be system objects., This is so, first, because it
is on a message queue (or port, or whatever name appeals) that a process
waits, clearly a system operation, The system must name queues, because
those names are global, at least with respect to any one process. Equally
important, the acticens of queueing and dequeueing a message must be
system atomic actions. This is so because a sending and a waiting
process must be sure that they have avoided any race conditions in
testing an empty queue.

Since queue management is atomic, messages can be used to build a
synchronism mechanism between co-operating processes. This point has
not been considered before, but it must be clear to the careful reader
that programming a multi-process module, since it involves parallelism,
requires care and co-crdination. Some form of interlock will clearly be
needed, and the message can provide this function. Since messages can
cause scheduling, this makes it possible to wait on a lock by waiting for
a message. Essentially, a message is a lock. While dequeueing a message
may not seem as efficient as a test arnd set instruction, the overhead of
building a test and set if the hardware does not have it is about the szme
as the operation of dequeueing, which is in detail a test and set sort of
action,

The argument of this paper, then, is not that messages are useless,
but that they must be used in structured and constrained ways, as must

SRG Note -11- 10 May 1982

locks, goto, memory management, and many other tools, if they can be
implemented by the system and understood by the user.

SRG Note -12- 10 May 1982

At -

