M.I.T. Laboratory of Computer Science October 5, 1982

Computer Systems Structures Request for Comments No. 232

PROGRESS REPORT FOR COMPUTER SYSTEMS STRUCTURES

from D.P. Reed

Attached is the 1981-1982 progress report for the Computer Systems
Structures group.

WORKING PAPER ~- Please do not reproduce without the author's permission,
and do not cite in other publications.

COMPUTER SYSTEMS STRUCTURES

Academic Staff

D.P. Reed, Group Leader

Research Staff

M. Greenwald

Graduate Students

B. Coan J. Stamos
D. Daniels D. Theriault
W. Gramlich C. Topolcic

K. Sollins

Undergraduate Students

R. Kukura | D. Solo
M. Novick K. Yelick
C. Rubin

Support Staff

D. Fagin

Visitors

Z. Hvinden . L. Svobodova

-~

DRAFT --- JUNE 12, 1982 , COMPUTER SYSTEMS STRUCTURES

1. INTRODUCTION

During the past year, the effort of the Computer Systems Structure group has
been focused on development of tools and substrates appropriate for development
of distributed applications systems. We find that the most interesting research
problems arise from trying to exploit two "insurmountable opportunities": a) the
opportunity to connect two autonomously managed independent computer systems
with a computer network in order to share data, and b) the opportunity to use high
performance networks and specialized server computers to build multi-user
computer systems that are modularized in a way that has not been possible before
with single, large mainframe computer systems.

The first opportunity, data sharing, became apparent when the Arpanet computers
first began to exchange data. The level of interconnection on the Arpanet, however,
has never been particularly high. The best example of distributed applications within
the Arpanet has been the mail system. Higher level applications that share
databases across the network have been rare and extremely ad hoc. Our goal in this
area is to develop substrates, such as the Swallow prototype described below, that
can support applications at independent sites that can be later combined into larger
applications while maintaining the autonomy of the original applications. The new
research problems in this area result from two characteristic issues; the first issue is
autonomy, that is, the fact that there is no "central administrator” who controls what
is done on each computer in the distributed system, while the second issue is
"growth by federation"”, that is, that adding a single gateway between two
independent networks of autonomous processors may all of the sudden create a
single system with complete interconnection. Although this federation process is
easy at the hardware level, the software structures developed for distributed systems
have been hierarchical, with naming, protection, concurrency control, failure
recovery, etc., managed by what amounts to a single central authority. Trying to
combine two hierarchies results in a heterarchy that no longer functions, because
there is a new ambiguity -- "who's on top?".

The second opportunity modularization arises from new local network
technologies, work station technologies, etc., that allow the construction of what
might be called "server-oriented systems". For reasons of reliability, economy of
scale, and flexibility, it is often convenient to design a distributed system consisting
of a set of workstations with no secondary storage or only very small amounts of
local secondary storage, with the bulk of secondary storage being provided by one
or more shared, specialized data storage service machines. Similarly, specialized
services such as printers, image scanners, or wire-wrap machines, may be attached
to the net rather than directly to any particular work station. These new structures
present problems of reliability, performance, protection, and coordination that differ
significantly from the same problems as they appear in centralized time-sharing

3

COMPUTER SYSTEMS STRUCTURES DRAFT -- JUNE 12, 1982

- systems with many attached peripherals and file storage devices. The Swallow
repository, which is a specialized data storage server computer, is a prototype of one
kind of shared service.

In addition to developing substrates and servers, such as those above, we have
also been working on several specialized network protocols. There protocols called
non-fifo protocols, achieve extremely high performance and extreme simplicity by
ignoring the conventional wisdom of protocol design. Instead of many layers of
protocol implementing virtual circuits, these protocols use end to end datagram
transport, and involve the application in error recovery, flow control, and coping with
out of order packet arrival. Our initial experience with these protocols leads us to
believe that such protocols will be necessary to exploit the potential of high
bandwidth local networks, long delay high bandwidth satellite connections, and
internetwork coupling.

' In the following sections, we summarize the results of the past year’s work on
Swallow, protection and authentication in distributed systems, protocol design,
naming in distributed systems, and debugging of distributed systems.

2. THE SWALLOW SYSTEM PROTOTYPE

Over the past year, work on the Swallow system has focused on the development
of the Swallow system repository prototype. The Swallow repository is a specialized
data storage server that provides stable storage to any number of clients on a
network. 4 Swallow system may contain any number of repositories and each user
may use any subset of the available repositories to store his data. The Swallow
repository participates in concurrency control and recovery algorithms designed by
Reed [1], [2], to provide multi-site atomic actions. The Swallow repository design
was also conceived with the intention that it could be based on write-once storage
media such as optical disk technology now being developed in a number of places.

The Swallow repository was built on an Alto with a special additional large disk
drive since that hardware was available to us at the time. Although the rest of the
Swallow system was not available to use the repository, we began to test and tune
the system during the past spring semester, so that it could be incorporated easily
into the Swallow system once the rest of it is constructed.

The design of the Swallow repository; particularly its use of write-once disk,
required the development of a new storage organization, called append-only
storage, which naturally supports the object of Swallow which have dynamically
varying size and which have muitiple versions over time. This concept, first
“wroduced by Reed in his doctoral thesis [1] and developed by Reed and
‘'vobodova, is documented in a paper recently published by Svobodova [3].

4

DRAFT -- JUNE 12, 1982 COMPUTER SYSTEMS STRUCTURES

The client interface to the Swallow system is provided by a software module in
each computer called the broker. The design of the broker was begun during the
past year, but it was decided that the final design decisions would have to wait for
the arrival of appropriate work station computer hardware. At this point it seems
likely that such work stations will be implemented on VAX 11/750’s which will arrive
during the coming summer. Our next task then will be to finalize this design and
determine how to integrate it with the operating system (UNIX) of the VAX.

3. PROTECTION AND AUTHENTICATION

During the past year we completed and tested our authentication server prototype
and began to see how it could be used in securing various communications that
currently go on in the lab. One result of this was a bachelor’s thesis by Solo, who
investigated the problem of securing a file transfer protocol [4].

The approach of using authentication servers has a flaw, which we view as a very
important one. This flaw is that the authentication server used to authenticate one
party to another is in a sense a central authority. As distributed systems grow larger
and cross organizational and governmental boundaries, there may be no real single
trusted central authority. Problems of authentication and protection across such
boundaries will require and different and novel solutions. During the past year
Topolcic has developed a technique for creating "digital guarantees" that can be
used where a client and a server need a mechanism to enforce the satisfaction of
remote requests in a decentralized system without such a centralized authenticator.

Consider this scenario. In a network of autonomous computers having varied
resources, a client may request a service from some other node, the server. Since
autonomous nodes within different organizations may be mutually suspicious, and
since there may exist no universally trusted authority, some decentralized
mechanism is necessary to assure the client that its requests will be honored.
Topolcic examines some failures that can interfere with fulfillment of the remote
requests and methods to control them.

One source of failure is the dishonesty of the server, which might return incorrect
results, or may ignore some commitment it had previously made to the client.
Cryptographic "Digital Signatures”, as proposed by Needham and Schroeder [5],
attempt to provide a binding "guarantee" from a server to a user. Needham and
Schroeder’s approach requires that the encryption keys be protected for extended
periods of time. Such long-term protection, regardless of the security of the
encryption technigue, demands administrative controls that are difficult to identify
and impossible to prove correct. Topolcic proposes a system of guarantees based
on a hard to duplicate yet completely public characteristic function (rather than

COMPUTER SYSTEMS STRUCTURES DRAFT -- JUNE 12, 1982

encryption) and a distributed method of monitoring and punishment based on a
"User's Group" rather than a universally accepted judge. The characteristic
function of a guarantee is placed by the server into the next guarantee it issues,
forming a linked list which cannot be modified without changing the latest one
issued, whose uniqueness is verified with real-time authentication. The User’s
Group is a collection of clients which monitor the server, exchange information
about it, and enforce punishment by boycotting it if a member proves the server’s
dishonesty. A minority of non-participating or dishonest members cannot affect the
correctness of the actions of the majority.

4. NAMING WITHOUT HIERARCHY OR A CENTRAL AUTHORITY

In nearly every computer system the naming mechanism consists of a hierarchy
with pieces of a single global name space assigned to each user who can then
assign names within those parts to objects of his own interest. A global name space
presents problems in a system that grows by adding communications points between
preexisting but independent distributed systems on independent networks. Where
each system had its own global name space in which all names were unique, the
combined system has name conflicts. Where each system had a central authority
that partitioned the name space before, there are now two or more central
authorities in the combined system. Thus the notion of a hierarchy tends to break
down in these federated systems (which result from interenterprise linkage, in
particular). A new approach to naming is needed.

If we look at the "human distributed system", we find a potential for simiiar
problems in human language. Here, a distributed system is analogous to a human
community, and the computers are analogous-to individual people. As thousands of
years of human history have shown, people have little trouble with the problems with
integrating name spaces that so confound computer systems. We felt that by
exploring this analogy, a new approach to computer naming of things could be
developed, which would be flexible, natural, and free of the problems of hierarchy.

Sollins has been exploring these ideas in her Ph.D. thesis which was begun during
the past year. Although the ideas are still at an early stage, they promise to be
significant.

Sollins proposes contexts as the system provided tool for name management. In
addition to the goal of non-hierarchical naming mentioned above, Sollins’” work will
provide a unified naming framework for all entities in a distributed computing
environment where each node must be capable of independent operation without
Adependence on others. This independent or autonomous operation leads to the
conclusior that names cannot be guaranteed to be unique. It is this assumption of

DRAFT -- JUNE 12, 1982 COMPUTER SYSTEMS STRUCTURES

autonomy that has led away from more traditional remote name servers. All these
forces combined have led to the model of contexts proposed in this thesis. There
are two sorts of functions provided by contexts. First, a context might translate a
name into something else, either another name or an address. Second, a context
might answer the question of whether two names name the same entity. Contexts
" allow names to be assigned to any entities, people, processes, data, or whatever else
needs to be named.

There are several different kinds of names that are used commonly in naming
during human interactions. These are modelled in the naming framework provided.
One is the ability of the name user to assign nicknames. Another is the ability to
name by description. In this case, an entity might be described by a collection of
descriptive attributes. The namer will name the entity by indicating a logical
combination of these descriptions. A third form of name is what in this work is called
generic naming. This is a means of naming a class of entities by using a single
name. An example of such a class is the set of implementations that provide a
particular service, although the entities named by a generic name need to be the
same type of entity. Each namer should be able to use whatever name he chooses
for the entities he wishes to name. In fact, although superficially these three kinds of
names appear to be different in nature, they are not. Any two can be described in
terms of the third, or all in terms of generalized names or labels. For instance,
assuming there are only generic names, a nickname is simply a generic name that
names only one entity, which also has at least one other name. The entity named by
a description is simply the intersection of those entities named by a collection of
generic names, one for each attribute in the description.

There are a number of issues related to contexts and naming that remain to be
investigated. The following is a partial list:

1) the relationship between naming as provided by contexts and protection
and authentication.

2) how contexts will be used, individually and in combination with each
other.

3) how and when contexts should and should not be shared and by whom
or what.

4) a detailed example of the use of contexts.

This work is in progress and will continue on the assumption that contexts are a
useful mechanism for name management in future systems.

COMPUTER SYSTEMS STRUCTURES DRAFT -- JUNE 12, 1982

5. DISTRIBUTED DEBUGGING

Gramlich has undertaken a Ph.D. thesis to investigate a debugging methodology
called checkpoint debugging. Basically, checkpoint debugging works by taking
regular checkpoints of a program. A checkpoint consists of a fixed part and
incremental part. The fixed part of a checkpoint consists of a single consistent
snapshot of the relevant program state. The incremental part of a checkpoint
consists of a sequential recording of all program input since the time of the program
snap-shot. When a program failure occurs, it is possible to use the checkpoint
information to repeat deterministically the failure as many times as necessary to
locate the program failure. This is done by going to a previous checkpoint, loading
the fixed part, and reexecuting the program using the incremental part for program
input. The major advantage of checkpoint debugging is that it converts a large class
of non-deterministic failures (i.e., non-repeatable) into deterministic failures (i.e.
repeatable). It turns out that it is much easier for a user to locate and correct a
deterministic failure than a non-deterministic failure. A trial implementation of this
debugging system will be implemented in CLU for Berkeley Unix.

6. NON-FIFO PROTOCOLS

The so-called end-to-end argument [6] is a protocol design rule that says, in
effect, that the application usually knows best how to cope with such problems as
loss of messages, protection, flow control, duplicate message detection, coping with
messages arriving out of order, and so forth, which traditionally have been in the
domain of the communications subsystem. A corollary to the argument is that the
communications subsystem may be paying a very high performance price that
results from implementing solutions to these problems at too low a level in the
system. In fact, in order to have any layering of function at all, it is necessary to
place some functions at least inside the communications system and below the
application. But if the application knows best, and implements all these functions for
itself, there is little or nothing left in the communications subsystem to layer.

This line of reasoning seems to be borne out by a couple of protocols we
developed recently for two specialized applications. By exploiting natural properties
of the applications themselves, we were able to accomplish the flow control and
error control functions involved in communication in a much simpler and more
efficient way. Similar simplifications and efficiencies were obtained in the protocols
developed for the Swallow distributed data storage systems communications needs.

[71

The first of these specialized protocols Was a protocol called BLAST. We
nbserved that most file transfer protocols, even when implemented on very high

&

* DRAFT -- JUNE 12, 1982 COMPUTER SYSTEMS STRUCTURES

bandwidth local networks, such as a ten megabit-per-second ring network, had
disappointingly slow information transfer rates. For example, a file transfer from an
Alto to another Alto on a three-megabit-per-second Ethernet rarely exceeds 75,000
bits per second, while the underlying communication medium and disks are capable
of much higher rates. The "accepted wisdom" for implementing file transfer
protocols is to access the file as a sequential stream of characters, transmit each
character successively over a virtual circuit between the two computers, and store
the file sequentially on the remote machine using a stream oriented file system
interface. The stream interface to files and the virtual circuit, of course, are
implemented by fairly complex mechanisms that take the raw blocks of the disk or
the raw packets of the network and transform them into something that is quite
different, a reliable ordered stream of bits. This transformation, or extraction, is not
natural. The result is that the application has very little control of the timing of what
is going on and the timing itself is critical. To cope with a lost packet in the network,
for example, the network virtual circuit implementation introduces a small amount of
delay in the communications. The result of such delay will be delay in accessing the
next byte of the file, but delay in accessing the file can result in a significant real time
delay while the disk rotates one whole revolution. This, in turn, disrupts the smooth
flow of data to the receiver across the network, which can effect both the flow
control to the receiver, and also the rate at which packets can be stored on disk at
the receiver.

Our new BLAST protocol is based on a very simple idea. The sender transmits the
blocks of the file each in a separate packet labeled with a block number of the file.
Since the block number is in each packet, the receiver can place each packet
directly in the file at the time he receives it. If packets are lost in the network, there is
no need for the sender to retransmit those packets right away -- instead the sender
can continue to transmit the rest of the packets of the file. When the sender thinks
that all the packets have been transmitted to the receiver, he polls the receiver with a
single packet and the receiver responds with a packet that indicates the set of file
blocks that remain to be transmitted. The sender then rereads just those blocks of
the file that need to be retransmitted and resends them. This process converges
after a few rounds. Neither end needs buffering for error control or reordering.
Duplicate packets are not a problem since they may be stored again in the same
place and reordered packets just get stored in a different order into the file. The
network and communication system serve as a way of getting packets from one end
to the other only.

To understand why this protocol is interesting consider a satellite link. Typical
satellites have channel capacities of maybe up to 50 megabits per second, but the
delay due to speed of light is on the order of seconds from end to end. Satellite
channels also tend to have a fairly high probability of packet loss. Traditional stream
protocols do not cope well with this combination of high bandwidth and long delay.

9

COMPUTER SYSTEMS STRUCTURES DRAFT -- JUNE 12, 1982

A single packet loss discovered at the receiver may require one or two seconds
before it can be filled in by a retransmitted packet. Meanwhile tens of millions of bits
have been transmitted over the network and must be buffered at both the receiver
and sender until the retransmitted packet arrives (thus megabyte buffers are
needed). In order to maintain throughput on the order of 50 megabits per second,
these millions of bits must then be written instantaneously onto the disk at the
receiver. In contrast the BLAST operates quite reasonably on such a network with
no buffering at the receiver or sender at all. The round trip delay only affects the
final polling to determine if all packets have arrived, and for long files, this is
negligible. The instantaneous dumping of the entire receive buffer to disk will no
longer be necessary.

A similar protocol has been developed so that a remote single user computer can
access a bitmap display such as that on the Alto across a high performance local
network. In BLINK, each end maintains a copy of the bitmap for the screen. As the
computer changes regions of its bitmap, the updated regions are transmitted to the
remote display. Since updates to nonoverlapping regions may be applied to the
display bitmap in either order, a lost packet need not delay processing of later
packets arriving at the receiver. Periodically, every hundred milliseconds or so, the
display sends a packet containing a version number for every region on the display.
The computer then retransmits any portions of the bitmap that have not made it to
the display bitmap. The performance arguments for this approach are similar to
those for BLAST.

10

DRAFT -- JUNE 12, 1982 COMPUTER SYSTEMS STRUCTURES

References

1. Reed, D.P., “Naming and synchronization in a decentralized computer
system,” TR-205, MIT Department of Electrical Engineering and
Computer Science, , September, 1978..

. 2.Reed, D.P., “Implementing atomic actions oh decentralized data,”
Communications of the ACM (1982). Accepted for publication.

3. Svobodova, L., “A reliable object-oriented repository for a distributed
computer system,” In ACM Eighth Symposium on Operating Systems
Principles, Pacific Grove, Ca., December, 1982, 47-58.

4. Solo, “User authentication and security modifications for TFTP,” S.B.
Dissertation, MIT Department of Electrical Engineering and Computer
~ Science, May, 1982.

5. Needham, R., and Schroeder, M., “Using encryption for authentication
in large networks of computer,” In Communications of the ACM,
December, 1978.Volume 21, 12.

6. Saltzer, J.H., Reed, D.P., and Clark, D.D., “End-to-end arguments in
system design,” In Proceedings of the Second International Conference
on Distributed Computing Systems, Paris, France, April, 1981..

7. Reed, D.P., “SWALLOW: a distributed data storage system for a local
network,” In Local Networks for Computer Communications, North-
Holland, New York, N.Y., 1981, 335-373.A. West and P. Janson (editors).

" Publications

Reed, D.P., "Implementing atomic actions on decentralized data,” accepted for
publication by Communications of the ACM, New York, NY, 1982. :

Reed, D.P. and Svobodova, L., "SWALLOW: a distributed data storage system for

a local network," in Local Networks for Computer Communications," A. West and
P. Janson (Editors), North-Holland Publishing Company, New York, NY 1981, pp.

335-373. _

Saltzer, J.H., Reed, D.P., and Clark, D.D,, "Source routing for campus-wide

internet transport,” in Local Networks for Computer Communications," A. West and
P. Janson (Editors), North-Holland Publishing Company, New York, NY, 1981, pp. 1-

23.
11

COMPUTER SYSTEMS STRUCTURES DRAFT -- JUNE 12, 1982

Schiffenbauer, R., "Debugging in a distributed system,” MIT/LCS/TR-264, MIT,
Laboratory for Computer Science, Cambridge, Ma., September 1981.

Svobodova, L., "A reliable object-oriented repository for a distributed computer
system," ACM Eighth Symposium on Qge,@ﬂng Systems Prmgtples Pacific Grove,
Ca., December 1982.

" Theses Completed

Daniels, D., "Query compilation, in a distributed database system," S.M. thesis,
MIT, Department of Electrical Engineering and Computer Science, Cambridge, Ma.,
February, 1982 (also S.B. degree).

Lederman, A.,™A Pascal structure oriented system," S.M. thesis, MIT, Department
of Electrical Engineering and Computer Science, Cambridge, Ma., June 1981.

Schiffenbauer, R., "Debugging in a distributed system," S.M. thesis, MIT,
Department of Electrical Engineering and Computer Science, Cambridge, Ma., June
1981.

Solo, D., "User authentication and security modifications for TFTP," S.B. thesis,
MIT Department of Electrical Engineering and Computer Science, Cambridge, Ma.,
May 1982.

Stamos, J., "Grouping strategies for an object oriented virtual memory,” S.M.
thesis, MIT Department of Electrical Engineering and Computer Science,
Cambridge, Ma., February, 1982 (also S.B. degree).

Ulloa, M., "A window manager for microcomputers,” S.B. thesis, MIT Department
of Electrical Engineering and Computer Science, Cambridge, Ma., May 1982.

Weiss, S., "Managing software evolution in an object-oriented environment, " S.M.
thesis, MIT Department of Electrical Engineering and Computer Scuence,
Cambridge, Ma., May 1982.

Theses in Progress
Gramlich, W., "Checkpoint debugging," Ph.D. thesis, MIT Department of Electrical

Engineering and Computer Science, Cambndge, Ma., expected date of completion,
June 1983.

Ketelboeter,' V., "Forward recovery in distributed systems,"” S.M. thesis; MIT

12

DRAFT -- JUNE 12, 1982 - COMPUTER SYSTEMS STRUCTURES

Department of Electrical _Engineering and Computer Science, Cambridge, Ma.,
expected date of completion, August 1982. : '

Mendelsohn, A., "A framework for usér interfaces to distributed systems,” S.M.
thesis, MIT Department of Electrical Engineering and Computer Science,
Cambridge, Ma., expected date of completion, June 1983.

Sollins, K., "Name manag_ement in a distributed system," Ph.D. thesis, MIT
Department of Electrical Engineering and Computer Science, Cambridge, Ma.,
expected date of co_njp!etion, June 1983. -

Topolcic, C,, "Ensuring the satisfaction of réquests to remote servers in
distributed computer systems,” SM. thesis, MIT Department of Electrical
Engineering and Computer Science, Cambridge, Ma., expected date of completion,

- August 1982.

Conference Participation

'Reed, D.P., Program Chairperson, AQM'Eighm §1mQ_o_$_lu_n1 on Operating Systems
Pringiples, December 1981.

Svobbdova, L., "A reliable object-oriented repository for a distributed computer
system," ACM Eighth Symposium on Operating Systems Principles," Pacific Grove,
Ca., December 1981. R ’ ’

Talks

Sollins, K., "Distribu,ted'computing at MIT ", University of Southern California, Los

" Angeles, Ca., December 1981.

Reed, D.P., "Protection issues in distributed systems," talk to JIPDEC group on
security, audit and control, Cambridge, Massachusetts, A_pril 1982.

Reed, D.P., "An overview of distributed systems research at MIT LCS," Siemens,
Munich, Germany, May 1982. 3

Reed, D.P., "Non-FIFO protocols or streams considered harmful,”" I1BM Zurich |
Research Laboratory, Zurich, Switzerland, May 1982. :

13

COMPUTER SYSTEMS STRUCTURES DRAFT -- JUNE 12, 1982

Committee Membership

Reed, D.P., Program Chairperson, ACM Eighth Symposium on Operating Systems
Principles, December 1981.

14

\

