MLLT. Laboratory for Computer Science Request for Comments No. 240
February 16, 1983

Authentication Server Protocol

by Shawn A. Routhier

1. Introduction

This paper describes the interface to an authentication server based on the type proposed by
Needham with two modifications. First there will be multiple servers on the nef, none of which are
guarenteed to be trusted by everybody or even know everybody. Of these servers some subset will
be chosen to communicate the key. And second the initiator of the conversation will decide what
the conversation key should be. The server protocol is based on one proposed in [Daniels]. The
server is primarily intended to provide a key distribution service for conversations. It will also

provide facilities for securing mail and writing digital signatures.

The protocol for establishing a conversation link, using conversation key Ck, between an initiator
A and recipient B with keys Ax and Bx on server X will be as follows. Note that (B)A" indicates
encrypting B with key Ax.
Step one A talks to B in the clear and they decide on using some mutually agreeable set of

servers (y). The size of the set is also up to A and B. A then creates and breaks
Ck into the correct number of pieces, Cx being the piece being sent via server X.

Step two A sends an encoding request to each server of the set y. This request contains:
~ {nonce, A, (B, Cx)**}.

Step three Each server returns an encoding reply to A. Each of these replys contain: {nonce,
(B, Cx, (A, Cx, Time Stamp)BXyA%}.

WORKING PAPER — Please do not reproduce without the author’s permission and do not cite
in other publications. ‘

Step four

Step five

A decodes each of the replies he gets and verifies that each has the right name
and key part. The verification is to assure the correctness of the information
recieved by the servers. He now has packets of the form: {(A, Cx, Time
Stamp)B"} He may now cache these for future use as well as sending them to
B. Each packet he sends to B will have the name of the server that created that
packet so that B knows which key to use to decode them. They contain {X, (A,
Cx, Time Stamp)®*}.

B, after receiving and decoding the packets, puts the key together. At this stage
B decides whether or not to trust the key. To trust the key B only has to trust one
of the servers, not necessarily the same one as A, and the protocol. If he does
trust it he can start a conversation using it and some protocol such as [kenta]. If
he doesn’t trust it he can try again or not as he sees fit.

The protocol for mail is similar to that for establishing a conversation link. The differences arise

from the absence of direct interaction between A and B. This lack of interaction causes steps one,

four and five to become:

Step one

Step four

Step five

To determine which servers to use A sends a query request {nonce, A, B} to
various servers. Each server sends a query reply {nonce, (yes or no, B)A"} back.
A decodes these replys and is then able to pick a group of servers that know B
(though B may or may not trust them),

A again verifys replys from steps two and three and attaches the servers name to
the packet. This time though, instead of sending the packet directly to B, A ties
the packets to a mail file encrypted with Ck. A then sends the entire file packet
combination to B.

B gets the piece of mail, decodes the packets and builds the Ck. B may not trust
the key as there is no guarentee that A picked servers that B trusted, but B is able
to read the file and decide what action to take because of it.

Steps two and three remain unchanged. If A is using cached keys steps one, two, three, and four

are changed to reflect that fact.

The protocol for writing signatures is:

Step one

Step two

A determines a suitable subset of servers as in mail protocol step one.

He then determines the characteristic value of the document to be signed and
breaks this number up into the correct number of parts (one for each server).

Step three A sends a Wsig request to each server in the subset containing: {nonce, A, (data,
' Time Stamp)™*}.

Step four Fach server sends a Wsig reply to A containg {nonce, (A, Data, Time Stamp)x}

Step five A takes these packets removes the nonce, adds the name of the server: {X, (A,

Data, Time Stamp)x} and puts these at the end of the signed document.
The protocol for reading signatures is:

Step one B sends each of the servers in the subset a Rsig request with the correct signature
packet: {nonce, B, (A, data, Time Stamp)*}.

Step two Each server returns a Rsig reply containing {nonce, (A, data, Time Stamp)B"}.
Step Three B puts the data pieces together and compares the result to the characteristic
value.

The time stamp is included to prevent somebody from creating a signature for some document

from signature packets from other documents. The document should bear the same time stamp.

2. Encryption

The method of encryption will be to use DES [fips] in cipher block chaining mode [kentb]. The
first 8 byte block sent will be a random number. This block will not be decoded but will only be
used to start the cipher block chaining cycle. The encoded blocks will be multiples of 8 bytes long
with the last 4 bytes of the message being a checksum. If padding is needed it will be placed '
between the data and the checksum. The checksum will be computed by adding the message
together in 4 byte blocks using one’s complement addition. Any padding in the message will be

“included in the checksum.

3. Time Stamp

Needham and Schroeder propose using a cached response from the server to initiate the
conversation. Since DES keys can be found using a brute force search one may not want to have a
conversation using an older key. For this reason a time stamp has been included in the protocol.
Note that as Needham and Schroeder wanted this time stamp is not universal, it is merely to show

whether the key is to old for use.

4. Datagrams

The maximum length of datagrams is implementation dependent, but the internet protocol
[postel3] that the user datagram protocol [postell] calls on suggests a limit of 576 bytes. The
internet protocol requires 20 to 60 bytes of header and the user datagram protocol requires 8 more
bytes of header so the maximum practical is 508 to 548 bytes. If names are in exess of 200 bytes
each then the server may not be able to fit a response into one datagram. In this case the server
~ returns an error message. The general style of the datagrams used by the server is a one byte
request/reply code, followed by several items. Each item consists of a one byte item code followed
by a one or two byte item length followed by the data itself. The item length includes the item code
and the bytes used for i;em length.

4.1. Key Distribution

4.1.1. Request to the Authentication Server

- +
| Enc |

| Request|

I I

R DT - oo Homm e +===//---%+
I I I I
| Name | Length | Initiator's Name |
I | I I
Fommm e Fommmm——- tmem——— - 4o m- R ke +-==//-%
| I | I

| Non | Length | Nonce |

I | I I

o o Hmmmmmm e S it $mmmmmm - mm=f)t
| Enc | I |
| Block | Llength] Block One |
| ! I I
- Hmmm————— mmmmem e 4o Hommmmm temmf)t
Where

Enc Request is a one byte request code indicating that this is an encoding request (=1).

Name is a one byte item code indicating that this item is a name (=1).
Length is a one byte binary number giving the length of the item in bytes. It includes
the item code and item length. :

Initiator’s name s a string of ASCII characters.

Non is a one byte item code indicating that this item is a nonce (=8).
Nonce is a one byte binary number used to help tell messages apart.
Enc Block is a one byte item code indicating that the following is an encrypted block
(=254).
Llength is a two byte binary number giving the length of the item in bytes. The item
length and item code are included.
Block One is a block of items encrypted with the initiator’s key. This block contains:
pommmmmm et el bt dommm - +-==//---+
I | | I
| Name | Length | Recipient's Name |
I I | |
et e s tommm - - o +---//---%
l | | v l I
| Key | Length | No. of Parts | Keypart |
I I | | |
dommmmm prmmmm e Femmmmemn Fommmem—— tommm e Fof/---+
Where
Name is a one byte item code that indicates that this item is a name (=1).
Length is a one byte binary number giving the length of the item in bytes. It includes
the item code and item length.
Recipient’s name is a string of ASCII characters.
Key is a one byte item code indicating that this item is a keypart (=5).
No. of Parts is a one byte number giving the number of sections the key was broken into.
Keypart is one part of the key. It is eight bytes long and when it is xored with the other

keyparts it becomes a DES key.

4.1.2. Reply from the Authentication Server

4o +
| Enc |
| Reply |
I |
T e tommmmeee +
I I I |
| Non | Length | Nonce |
| I | I
t-mmmmm - - e s D e to-mmme e it +~-=//-—-+
| Enc | | |
| Block | Llength| Block Two |
I | I |
fromm———— Fommm - Fommeme e R e +--=//---+
Where:
Non is a one byte item code indicating that this item is a nonce (=38).
Length is a one byte binary number giving the length of the item in bytes. The item
code and item length are included.
Nonce is a one byte binary number used to help tell messages apart.
Enc reply is a one byte reply code indicating that this is a encoding reply (=2).
Enc Block is a one byte item code indicating that the following is an encoded item (=254).
Llength is a two byte binary number giving the length of the item in bytes. The item
length and item code are included.
Block Two is a block of items encrypted with the initiator’s secret key. This block contains:
Foememe- e toccmmem dommm———- R it t===//---+
| I | |
| Name | Length | Recipient's Name |
I I | I
tommm—e e tomm e R s Fommmmm o +===f/---%
I I I | |
| Key | Length | No. of Parts | Keypart |
I | I I I
domeeem - e e Fomm————— L T bt -
| Enc I | |
| Block | Llength] Block Three ¥
| | | I
e e tome - trem———— Frmm———— tee//---+

Name is a one byte item code indicating that this item is a name (=1).

Length is a one byte binary number giving the length of the item in bytes. It includes
the item code and item length.

Recipient’s Name is a string of ASCII characters.

Key is a one byte item code indicating that this item is a keypart (=5).
No. of parts is a one byte binary number telling how many keyparts there are.
Keypart is one part of the key. It is eight bytes long and when combined with the other

keyparts it becomes a DES key. It is the same number as in the request.
Enc Block is a one byte item code indicating that the following item is encoded (=254).

Llength is a two byte binary number giving the length of the item in bytes. It includes
the item code and item length.

Block Three is a block of items encrypted with the key that the authentication server had
stored under the recipients name. This block contains:

ittt == = ———— Frmmmm———- e +me=f)===+

| | | |
| Name | Length | Initiator's Name |
I I | I
oo $ommm o dm—————-- Fomm - et ===/ /--=+
| | I I |
| Key | Length | No. of Parts | Keypart |
I | | I |
s S i bttt R $rmmmmm - +===//---+
| Time | | |
| Stamp | Length | The Time Stamp |
I | | |
4 Fe——————- Fmmmm———— 4ommm—m—- Rt +-==f)=---+
Where

Name is a one byte item code indicating that this item is a name (=1).

Length is a one byte binary number giving the length of the item in bytes. This includes -
the item code and item length.

Initiator’s Name is a string of ASCII characters. -

Key is a one byte itme code indicating that this item is a keypart (=5).
No. of Parts is a one byte binary number telling how many keyparts there are.
Keypart is an eight byte number that when combined with the other keyparts yields a

DES key. This is identical to the one given by the initiator.
Time Stamp is a one byte item code indicating that this item is a time stamp.

The Time Stamp is a four byte binary number.

4.2, Querying the Authentication Server
4.2.1. Query Requests

To ask the server if it knows some name the following query request is sent.
Where recipient’s name is the one being checked.

oo +
| Query |

| Request|

I I

ittt $mmmm e oo e 4o +===/)-==+
| I | I
| Name | Length | Initiator's Name |
| I | |
o o $-mmmmm - ommmmm o o=/)---+
I | | I
| Name | Length | Recipient's Name |
I | | I
oo e Hommmmm o emmmomm- R +-=n/f===+
I I I I

| Non | Length | Nonce |

I I I I

et 4o -- $ommmmmem +

Where

Query Request is a one byte request code indicating that this is a query request (=8).
Name is a one byte item code indicating that this item is a name (=1).

Length is a one byte binary number giving the length of the item in bytes. The item
code and item length are included.

Initiator’s Name is a string of ASCH characters.

Recipient’s Name is a string of ASCII characters.

Non is a one byte item code indicating that this item is a nonce (=8).
Nonce is a one byte binary number used to help tell messages apart.
4.2.2. Query Replys
Hoom - I
| Query |
| Reply |
| |
o Fommmm e fommmmm +
I I I |
| Non | Length | Nonce |
| I | |
$ommm———- Frmm e $-—mmmmm- domem——— tommm e +--=//--~+
| Enc | |
Block | Llength] Block One |
I | |
$ommm———- $ommmm - ettt 4o +-—mem - $eef)=t
Where
Query Reply is a one byte reply code indicating that this is a reply to a query (=9).
Non is a one byte item code indicating that this item is a nonce (=38).
Length is a one byte binary number giving the length of the item in bytes. The item
code and item length are included.
Nonce is a one byte binary number used to help tell messages apart.
Enc Block is a one byte item code indicating that the following block is an encrypted block
(=254).
Llength is a two byte binary number giving the length of the item in bytes. The item
length and item code are included.
Block One is a block of items encrypted with the key the server had stored under the

initiator’s name. This block contains:

10

dm o ——— dmmm - o +
I | I I
| Ans | Length | Answer |
| I I I
R ittt N it +---m—-—- tomemmm o et $--=//---%
I I | |
| Name | Length | Recipient's Name [
| I I I
4o - $o-mm - - R $o-mmmm - $-mm - +-=-=//-~--+
Where:
Ans is a one byte item code indicating that this item is an answer (=7).
Length is a one byte binary number giving the length of the item in bytes. The item

code and item length are included.

Answer is a one byte binary number telling wheter the server knows the recipient. A yes
is255andanoisO.

‘Name is a one byte item code indicating that this item is a name (=1).

Recipient’s Name is a string of ASCII characters.

11

4.3. Digital Signatures

4.3.1. Requesting a Digital Signature
The request for a digital signature is as follows.

ommmmm - +

| WSig |

| Request| ,

I I

$ommmm e ommmmme- $o-mm - $o-mmmmm- Fommmmm +-=-=//---+
| I I |
| Name | Length | Requestor's Name |
I I I 'I
$mmm - $ommem oo T e Fommmmm - 4-==//---%+
I I | I

| Non | Length | Nonce |

I I I I

omm e $omme o $ommemm 4o mmmmmm - +===//---%+
| Enc | | |
| Block | Llength| Request Block |
I I I I
ettt $mmmm oo $-mom— - 4o S +=--=//---+
Where

WSig Request is a one byte request code indicating that this is a request write a signature block

(=3).
Name is a one byte item code indicating that this item is a name (=1).
Length is a one byte binary number giving the length of the item in bytes. The item

code and item length are included.

Requestor’s Name
is a string of ASCII characters.

Non is a one byte item code indicating that this item is a nonce (=8).

Nonce is a one byte binary nuﬁber used to help tell messages apart.

Enc Block is a one byte item code indicating that this item is an encrypted block (=254).
Llength is a two byte binary number giving the length of the item in bytes. The item

code and item llength are included.

12

Request Block is a block containing a single item, padded to length 0 mod 8, and encrypted with
' the key which the server has stored under the requestor’s name. This block

contains:
pomm———— Fmmm - - L o b/)=+
I | I |
| Bytes | Liength] Request Data |
I I I I
- ettt e ommmm e o m - +===//=-=+

| Padding to length 0 mod 8|
| variable in length |

D Fommmmma Fommm— +
Where
Bytes is a one byte item code indicating that this item is an uniterpreted byte string
(=253).
Llength is a two byte binary number giving the length of the item in bytes. The item

code and item llength are included.

Request Data is a block of data, variable in length which the server does not interpret. The
data should be the "characteristic” value of the digital signature.

4.3.2. Signature Reply
$omm - +
| WSig |
I Reply I
e R R +
| I | I
| Non | Length | Nonce |
I | I |
o t-——- - o o Fomm e +-==//---+
| Enc | | |
| Block | Llength| Sig Block |
I I | |
e s e tommmm e oo +-==//-=~+
Where

WSig Reply is a one byte reply code indicating that this is a reply to a request for a signature

block (=4).

Non is a one byte item code indicating that this item is a nonce (=8).

13

Length is a one byte binary number giving the length of the item in bytes. The item
code and item length are included.

Nonce is a one byte binary number used to help tell messages apart.
Enc Block is a one byte item code indicating that this is an encrypted block (=254).
Llength is a two byte binary number giving the length of the item in bytes. The item

code and item length are included.

Sig Block is a block of item, padded to length 0 mod 8, and encrypted with the secret key
of the server. This block contains:

Fommm———— it dmmm————— $omm e Fommm - e F A
| I I I
| Name | Length | Requestor's Name |
I I I I
e e Fommmm - Fomm e Fommm e tm==f)---+
I I | I
| Bytes | Llength| Request Data |
I I I |
Fommmem e tmmm————- tommmm - 4o - D T Y AT
| Padding to length 0 mod 8]
| variable in length |
I I
e ettt Fomm +----—--- +
Where
Name is a one byte item code indicating that this item is a name (=1).
Length is a one byte binary number giving the length of the item in bytes. The item

code and item length are included.

Requestor’s Name :
is the string of ASCII characters from the requestor’s name field of the request to
the server.

Bytes is a one byte item code indicating that this item is an uninterpreted byte string
(=253).

Request Data is the request data from the request to the server.

14

4.3.3. Request to Read a Signature
To read a digital signature the following datagram should be sent to the server:

RSig Request

Name

Length

Reader’s Name

Non

Nonce
Enc Block

Llength

Sig Block

RSig |
Request|
I
it Fommmmm- dmmmmm oo $--mmm- Hommmmm e +-==//---%
I I |
Name | Length | Reader's Name |
I I I
Hommm e ommm o e et oo oo +--=//--~+
I R I
Non | Length | Nonce |
| I I
Fommmmm e #ommmm o o o mm ommmmmme +-==//---+
Enc | | |
Block | Llength| Sig Block |
I I I
Fmmmm———— R t-mmm———- e e temm—m——— t-==//=--%*
Where

is a one byte request type code indicating that this is a request to read a digital
signature (=5).

is a one byte item code indicating that this item is a name (=1).

is a one byte binary number giving the length of the item in bytes. The item
code and item length are included.

is a string of ASCII characters.

is a one byte item code indicating that this item is a nonce (=8).

is a one byte binary number used to help tell messages apart.

is a one byte item code indicating that this item is an encrypted block (=254).

is a two byte binary number giving the item length in bytes. The item code and
item length are included.

is the signature block, encrypted with the key of the server as defined above.

/‘\\

15

4.3.4. Authentication Server Reply

RSig Reply

Non

Length

Nonce
Enc Block

Llength

 Sig Block

4mmmm o +

| RSig I

| Reply |

| l

fmmmm oo O 4mmmmmm = +

I I I I

| Non | Length | Nonce |

I I I I

S - $mmmmmm - $ommmmm e Hmmm - 4-==//---%
| Enc | | |
| Block | Llength] Sig Block |
I I I I
mommm - $-mmmmmm- Hmmm———- mmmmmme- s 4===f/--=%
Where

is a one byte reply code indicating that this is a reply to a request to read a
signature block (=6).

is a one byte item code indicating that this item is a nonce (= 8).

is a one byte binary number giving the length of the item in bytes. The item
code and item length are included.

is a one byte binary number used to help tell messages apart.
is a one byte item code indicating that the following item is encrypted (=254).

is a two byte binary number giving the length of the item in bytes. The item
code and item length are included.

is a block of items, padded to 0 mod 8, encrypted with the key the server had
associated with reader’s name. the contents are defined above.

16

4.4. Error Responses

e +

| Error |

: Reply :

#mmmmmm e $mmmm mmmmmm - +

I I I I

| Non | Length | Nonce |

| I I I

4-mmmmmmm #mmmmmmee o $mmm————- Hmmmmm——- ===/)===+
| | | Error | |
| Error | Length | Code | Error String |
I I I I |
dm doem R +-m———-—- e +-==//=---+

Error Reply
Non

Length

Nonce
Error

Error Code

Error String

| Additional items if required to explain error. |
| (see error code descriptions below) |

is a one byte reply code indicating that this is an error response (=7).

is a one byte item code indicating that this item is a nonce (=8).

is a one byte binary number giving the length of the item in bytes. It includes
the item code and item length.

is a one byte binary number used to help tell messages apart.

is a one byte item code indicating that this is an error item (=3).

is a one byte code stating the error. The codes are defined as:

Code

LN -O

Meaning

Undetermined or undefined error.

Initiator’s name not found (the unrecognized name follows).
Recipient’s name not found (the unrecognized name follows).
Response larger than one datagram. -

Key found under initiator’s name doesn’t work.

is a string of ASCII characters explaining the error.

F

5. Code Summary

17

Request/Reply Type Codes:

Type

Enc Request
Enc reply
WSig Req
WSig Reply
RSig Req
RSig Reply
Error Rep
Query Req
Query Rep

Item Type Codes:
Type

Name

Error

Key

Time stamp
Ans

Non

Bytes

Enc Block

Error Codes:
Code

H W RO

Value

O OONOOOEsWN -

Value Length or Llength

1 variable
3 variable
5 10
6 6
7 3
8 3
263 variable
254 variable

Meaning

Undetermined or undefined.

Initiator's name not found.

Recipient's name not found.

Response would not fit in one datagram.

Key stored under initiator's name doesn't work.

18

References

[Daniels 81]
Daniels, D., Lucassen, J., and Rubin, W.
Authentication Server Protocol.
Request for Comments 207, MIT Lab for Computer Science, May, 1981.

[FIPS 77]
Federal Information Processing Standards, Specifications for the Data Encryption Standard.
National Bureau of Standards, FIPS PUB 46, Jan, 1977.

[Kent 76]
Kent, S. T.

Encryption-Based Protection Protocols for Interactive User-Computer Communication.
Technical Report TR-162, MIT Lab for Computer Science, May, 1976.

[Kent 79]
Kent, S. T. .
Protocol Design Considerations for Network Security.
In K. G. Beauchamp, editor, Interlinking of Computer Networks. D Reidel, Dordrecht,
Holland, 1979.

[Postel 79]
Postel, J.
User Datagram Protocol.
Internet Experiment Note IEN 88, USC-Information Sciences Institute, May, 1979.

[Postel 80]
Postel, J.
DOD Standard Internet Protocol.
Internet Experiment Note IEN 128, USC-Information Sciences Institute, January, 1980,

4]

