M.LT. Laboratory for Computer Science Request for Comments No. 241
March 9, 1983

Concurrent Access to a Scmi-Recoverable, Extendible Hash Table
by James W. Stamos

1. Overview

Three factors increased the complexity of implementing a particular extendible hashing scheme [5].
Concurrent access, controlled updates, and canonical buffer indices caused a number of difficulties.
The application, a table of object descriptors for the Swallow repository [1] called the Object Header
Table (OHT), required concurrent access. Improving the efficiency of crash recovery led to the
second requirement of reliability. Finally, although canonical indices also appear in the original hash
table design, they became a nuisance in a multiple-process environment for recoverable hash tables.
This paper assumes familiarity with extendible hashing.

2. A Novel View of Extendible Hashing

Many expositions attempt to explain extendible hashing by presenting a conventional hash table
whose length changes dynamically [4].' The table grows by dividing the entries in one or more
buckets according to the first unexamined bit in their hashed values. If this bit is zero, the entry
stays put. Otherwise, the expansion algorithm appropriately places it in one of the new buckets that
it adds to the far end of the existing table (Figure 1). This technique widely spreads keys with
similar hashed values and seems to be a difficult notion to express and understand.

Another scheme for extendible hashing doubles the directory size when any bucket referenced by
only onc dircctory index overflows and splits into two buckets [3]. Using a conceptual, ’pictorial’
distance measure, relocated keys do not move as far because the two new buckets are always adjacent
(Figure 2).

For schemes in which the directory attains a maximum size (or has only one size) as in [5], the
following description is much clearer and thus easier to comprehend. Consider a fixed-length hash
table with 2™ buckets in a horizontal row (Figure 3). The m most significant digits in the binary
expansion of a hashed key reveals the bucket that would contain the key if it were inserted. This
hash table changes size by growing or shrinking one bucket at a time. If a bucket has a length of 27,

Working Paper - Please do not reproduce without the author’s permission and do not cite in other
publications.

the m+1% to the m+n" bits in the binary expansion of the hashed key yicld the portion of the
bucket that should contain the key. A two-dimensional picture in which the height of the bucket is
proportional to its size (or the log of its size) intuitively captures the redistribution of keys when the
table shrinks or grows. This redistribution is local in that keys move only in the vertical direction
when their containing bucket changes size. The ncighbors of the key in the original bucket are still
its nearest neigbors in the new bucket, except that the distance is scaled according to the bucket’s

expansion or contraction ratio.
3. Terminology

The extendible hash table contains a collection of key-value pairs called entries. A fixed-size index
buffer acts as a directory and contains pointers to all nodes of the hash table. Each key-value pair
maps to exactly one node and one page in that node, as cxplained above. The ordering of entries
within a page is immaterial. Associated with each node is an unbalanced binary tree called an
overflow tree. Overflow trees are a special form of binary trec that consist only of leaves. The
shadow nodes of the implicit binary tree exist only as references from one leaf to another leaf. The
"lefimost” leaf contains the implicit root. Overflow trees contain entries that mapped to a full node
page when they were last inserted.

Primary memory contains a copy of the index buffer, a cache of recently accessed pages, and a
buddylist for allocating and deallocating pages in the disk file. A buddy management scheme is used
because every request is for a consccutive sequence of disk pages that has a size cqual to some power
of two. In addition to the latest version of the index buffer, the disk file contains node pages,
overflow pages, and free pages. The table shrinks and grows in a controlled manner so that the
buddylist is not needed for recovery.

4. Concurrency

Swallow repositories provide atomic, stable storage for objects involved in (nested) transactions. To
increase throughput, the repository contains a moderate number of processes that service requests.
These requests may belong to the same transaction, related transactions, or completely different
transactions. Although some form of locking is needed to control concurrent access 0 the hash table,
different operations have different rcquirements.

For example, the hash table_ changes size by doubling or halving one node at a time and
appropriately processing the overflow binary tree. Here the natural unit of locking is the set of pages
in a node and its overflow tree.

Inserting, deleting, fetching, and updating all access exactly one node page. In addition, these
operations may traverse a single path in the corresponding overflow tree. The natural unit of locking
for these operators is a single node page and the entire overflow tree.

Unlike the previous examples, some operations require access to more than one node. One such
operation is stabilize, which ensures that the disk file is consistent with the perceived state of the hash

table, A]thohgh it is possible to achieve this updating without ever locking more than one node at a
time. two problems arise. First, this form of update does not represent a consistent snapshot of the
hash table. While the Swallow OHT does not require consistency at this level, other applications
may. Second, changing the size of a hash table with a relatively small number of entries involves two
nodes. In order to function properly, the hash table must split and join nodes atomically.

Iterating over a set of key-value pairs also requires the ability to lock a set of nodes. If the desired
entrics are those pairs whose keys hash into a given numeric range, the resulting set of nodes is
contiguous. Such an iterator is extremely useful during debugging. For the more general case of an
arbitrary predicate, however, the iterator must examine all entries and thus lock all nodes.

There are conceptually three lock sizes: a single node, a contiguous set of nodes, and all nodes. The
first and third types are degenerate forms of the second, and thus all locks represent an interval.
Since each operation locks exactly one interval of nodes, there is no possibility of deadlock. In the
more gencral case of arbitrary lock sets, acquiring node locks according to their order in the index
buffer prevents deadlock and guarantces progress.

One potential bottleneck arising from a single lock size is the inability to lock a portion of a node.
Operations that touch exactly one page within a node must still lock the entire node as well as the
associated overflow tree. Under the following supposition, however, this simplistic locking strategy
causes only a negligible reduction in concurrency. The key assumption is the high degree of locality
in time and the lack of locality in space. References in the near future are likely to concentrate on
thosc key-value pairs recently referenced. However, given a hash function that is not correlated with
reference tendencies, nonreferenced entries that happen to be in recently referenced nodes are
unlikely to be referenced in the near future.

Since the node locking strategy prevents deadlock, the only other internal source of deadlock arises
from a fixed-size cache of disk pages. Operations typically lock at most two disk pages at any one
time. Exceptions to this bound occur when a node changes size, since the algorithms may lock at
most five pages at once. Recursive iterators currently lock as any pages as there are in the maximum
depth of any overflow tree involved in the iteration. Careful programming can easily avoid this
requirement, and thus we may set a loose upper bound of five pages per process. To prevent
deadlock, the cache could limit the number of processes that obtain access to a disk page at any one
time. A second scheme is to make the cache size large enough to handle the maximum number of
processes executing under the application. Another alternative is to take advantage of the virtual
memory and permit the cache size to exceed its defined size for short periods of time. I chose the
third alternative primarily for programmmg convenience, but only actual use will determine the
extent of cache overflow.

5. Recovery

The entire hash table is essentially a tree; the lack of cycles drastically snmphﬁes crash recovery. First
level nodes of the hash table tend to be large and always contain a number of pages equal to some

power of two. All other levels in the trec are overflow subtrees and contain single-page nodes. A
page in the disk file representing the extendible hash table is accessible if, and only if, it is a page in
a node referenced by the index buffer or it is an overflow page referenced by an accessible page. A
key-value pair is accessible if, and only if, it lics on an accessible disk page.

One weak constraint from Swallow is the prohibition of any disk files that contain two accessible key-
value pairs with the same key. Unless the hash table implements a timestamp scheme or some other
ordering technique, the process attempting to recover from a crash is unable to distinguish two
accessible key-value pairs with the same key. Swallow can circumvent this problem because OHT
entries are only hints. That is, the Swallow repository contains enough stable information to
reconstruct all object headers. One solution to contradictory information is thus to discard duplicate
entries during recovery. In the general case, however, the extendible hash table may not be a hint.
Those situations require a more disciplined algorithm that prevents duplicate entries from ever
appearing in any recovery attempt. The current implementation meets this requirement by modifying
the structure of the table in an atomic manner. Moreover, the underlying algorithm is easily adapted
to one that supports atomic updates of hash table entries.

All key-value pairs have a fixed size and typically do not move from a given disk page. The only
exceptions to this claim of immobility occur when a node doubles or halves or when an overflow
page itself overflows. When a node changes size, each key-value pair in the node will appear on two
disk pages, since it appears in the current node as well as the new node. Pages comprising the new
node are different from those comprising the current node. To ensure that exactly one copy of each
entry is accessible, the implementation first stabilizes all pages in the new node and all pages in the
new overflow tree. There is a great deal of flexibility in the order in which the pages are stabilized.
To ensure the new pages are stabilized at least once, the current implementation stabilizes new node
pages immediately after generating them from the corresponding portion of the old node(s) and
overflow tree(s). Once the implementation finishes the doubling or halving, it stabilizes the overflow
tree and then changes the appropriate index buffer entry. This technique represents the usual
practice of creating a new structure, changing a single reference, and then deallocating the former
structure.

When an overflow page overflows, the insert routine creates a new overflow page, divides the entries
on the original page according to the most significant ignored bit of their hashed values, stabilizes the
new page, and then retrics the insert. Note that the immediate updating of the original overflow
page is not necessary. The new overflow page on the disk contains appropriate values and becomes
accessible only when the first overflow page is purged from the disk page cache.

Atomic updates of entire nodes and atomic extensions to overflow trees simplify the recovery of the
extendible hash table. The recovery algorithm reads the buffer of node addresses into primary
memory and then looks at node sizes. A binary scarch quickly determines which node is the next to
double. In order to restore the buddylist that manages free pages in the disk file, the recovery
algorithm must traverse all overflow trees. Guaranteeing that all accessible node and overflow pages

arc undamaged and readable may be done if required by the application. Comparing key-value pairs
for appropriatencss is useful during debugging and can also serve as a perindic check on the
correctness of the normal algorithms and even the recovery techniques.

The extendible hash table would be fully recoverable if all table operations were atomic, the
representation were stably stored, and except for benevolent side effects, unlocked disk pages in the
cache were clean. The current implementation does not meet the latter two requirements. While all
operations are atomic, their effects do not immediately propagate to the disk file. Since there is only
one copy of the disk file, the storage is not stable. Both requirements can be met by the obvious
modifications. |

In the current implementation, all structural changes to the table are atomic with respect to the disk
file. The size of the disk page cache approximately limits the number of changed pages that would
not migrate to the disk file in the event of a crash. Assuming a cache that is small in relation to the
entire table, only a minute fraction of the table in the disk file will not be up to date. Since there is
only one copy of the disk file, a corrupted or otherwise damaged disk page can also lose data.
Because a recovery process can cffectively regencrate almost the entire hash table, say the table is
semi-recoverable. '

6. Canonical Indices

As the total number of entries declines, the hash table adjusts by contracting. If nodes contain more
than one page, the table halves the size of one node cach time it contracts. Let this process be
known as halving. When the table becomes so small that each node has only one disk page, it
shrinks by combining two adjacent nodes to form a new one-page node. The index buffer entries
that referred to the old nodes must now refer to the new node. Call this technique of merging two
separate nodes a join. Since the table joins only adjacent nodes, index buffer entries that refer to the
same node are always contiguous. Since the number of index buffer entries that refer to a given
node doubles with each join, any maximal set of equivalent buffer entries has a cardinality that is
some power of two. When the total number of entries increases, the hash table adjusts by performing
the inverse operations of doubling and splitting. These operations also preserve the contiguity and
cardinality aspects of maximal sets of equivalent buffer indices.

In order to lock a node referenced by more than one index buffer entry, a process must effectively
lock all relevant index buffer entries. One approach is to lock an .interval of index buffer entries. A
second scheme is to choose a canonical index, for example the smallest, and lock that one. Since
computing the interval and determining the canonical index are of comparable complexity, we will
assume the latter approach.

Canonical indices caused many minor problems by requiring special-case tests and additional code.
For example, the recovery algorithm can not assume that each index buffer entry refers to a distinct
node. For tables containing relatively few key-value pairs, the recovery algorithm must compute
canonical indices and check that the appropriate number of index buffer entries share a given node.

When a node doubles, each node page maps into two consccutive pages in the new node. When a
node halves, two consecutive pages in the old node map into one page in the new node. On the
other hand, during splitting/joining, the new/old nodes are not two consecutive disk pages allocated
together as part of one node, but two one-page nodes arbitrarily located in the disk file. Since their
lifetimes may be unrelated, they are separately allocated.

Splitting and joining have a minor impact on atomic changes to the table structure. Assume node N,
splits into nodes N, and N3 (Figure 4). Let the canonical indices be I}, I, and 1,. If N, is before
N; (N, <Nj), then I, =1, <1 Ifl, and I, are on the same disk page, the node is split atomically
by updating 1, and I5 simultaneously. The hash table moves directly from the state in Figure 4a to
that in Figure 4c. However, if I, and I; are on different disk pages, atomicity requires that the
expansion process update I, before it updates I, (Figure 4b).

One key fact that simplifies recovery is that any page in a node has sufficient information to
determine the actual size of that node. Detecting incomplete split operations is thus straightforward.
Assume the machine supporting the extendible hash table crashes after writing I, but before writing
I, in the above example (Figure 4b). When the recovery process finds an incomplete split, as in the
case of N; and Nj, it simply aborts the split by discarding N, and returns the table to the state
shown in Figure 4a.

Consider the inverse opertion of joining N, to N to form N,. Again assume l; = 12' <l Ifland
I; are on the same disk page, the hash table moves directly from the state shown in Figure 4c to that
in Figure 4a. When I; and 1, are on different disk pages, however, atomicity requires that the
contraction process update 1 affer it updates 1,. Assume a crash occurs after writing I, but before
writing 1, (Figure 4b). When the recovery process finds an incomplete join, as in the case of N, and
N;, it finishes the join operation by discarding N;. Because the recovery algorithm can not
distinguish incomplete splits and joins, it treats them similarly.

These two update orderings always inserts duplicate information into the extendible hash table and
then remove the redundancy. For example, during a node splitting, the sequence of information
snapshots is Nj, N; U Nj, and N, U N, (Figures 4a, 4b, and 4c). Since Ny = N, U Ny, the
sequence is equivalent to N, U Ny, N, U N3 U N, and N, U N,. During a join operation the
sequence is N, U N;, N; U Ny, and Ny (Figures 4c, 4b, and 4a), which is equivalent to N, U N,,
N, U N; U N;, and Ny U N;. For node doubling and halving, N; does not exist. We have Ny, N,
and N,, N;, respectively. Since N; = N,, no information is lost. Restricting duplicate entries to
incomplete splits and joins and ensuring that splits and joins never occur simultaneously ensures a
straightforward recovery.

7. Comments on CLU

Except for minor problems involving bit-level access, CLU was a suitable language in which to
implement this hashing scheme. Mint, the existing package for treating integers as an ordered
collection of bits, provided adequate facilities. However, there was no simple way of determining the
efficiency of various operations. For example, creating the integer 2" for some integer n > 0 may be

done by an appropriate left shift of the number one. Setting the n bit in zero to be true achicves
the same result, but there is no clear indication that either technique is more efficient. A more
important problem was the appearance of tag bits in integers. Run-time support for CLU dictates
that the two most significant bits of integers be identical. Attempts to set one withoug changing the
other fail. To avoid special-casing the algorithms, [neglected to use the two most significant bits and
considered positive integers with at most 30 bits. This decision had no other effects beyond a slight
reduction in the potential resolution of hashed values. However, if an application requires a number
of bits equal to a power of two, this shortcoming will become intolerable.

Since CLU does not yet explicitly support concurrency, 1 used the MESA model of processes,
monitors, and condition variables. Interval locks governed access to nodes, provided mutual
exclusion, and prevented deadlocks (Figure 5a). Except for changes to the size of the hash table, this
strategy would also suffice for synchronizing access to the index buffer. However, updating one
index buffer entry on the disk requires either two disk page transfers (read the page, modify the one
index buffer entry, and then write the page) or one page transfer and the stability of all index buffer
entries on that page (copy a portion of the main memory version to disk). Implementing the second,
more efficient scheme required additional restrictions on index buffer access. A process operating
under the monitor lock is free to read any index buffer entry. A process that has locked a node does
not need the monitor lock to read the index buffer entries corresponding to that node. However,
such a process cannot update the corresponding index buffer entries without first securing the
monitor lock. In summary; reading an index buffer entry requires either the corresponding node lock
or the monitor lock. Writing an index buffer entry requires both the node lock and the monitor lock
(Figure 5b). This convention permits a process that extends or shinks the table to write the one or
two modified pages of the index buffer to the disk file without locking all nodes whose index buffer
entrics fall on those pages. Since the table changes size infrequently, the overhead of securing the
monitor lock in addition to the node lock is negligible. This scheme permits reading of index buffer
entries without incurring any overhead beyond that required for node access synchronization. Since
index buffer entries are read much more than written, the solution appears to be favorable.

8. Limitations

The current scheme suffers from two important drawbacks. First, it offers no synchronization
capabilities beyond mutual exclusion of concurrent operations. For example, two processes can use
the fetch operator to obtain the same key-value pair and then use the wpdate operator to change the .
value component of the entry. Although the implementation serializes the invocation of these
operators, it makes no guarantees as to their execution order.

The second drawback is the lack of full recoverability. One method of achieving this goal is to have
each operation stabilize all the pages it modifies. However, the overhead associated with this scheme
will make it grossly inefficient. An alternative is to use a stable portion of primary memory as an
over-written, write-ahead log for frequent operations. While the details and utility of such a scheme
have not been thoroughly investigated, it appears promising.

9. Interactions with Mcmory Management

CLU uses a conventional page-swapping virtual memory. Implementing the extendible hash table
essentially outside the CLU environment had two drawbacks but provided one benefit. One
disadvantage is the duplication of code and cffort from ‘reinventing the wheel,” since the hash table is
extremely similar to a virtual memory. The cache fetched pages on demand, purged pages when
neccssary, and maintained clean/dirty bits for pages. A double-indexing scheme mapped a hashed
key into its unique node page. Viewing this hashed key as a virtual address, the index buffer as a
page table, and node pages as words within a page, the correspondence between the hash table and a
standard virtual memory is striking. Morcover, since the pages were actual CLU objects, it is possible
for the operating system to purge the virtual pages containing these page objects and thus cause
double page faults when only one was anticipated.

Another disadvantage of working outside the CLU environment was the loss of type checking and the
ability to reference objects. Each page object consisted of an ordered collection of bytes. Keys and
values were not stored directly on a page. Instcad, their bit-level representations were stored and
directly manipulated. Operating on bit-level representations of keys and values required two new
pseudotypes related to the original key and value types. For these kinds of types, there is little
checking that may be done at compile time.

Since the hash table was outside the CLU world, any object references it contained would not be in
the domain of the garbage collector. The unreliability of such references prevented keys and values
from containing any pointers to CLU objects. There was thus no general method for keys and values
to reference CLU objects. CLU objects could also not directly reference key-value pairs, because
these pairs were not ordinary objects. However, by holding a copy of the immutable key, CLU
objects could indirectly reference key-value pairs.

The one important benefit of operating outside the CLU environment is the fine-grained control over
the location of node and overflow pages as well as the order in which a set of pages is forced to the
disk or stable storage. All CLU objects are transient because their lifetimes do not extend between
user sessions or across crash boundarics. On the other hand, the hash table and its key-value pairs
are persistent objects, since they can exist for any number of user sessions and (generally) survive
crashes. This fundamental difference in outlook prohibits ordinary references from persistent objects
to transient objects but allows references in the opposite direction. Current schemes that
automatically manage memory also prevent the implementor from establishing constraints on the
timing and manner by which persistent objects and structures are stabilized.

10. Lessons

Given the opportunity to implement another extendible hash table, I would avoid unnecessary
complexity by prcventing the table from ever reaching the splitting and joining stage. This decision
drastically simplifies coding and debugging but reduces the amount of code only slightly. ‘The only
shortcoming is the amount of disk space that it wastes.

.

The novel aspects of this project arose from its being an exercise in retrofitting concurrency and semi-
recoverability into an cxisting data structure that was not designed (or at least advertised) to
accommodate these features. In terms of the number of lines of code, the basic extendible hash table
required as much code as the lower-level abstractions: the disk page cache, the buddylist, a module to
manage page operations, and a parameterized set. In the extendible hash table with concurrency and
scmi-recoverability, explicit rccovéry code represented 20% of the top-level code, or only 11%
counting the lower-level abstractions. Estimates for the concurrency code are 5% and 3%,
respectively. Introducing concurrency and semi-recoverability had only minor effects in terms of lines
of code.

The run-time costs of these features are also modest. Semi-recoverability required the prepurging of

additional pages whenever a node changes size or an overflow page overflows. Since these events
* oceur infrequently, the overhead is not substantial. Support for concurrent access introduces a small
amount of overhead by requiring a process to first gain the monitor lock in order to lock the
appropriate node. Except for insertions and deletions that change the size of the table, the only
additional time penalties are the subsequent release of the monitor lock and the node lock.

The relative ease in extending the cxisting algorithms to support concurrency and semi-recoverability
is due primarily to the tree structurc of the hash table and the natural partitioning of the structure
into unrelated nodes. Since the table is always acyclic, atomic updates to the structure are
straightforward. More importantly, the overflow paths form a directed acyclic graph. Each page in a
node coresponds to a possibly improper subtree of the overflow tree associated with the entire node.
Although the overflow reference of a node page originally points to the 'root’ of the overflow tree,
accessing the overflow tree through a node page has a benevolent side effect. After the search, the
~overflow reference on the node page refers to the appropriate subtree and thus hastens future
overflow searches through that page. Atomic updates to the structure of the entire hash table
preserve the following invariant. Every key maps to exactly one accessible node page and exactly one
accessible overflow page. In addition, there is exactly one path from the node page to the overflow
page. There are never any merged or cyclic overflow paths and dangling references do not exist.

11. Related Research

Although providing concurrent access to B-trees has been the focus of numerous researchers, little
work has concentrated on concurrent access to extendible hashing.” In one study, Ellis [2]
implemented Fagin’s hashing scheme [3] and used the concurrency design as a basis for distributing
the extendible hash table and the algorithms that manipulate it. That implementation, however, did
not address crash tolerance. On the other hand, I considered recoverability but neglected the aspects
of a distributed implementation.

Many of the differences between the two designs arise from the specific details of the two hash tables.
In Fagin's scheme, each node consists of exactly one page and there are never any overflow trees.
Ellis locks a single page.and/or the entire directory and uses three types of locks to provide
additional concurrency by permitting multiple readers. The costs of this concurrency are intricate

locking strategies, subtle interactions between concurrent operations, and the complex dcallocation
scheme required to avoid dangling references. Ellis links the buckets in ascending hashed-key order
to permit an access to correctly execute, even if the desired key-valuc pair moves because of
intervening node splits and joins. In that implementation, node splitting and joining are not
symmetric operations. Insertion and deletion are also not similar. While insertion/deletion may
cause a local split/join in Fagin’s scheme, in Lomet’s scheme [5] the split/join or doubling/halving is
typically unrelated to the particular insert/delete request. This separation permits a decoupling of the
standard operators from the extension mechanisms and leads to a simpler, more modular
decomposition.

There are a number of similaritics between the two schemes. First, neither provides any general
synchronization capabilities beyond a straightforward serialization of requests. Second, both employ
recursive insert routines, since splitting a node page (or an overflow tree leaf) may not generate
enough space to perform the insertion. Third, both use two locking granularities. Ellis defines locks
to cover the entire directory as well as locks for a one-page node. My scheme uses the monitor lock
to synchronize access to the directory but uses interval locks that typically lock only a single node.
Implementing the additional concurrency found in the Ellis design for Lomet’s hash table requires a
combination of the approaches for concurrency in hash tables as well as that for tree-like structures,
since every node references an overflow tree. Finally, both schemes utilize the total ordering on
nodes defined by hashed-key values to avoid deadlock when an opecration requires more than one
node lock.

References

[1] Arens, Gail C., "Recovery of the Swallow Repository,” M.LT. Laboratory for Computer
Science, MIT/LCS/TR-252, January, 1981.

[2] Eliis, C. S., "Extendible Hashing for Concurrent Operations and Distributed Data,” Rochester
University TR110, October, 1982.

[3] Fagin, R. "Extendible Hashing -- A Fast Access Method for Dynamic Files,” ACM
Transactions on Database Systems 4, 3 (September, 1979), pp. 315-344.

4] Litwin, W., "Linear Hashing: A New Tool for File and Table Addressing,” Proceedings of the
Sixth International Conference on Very Large Databases, Montreal (October,
1980), pp. 212-223.

[5S] Lomet, David B., "Bounded Index Exponential Hashing,” IBM T. J. Watson Research Center,
RC 9192, January, 1982,

10

000 100 010 w11 001 101 011
*N\J\ I
) 4

VIVIVIV|VI|VY

000 100 010 110 o001 101 o011 111

Figure 1. Extendible Hashing with Linear Table Growth

Directory

§ 2 7 Buckets

[~
L
S~

Directory

Buckets

Figure 2. Extendible Hashing by Doubling the Directory

1 ndex
Buffer

Nodes

Index
Buffer

Nodes

Figure 3. Exteﬁdible Hashing with a Fixed-Size Directory

(@

(b)

(©)

N3

'Figure 4. Example of a Node Split (a through c)
and a Node Join (c through a)

Monitor
Interval Lock

LLock ,
£C No Yes

@ No | - -

Yes R/W | R/W

Node Access
Monitor
Interval Lock
k
Loc No Yes
®) No| ~ R
Yes R R/W
Directory Access

Figure 5. Lock Requirements

