M.I.T. Laboratory for Computer Science - Request for Comments No. 229
’ July 20, 1982

Presenting a Simple Multi-Tasked CLU

by Geoffrey Cooper

1. Introduction

This document describes an extension to the CLU language to provide a multitask environment.
The aim in this extension was to design a simple multitask environment which will run within a single
Unix process on the Vax CLU implementation, and which can be implemented with a minimum of
hassle. Specifically, it was required that no modifications be made to the CLU compiler or linker. The
environment does not attempt to be the last word in a concurrent CLU, but rather a quickly built and
flexible first attempt to be used for experimental purposes. Our intent is to discard this
implementation after a very short period of use.

Multitasking centers around a set of CLU clusters which are handed to the CLU linker along with
the user's CLU programs. These clusters allow for the manipulations of tasks, timers, and unix
signals. Some of the code that implements multitasking is written in assembly language, but most is
‘written in CLU. A (very slightly) modified version of the CLU garbage collector must also be loaded. ’
Since implementing a concurrent or incremental garbage collection scheme is a major undertaking,
no attempt has been made to change the substance of the regular garbage collector. When the
garbage collector is invoked, all tasks must wait until it is through before any can run.

The task cluster is used to create and manipulate tasks. It also contains the task scheduler.
Scheduling is non-preemptive; tasks run until they voluntarily yield the processor by calling into the
task cluster. The garbage collector, while non-concurrent, will not cause a task pre-emption. When
the garbage collector is called during the execution of some task, that same task is resumed after
garabage collection. An elementary mechanism, called events, allows tasks to send wakeups to other
tasks.

WORKING PAPER — Please do not reproduce without the author’s permission and do not cite in
other publications. '



The unix_signal cluster couples the task event mechanism with the unix operating system'’s signal
mechanism. Each unix signal may be bound to a task-event pair, such that future occurances of the
signal are translated into asetting of an event for the task.

2. Programmer Interface Specifications

A CLU program which wishes to run in a multitask environment must begin by intializing tasking
with a call to task$multitask. When this procedure returns, its caller is running as the only task in a
newly-multitasked ehvironment. Presumably, this task will then create other tasks, using task$create
before yielding control with task$wait or task$let_anyone_else_run.

A typical format for the "start_up" procedure (the procedure that is called by the CLU run time
system to start things off) of a multitasked program is as follows:

start_up = proc()

% begin multitasking, with self as first task

task$multitask()

for each task | want to start with do
task$create( proc that runs it, some_stack_size )
end

task$exeunt() % I'm not needed anymore...

end start_up

The start_up procedure will most likely create other tasks. This does not preclude tasks from being
created by other procedures or tasks. Tasks may be created at any time and by any CLU module
once tasking has been started using task$multitask.

There is currently no provision for handing arguments to tasks. Since there are no global variables
in CLU. The solution to this problem is to use clusters as multi-process modules. First, several tasks
may be encapsulated in a cluster, and may communicate one with the other using the cluster's own
variables. Other proceéses may access such own variables using cluster operations as "in-calls.”



The specifications of the task cluster are as follows:

data type task is multitask,

create,
wait,

let_anyone_else_run,

abort,

test_events,
set_event,

me,

exeunt

Auxiliary Information
The task cluster implements a multi-tasking function in CLU. Calls to several of the cluster’s
operations will cause the thread of control to shift in ways which are unlike anything in the
CLU Reference Manual.

Operations

multitask = proc( stack_size: int) _

effect

Initializes and begins multitasking. This procedure causes the caller to

_run as the only task in a multitasked system. This task may {and

presumably ‘will) create other tasks before it exits. The stack_size

~ argument is used as a hint to suggest the stack size that will be needed by

this task.! If the caller returns before calling task$abort or task$exeunt, a
failure results.

create = proc(body: proctype(), stack_size: int) retu rns(task)

effect

A new task is created and enqueued for running. The task will run the
procedure body until a call is made to task$exeunt. The stack_size
argument is used as a hint to suggest the stack size that will be needed by
this task. A failure occurs if body returns without calling task$exeunt or
task$abort.

wait = proc(events: seq[string]) returns(string) signals(abort)

effect

If one of the events named in events is already set when wait is called, the
procedure returns immediately; otherwise it causes the current task to
block until any of the named events is set for it. The procedure then non-
deterministicly chooses any set event named in events, clears it, and
returns its name. If events is empty, the effect is to wait for any event. If
task$abort is called before this procedure would normally return, abort is
signalled. This procedure has the effect of task$let_anyone_else_run
when task$abort was called before the call to task$wait.

.

1The implementation on Unix takes this as more than a hint - be careful!



let_anyone_else_run = proc() -

effect

abort = proc()
effect

~ Causes any tasks that are ready to run to run, then resumes the calling

task. This procedure is not intended for general use, but it does allow the
normal function of the task scheduler to be subverted by any particular
task.

This procedure never returns. It causes every subsequent call to
task$wait to signal abort. Ilts use is to allow all tasks to cleanup and
terminate so that the multitasking may end.

set_event = proc( ts: task, event: string )

effect

Sets the event event in the task ts. .

test_events = proc(events: seq[string]) returns( string ) signals(no_events_set).

effect

If no events are set in the currently running task, signals no_events_set;
otherwise, chooses any set event from events, clears it, and returns its
name. If events is empty, the effect is to return the name of any set event.

This procedure is intended for use where a task has useful tasks to
perform, but wishes to give priority to any events pending before
performing them. It is also useful for debugging purposes to determine if
any uncaught events are set. Since it does not check for a prior call to
task$abort, it provides a means for a task to check signals after
task$abort has been called

- me = proc() returns(task)

effect

exeunt = proc()

effect

end task

Returns the task object associated with the currently running task.

This procedure. never returns. Terminates the currently running task. A
task which returns before calling task§abort or task$exeunt causes a
failure.



Timer facilities are provided by the timer cluster using the event facility of the task package. The
timer cluster is as follows: '

data type timer is set, advance, defer, clear

Operations

set = proc( ts: task, event: string, when: int)
effect  Causes the event event to be set in task ts in when milliseconds.? This
procedure always causes a new timer to be set. Each timer will cause the
event to be set in the task ts, regardless of whether the event has been
previously set or not.

advance = proc( ts: task, event: string, when: int)
effect If no timer for event event is set for task ts, this procedure works exactly
as timer$set. When a timer is set for the event for ts, the timer is reset to
go off in when milliseconds if this time is sooner than the time already set.

defer = proc( ts: task, event: string, when: int)
effect This procedure works exactly as timer$advance, except that it will only
reset a timer to a /ater time than is already set. :

clear = proc( ts: task, event: string ) signals(not_set)
effect If no timer for event event is set for task ts, this procedure signals not_set.
Otherwise, all such timers are cleared.

end timer

An interface to Unix signals is provided, so that tasks may respond to external events. The
approach taken is to allow a task to associate an event with a particular Unix signal. When a signal
goes off, it is translated to the specified event in the specified task. Note that this mechanism does
not allow a task to tell if a signal has happened a number of times. Hopefully tasks will switch
frequently enough so that this will not be a problem.

Unix signals are bound to task-event pairs using the unix_signal cluster:

data type unix_signal is bind, unbind

Auxiliary Information
This cluster provides an interface between the task-event mechanism and unix signais

Operations

2

Note: The resolution of this timer is‘one second!! Thank you, Unix.



bind = proc(ts: task, event: string, ux_sig: int) sngnals(no such_signal, already_bound)
effect Causes the event event to be set for task ts whenever the unix signal
numbered ux_sig is signalled. Signals no_such_signal if there is no unix
signal numbered ux_sig; signals already_bound if the signal is already
bound to some event-task pair.

unbind = proc(ts: task, event: string, ux_sig: int) signals(not_bound, no_such_signal)
effect Causes the binding that was created by a previous call to
unix_signal$bind with the same arguments to be undone. Signals:
not_bound if the binding does not exist; no_such_signal if there is no unix
signal numbered ux_sig.

3. Using Multitasking
The appropriate binary files are available on MIT-AJAX in the directory /user/lwa/geof/task.

Specifications of the task, timer, and unix_signal clusters may be loaded into the CLU compiler by
merging the file "/usr/lwa/geof/task/task.lib". Programs should be linked using the following
syntax: when the CLU debugger is used:

% 1ink <1istOfMyFiles>,@/usr/1wa/geof/task/dtask
when a production program is being created:

% 1ink <11si0fMyFiles>.@/usr/lwa/geof/task/task

4. Caveats
This section mentions a number of implementation restrictions which users of the tasking package
should be careful to not abuse. They are listed here for convenience:

1. Stack Size: The stack_size arguments to task$multitask and task$create are interpreted
not as hints but as firm limits on the size of the stack allocated to the task. Failures occur
if there is not enough room left in the stack area to create a task or begin multitasking.
No additional checking is performed, although it would not be difficult to modify the task
scheduler to check for stack overflows. A stack overflow will in all likelihood crash the
run time environment of the CLU system.

Note that, for production programs, the linker allows the maximum stack size to be set.
Tasking programs may need to be linked with a larger stack. The debugger gives a (non-
changeable) stack size of 12K bytes. This may not be sufficient for all multi-tasking
programs. '

2. Dynamic Task Creation: Stacks of terminated tasks are garbage collected,® but existing
stacks may not be compacted for technical reasons. This means that fragmentation of

3This is notto say that they are in the heap. Stack space is garbaged collected by specialized routines which are invoked at
task creation and exeunt time.



stack space will tend to occur is some programs. Causing stack sizes to be integer
multiples of some number will alleviate this somewhat but not entirely (since only
adjacent stacks may be merged). '

. Wierd Restriction: The procedure task$multitask must never be called when there is an
iterator on the stack (even in some calling routine). It is probably a good idea to call it as
the first thing in a CLU program.

. Inaccurate Timers: Due to deficiencies of the Unix operating system, the resolution of the
timers provided by the timer cluster is one second. A special version of the timer code
has been created which busy waits, calling task$let_anyone_else_run and checking the
system time (which is resolved to a much finer grain) rather than setting operating system
alarms. Thus it is more accurate but may be less efficient. It may be loaded by using the
file /usr/lwa/geof/task/task_bw (and dtask_bw, for debugging) instead of the usual
command file. ' '






