M.L.T. Laboratory for Computer Scicnce Request for Comments No, 226
Junc 8, 1982

SWAN -- A New Text Formatter

by Wayne C. Gramlich

1. Introduction

A project has been started to write a new text formatter in CLU. The name of this new formatter
is SWAN. A swan is a beautiful clegant bird. 1t is hoped that SWAN will be a beautiful elegant text
formatter. SWAN will be a batch oriented text formatter that is in many respects similar to Scribe.

However, no attiempt will be made to be 100% upward compatible with Scribe,

2. Goals

The initial goals of this formatter are fairly modest.

~ SWAN should have good documentation. In particular. it should have a good reference
manual and complete documentation of all the different document types. Eventually, it
should also have a tutorial and a programmer’s manual.

~ SWAN should run on both TOPS-20 qnd VAX Unix.
~ The bare-bones version of SWAN should be running by mid July 1982.

~ SWAN should run substantially faster than the current version of Scribe. Admittedly the
current version of Scribe is a very old and slow version.

~ SWAN should eventually implement most of the features to be found in Scribe. These
features include bibliographies, indexes, tables of contents, multiple output devices,

cross-referencing, separate document compilation, and others.

~ SWAN should eventually support some features not properly supported in the current

WORKING PAPER — Please do not reproduce without the author’s permission and do not cite
in other publications.

version of Scribe. These features include widow and orphan elimination, hyphenation,
multi-column output, mathematical formatting, kerning, ligatures, and others.

It is important that some goals not be included in SWAN in order to keep the scope of the project

reasonable,

~ SWAN will not be 100% upward compatible with Scribe. Where it is decmed
appropriate SWAN will incompatible. The only compatibility goal is that someone
should be able to edit a Scribe file into a SWAN file with only a very modest amount of
effort. If people do not wish to expend this effort they are welcome to continue using
Scribe.

~ SWAN will not try to produce output that is as pretty or as sophisticated as TEX output.
The primary reason for this is that it is desired that SWAN run quickly. If people really
want the teatures of TEX, they should use TEX.

~ SWAN will not directly provide a programmable language interface (i.e. macros). If
SWAN does not provide a desired feature that a user desperately needs. that user will be
encouraged to add code directly t0 SWAN in the language that SWAN is written in,
However, it is not desired that casual users add code to SWAN.

Each of these goals will be discussed further in the paragraphs to follow.

Good user documentation is perhaps the single most important feature of a text formatter. A
competent user with good user documentation can usually cope with a poor text formatter.
Conversely, a good formatter with poor user documentation can be very difficult to use. Of course,
SWAN is expected to be a good formatter with good user documentation. There are four clearly
identifiable documents that SWAN should have. The first two are substantially more important than
the second two.

1. The SWAN Reference Manual should be the definitive definition of what the user can
and can not do in SWAN. [t should be possible for the user to read the SWAN Reference

Manual and decide what a sequence of SWAN commands will accomplish without
resorting to experimentation (as is frequently necessary with Scribe.)

2. The SWAN Database Manual should be a manual that describes all the document types
and cnvironments that are available to a user. This manual should be published
regularly and on a per site basis. The fact that Scribe docs not have this manual is a big
draw-back to Scribe. Hopefully, the production of the manual can be automated by a
program that examines the SWAN database.

3. The SWAN Tutorial should provide the means for a naive user to learn how 1o use
SWAN,

4. The SWAN Programmer’s Manual should provide a uscful overall picture for the person
who is guing to add a featurc to SWAN. This manual should contain overall strategies,
organization, and uscful data structures. This manual should not contain information
that will rapidly become out of date. Portions of this document should form the basis
for the eventual SWAN Programmer’s Manual. 1t is very important that the SWAN
Programmer's Manual be kept separate from the SWAN Reference Manual. This is
because the average user should not be encouraged (o add features to SWAN.

CLU has been chosen as the implementation language for SWAN. This permits SWAN to run
under both TOPS-20 and VAX Unix. Eventually, SWAN should be able to run under VAX VMS
and on a Motorola 68000. SWAN could run under TOPS-10 and ITS, if someone wanted to write
the appropriate CLU run-time system. Thus, SWAN could be run on all machines at LCS with the
exception of PDP-11's. The small address space problem of the PDP-11's will probably preclude

SWAN from ever running on a PDP-11.

One of the goals of SWAN is that a bare-bones version be running by mid-July. The reason for
this goal is two fold. First, the VAX's that LCS is receiving do not come with a dccent text
formatter. Thus. the moment SWAN becomes available for the VAX's there will be an immediate
user community. Second. initial performance deficiencies can be detected and corrected before the

end of the summer. A third reason is that morale is better when the program is doing something,

Another goal of SWAN is that it be efficient. A better way of stating this goal is that SWAN should
not be stupidly inefficient. Scribe has one glaring arca where it is stupidly inefficient. Both the
database files and auxiliary file are stored in ascii. This makes it easy to read and debug these files;
however, it takes a long time read in and parsc these files. SWAN will reduce this overhead by
storing the database and auxiliary files in machine reacdable form. The machine readable database
files will be automatically generated from human readable files. The auxiliary file will have a
companion program that prints it in human readable form. An additional way that SWAN should
be able to improve performance over Scribe is that it will probably treat the input file more at the

word level than at the character level.

One of the eventual goals of SWAN is that it will essentially supersede Scribe. SWAN will not
attempt to do this by being 100% upward compatible with Scribe. Instead, SWAN will attempt to do
this by providing most of the Scribe features in a fashion that is not too diffcrent from the way that

the feature is currently provided in Scribe. Some Scribe-like features should be completely

4

superseded by better features in SWAN. It is hoped that table generation will be one such arca. The
additional speed of SWAN over Scribe should lure people into expending the effort required to

switch from Scribe to SWAN.

There arc some features that are either unimplemented (mathematical text formatting, ligatures,
kerning), improperly implemented (footnotes, widow elimination), or improperly documented
(multi-column output, hyphenation) in Scribe. SWAN will eventually attempt to make up for these
deficiencies. The one area where SWAN will attempt to perform significantly better is in the arca of

page makeup.

Probably one of the most controversial arcas of SWAN will be in the arca of programmability.
Most 6f the other text formatters that are around implement some sort of macro package that
permits the user to program the formatter. Even Scribe implements a Turing equivalent macro
package despite the fact that the implementor did not think that macros are a good idea for
formatters. This suggests that some form of programmability should be provided in SWAN., SWAN
will attempt to avoid complicated macros. The primary reason for this avoidance is that macros are
difficult to write, difficult to debug, difficult to read, and tend to run slowly. Instead, the approach
to programmability that SWAN will take is to permit sophisticated users to dircctly add CLU code to
SWAN. CLU tends to be much easier to write, debug, and read. Also, CLU code should run
substantially faster than macros. Another advantage of providing programmability at the CLU

level is that it will tend to discourage user’s from programmability unless they absolutcly have to.

3. Initial Implementation Ideas
This section contains some initial ideas about the implementation of SWAN. Material in this
scction is not presented in any particular order. Somec of the material may not be particularly

comprehensible either.

3.1. The SWAN Database

The database is one area where SWAN can be substantially better than Scribe. Upon examining
the Scribe database, one notices that there is a large amount of repetition for each database entry.
For each different device in a document definition almost all entries are replicated with only minor

deviations. Also, many of the document types replicate the definitions of a large number of

environments. This suggests that the database can be substantially condensed. All environments
should be specitied in a device independent fashion. Of course, not all environments are device
independent. Device dependencics should be specified as differences from the device independent
specification on a per device basis. The same idea can be applied to environment specification
across multiple document types. All environments can be specified once in a document type
independent fashion. Again, not all environments are device independent. So, only diffcrences
between the global environment and document type dependent environments need to be stored
with a document type definition. Thus, the way that the SWAN databasc should be organized is as
1) a single global set environment definitions and 2) a set of document types that contain only the

differences to the global definitions.

Database Manual] This new database organization dovetails nicely with the concept of the SWAN
Datubase Manual. Currently, there is nothing to prevent someone [rom writing a program that’
examines the Scribe database and produces a "Scribe Database Manual". However, the resulting
document would be rather bulky and not substantially better than just looking directly at the Scribe
database. However, with the new database organization, the SWAN Database Manual becomes
substantially easicr to generate and use. The SWAN Database Manual is broken into three distinct
sections. The first scction alphabetically lists all of the available environments (for all document
types.) The second scction alphabetically lists all of the document types, what environments are
supported by the document type, and environment differences. The third section alphabetically
lists all of the devices supported by a site and the characteristics of each device. Substantial portions

of this manual can be automatically produced by a program that examines the SWAN database.

Database stored in machine readable fbrm] As was mentioned earlier in this document SWAN
should store the database in machine readable form. The machine readable form should
automatically be generated from the human readable form. CLU implements a couple of
operations for reading and writing arbitrary CLU objects to and from files preserving any sharing.
GCREAD (for Garbage Collector Read) and GCWRITE (for Garbage Collector Write) are the
names of two operations, These operations should make processing of the SWAN database very

easy and efficient.

3.2. Devices

The initial output device for SWAN will be the Alto. This means that it will not be nccessary to
be constantly running upstairs to the Dover to examine SWAN output. The next output device for
SWAN will be a press file driver for the Dover. Eventually device drivers for the line-printer, BBN
Bitgraph, XGP, and Diablo should be produced.

Internally, SWAN should probably have a private representation of a page. This internal
representation will be general enough to support each of the devices listed above. The internal
representation should support the ability to place any arbitrary character in any arbitrary location.

“Also, the internal representation should support the ability to draw lines (and maybe cllipscs). The
device driver will have the responsibility of producing one page of output from one of these internal
pages. The simpler device drivers will not have to keep any state information between each page
generation. However, a complicated device driver (like the press file driver) will probably have to
keep state information between pages. In this situation it would be nice if CLU had coroutines.
Instead, the implementors of such complicated device drivers will have to make do with manually
saving and restoring the relevant information in an object. Hopefully, only the XGP driver and the

press file driver will fit into this complicated device driver category.

Frequently, a user will want to produce a rough draft of a document on a device that is different
from the device that the document is finally intended for. Typical reasons for this are 1) the final
device may be temporarily broken, 2) the final device may be heavily used and the draft device
lightly used, and 3) the draft device may be substantially faster than the final device. In this
situation, the user really wants the output that comes out on the draft device to look as close as
possible to the output that will eventually come out of the final device. Scribe supports multiple
devices, but Scribe does not support this idea of producing output destined for one device on
another device. In order for SWAN to make a stab at trying to do this, it will be necessary for SWAN
to use two different document types in the production of a document. This should not be too

difficult provided it is built into SWAN from the start.

3.3. Word Oriented vs. Character Oriented

Scribe is basically a character oriented system. As a case in point, Scribe is perfectly willing to
print some arbitrary control character in the input file in some user specified font. In order to do
this, Scribe must be willing to process the entire file on a character by character basis. This can be
very time consuming. SWAN will instead immediately process the input file into words and then
deal in terms of words. In some SWAN environments, spaces, tabs, new-lines are significant. In
these environments, they will be treated as SWAN "words". By dealing in terms of words, SWAN
should be able to easily support dictionaries, spelling correction, word cross-referencing, and

hyphenzition.

Frequently, the uscr needs to access symbols that are not ascii characters. The solution adopted
by MIT for Scribe will be used to solve the problem. Each symbol will be assigned a printing name
such as ALPHA and CIRCLEDOT. Every place the user needs the symbol, the user will type the
text name (along with some syntax to SWAN to indicate that the word is a symbol and not a word.)

For example in Scribe "@Alpha[]" will print the greek letter alpha.

In Scribe there is exactly one rescrved ascii character (namely the at-sign "@"). This was
probably an over reaction to the fact that Scribe was an immediate successor to PUB and PUB had
20 or 30 special characters, each of which interacted with one another in various strange and
wondrous ways. SWAN will not be constrained to use only one reserved ascii character. However,
definite restraint will be used in deciding to use more than one reserved ascii character. One idea is
to reserve the character '#° for non-ascii symbols (e.g. "# Alpha" and " #CircleDot"). Another
idea is to have braces ("{}") for brief environments such as a math environment where all variable
names are italicized (e.g. "{alpha + beta}"). A single consistent quoting convention will be used if

more than one reserved character is used (e.g. "@#, @{, and @}").

3.4. Special Environments

Sometimes text formatters are asked to format material that is not really text. Programs, tables,
and pictures are examples of such material. It is usuaily very painful for the user to format this kind
of material. SWAN's approach to solving this problem is to provide special purpose environments

tailored to the type of material being formatted.

Frequently, material at LCS contains sections of program text. For example, in CLU it is

standard practice that keywords are to printed in bold-face, comments arc to be justified and
printed in italics, and indentation is important. In Scribe, this can be done, but the resulting input
text to Scribe is barely recognizable as program text. In SWAN, it should be possible to directly
point to the actual working program text without modification and include it into a document. The

program environment should be general enough to support a variety of different language formats.

Scribe has the ability to produce tables of information. Scribe provides this ability by permitting
the user to have very explicit control over each field in a table (such as flush left, flush right, center,
and tab to next field.) Again, the resulting input text to Scribe is barely recognizable as a table of
information. The SWAN approach to this is to have an environment that can specifically deal with
rows and columns of data. The user should have such high level commands as 1) center all data in
this column, 2) align all decimal points in a column of numbers, and 3) interpret numbers in "E
format” but print them in standard scicntific notation (e.g. "3.7E-17" would produce "3.7%10717",
where the -17 should actually be in a smaller font.)) Further, the user should have the ability to
specify lines of varying thickness around the data to make it look like a data table. Again, it would

be desirable to have SWAN be able to directly reference the actual data file that contains the data.

Sometimes the user would like to draw simple pictures containing boxes and lines. Editors like
TED (and probably EMACS) provide a mode whereby the user may draw crude boxes and lines in
ascii. These figures look pretty crude if they are included in the final document. However, it
should not be too difficult to produce an environment that can interpret the ascii lines and boxes
and produce real lines and boxes in the final document. Further bells and whistles should include
1) the ability to center text in box, 2) draw arrowheads, 3) usc circles and cllipses instead of boxes,
4) use rounded corners on lines instead of square corners, and 5) draw dots on intersecting lines and
loops on non-intersecting lines for electrical circuits. There will be a temptation to put too much
capability into such a picture environment. It will always be possible for a user to use a DRAW-like
package to produce the more complicated figures for a document. The general rule of thumb
should be to minimize the amount of effort required to produce a picture. A feature should be
added to the picture environment only if it will permit the user to produce a picture in less time that
it would take in a DRAW-like package. It should also be explained to the user that it is frequently
much easier to draw the picture by hand than to try to use either a DRAW-like package of a SWAN

style picture environment.

)

{

Many people at LCS include non-trivial math in their documents. A straight text formatter is
basically designed to produce one-dimensional text instcad of the two-dimensional material
required for mathematics. Such a math environment should be able to handle 1) summation signs,
2) integral signs, 3) division, 4) italicized variables, 5) greck variables, 6) boldfaced vector variables,
and 7) matrices. A lot of work should go into the user interface of this environment to make it easy
for a user to produce an arbitrarily complex mathematical formula. 1t would be nice if a user could

somehow take the output of a system like MACSYMA and directly include it into a document.

Other environments would include a chemistry environment, a physics environment, and a
SWAN documentation cnvironment. The chemistry and physics environments would directly
understand chemical molecules and physics material. The SWAN documentation environment
would be used exclusively for producing SWAN manuals. It would have the ability to print a sample
input to SWAN and the resulting SWAN output. There are undoubtably other environments that
sophisticated users would like to construct. These environments would be written by the

sophisticated user in CLU and directly added to SWAN.

3.5. Miscellaneous

It would be very nice if the clusters out of which SWAN is constructed had enough generality to
permit other people to come along and use pieces to produce other applications. However, having a
general interface to SWAN clusters is not a very high priority. This is because it is more important to

get SWAN running than it is to provide useful packages to help other people in their projects.

One important feature of SWAN will be its ability to produce documents on a chapter by chapter
basis. One problem with Scribe is that it stores absolute page numbers in the auxiliary file. Thus,
when a chapter grows by one page it is necessary to reprocess all following page chapters to get the
page numbers right again. This can easily be corrected by storing page numbers relative to the

beginning of the chapter.

The M.LT. thesis format should be treated as an example of the sorts of things that SWAN page
layout should be capable of performing. An M.LT. thesis has absolutely every page numbered
starting with the title page numbered page one, followed by dedications and acknowledgments,
followed by the tables of contents, tables, and figures, followed by chapter one. Another example is

the M.L.T. thesis margin requirement. Absolutely no text is permitted within one inch of any edge

10

of the page. The only thing permitted within this no-mans-land is the page numbers, Since SWAN

will be used for M.LT. theses, it must be able this stringent page layout requirements.

4. Summary
This RFC has described the initial goals and implementation ideas for SWAN, a new text

formatter.

