M.I'T. Laboratory for Computer Science Request for Comments No. 245
' March 24, 1983

Efficient, Multi-Language Access to Persistent, External Data
by James W. Stamos

NOTE: This note was hastily written for another purpose, but will suffice as an introduction to my
preliminary thoughts on a thesis topic.

1. Introduction

Conventional programming systems suffer from two important limitations when viewed as general
information systems. First, changes to the programming environment arc transient. Unless the user
or application explicitly saves state information in a file that is external to the programming language
and its memory management mechanisms, the results of one session are not visible in later sessions.
Programming language constructs do not permit the saving of relevant portions of the environment
with the guarantee of type safety across time and space. One of the few examples of a persistent
programming environment is Smalltalk-80 [4]. The entire programming environment resides in a
conventional disk file and exists in a quiescent state between user sessions. Since Smalltalk-80 objects
do not leave the virtual memory, the user and the application programmer never need to consider
translation issues, type checks, version mismatches, or storage management considerations. However,
one shortcoming of Smalltalk-80 is the assumption of a single user. Smalltalk-80 provides no support
when two or more users wish to share a collection of objects.

The second relevant limitation on most programming languages is the lack of support for sharing
instances of user-defined types. Arbitrary sharing of information with type safety requires the sharing
of type information and an agreement on type equivalence/conversion within a language and between
two or more languages. Since different users typically have different address spaces, inter-user
sharing requires the notion of transmitting an abstract value from one environment to another.
Although some optimizations may be made when sharing occurs within one time-shared host, the
general case involves separate hosts and communication through a computer network.

Removing the transience of data restriction and permitting sharing of abstract values closes the gap
between programming languages and databases. Recent overlap in the research activities of both
~ communities [1, 9, 10] indicates a potential for success with an integrated system. For example, there
are many plans for installing database access constructs in new or existing languages [2, 3, 8] On the

Working Paper - Please do not reproduce without the author’s permission and do not cite in other
publications.



other hand, database users implicitly write a program when constructing a query. Generalized
notions of queries that permit arbitrary computations will probably arise from the addition of
ordinary programming language constructs to query languages.

In order for a repository of external data to achieve its full potential, the data representation, the
notion of types, and the communication prototols need to be as general as possible. The plethora of
different programming languages, operating systems, and machine architecturcs, coupled with the
decreasing cost of network attachment, argue strongly for a single standard or a small set of such
standards. On the other hand, the frequent manipulation of external data will demand an cfficient
implementation. .The classic performance-generality tradeoff must be made.

2. Research Issues

Within the framework of persistent, external data, one particularly interesting area is the efficient
translation of instances of user-defined types to and from an external representation [5, 6). The
amount of work that may be donc at compile time, link time, and run time is language dcpendent.
Early binding and optimization may play an important role in determining the translation speed and
hence overall usability.

A second question is the degree of programmer involvement and loss of modularity required for
acceptable performance. Herlihy [5] describes a template scheme in which the implementor of an
abstract data type must write only two procedures, encode and decode, in order to make that type
transmissible. While simplifying program development, this technique may incur excessive amounts
of overhead even when used in conjunction with a sophisticated compiler. A slight reduction in
program modularity could increase performance without adversely affecting the overall structure. For
example, in many cases a programmer employs a small set of hidder abstract data types when
implementing a higher-level data type. Efficiency constraints may require that the
implementor/compiler of the encode and decode operations for the visible type make use of the
representations of the lower level types. This restricted breach in modularity is analogous to the
controlled exporting of nested interfaces by MESA configurations [7). Configurations permit the
sharing of detailed knowledge between participating modules and subconfigurations but keep this
information from users of the configuration.

A third issue is.the tradeoff between generality and efficiency. If only applications written in the
same programming language accessed the external data, the transmission, translation,. and
representation could all be optimized for this special case. Introducing other languages adds further
constraints and requires a morc general solution. At some level, however, most programming
languages can view information as a structurcd collection of objects and a sct of references between
objects. For example, except for at most a few minor details, a memory management scheme
developed for one language with a heap is usually applicable to a wide varicty of other heap-based
languages. This degree of commonality may permit the existence of efficient translation and
transmission schemes that accommodate a majority of existing programming languages.

o



Optimizing transmission for identical implementations of an abstract data type and/or identical
languages invites attention because it provides a number of benefits. Such special cases may act as
benchmarks and indicate the relative cfficiency of general translation schemes. Restricted use of such
optimizations for frequently transmitted data types may substantially increase performance with only a
minimum reduction in modularity and portability. Particular optimization attempts may also lead to
a better understanding of the general transmission technique and suggest methods for improving the
latter’s efficiency.

3. Applications

The efficient translation and transmission of abstract values will play a key role in numerous
applications. Sharing may be done across time, space, or both. For example, two users connected by
an internet can easily exchange data regardless of their programming languages or host machines.

A general translation mechanism also simplifies making dynamic changes to data type representations,
programming languages, and operating systems. The current system would first convert all existing
data to its external representation. After changing to the new implementation, programming
language, or operating system, the external data would be retrieved and automatically converted to
the new internal format.

Remote databases that interact with users during a query or transaction will also send and receive
abstract valucs. Copying, caching, movement, and replication techniques for both centralized and
distributed database systems can also benefit from the efficient translation and transmission of
structured data.



[1]

2]
[3]
[4]
[3]
[6]
[7]
(8]

19

References

ACM. Proceedings of the Workshop on Data Abstraction, Databases, and Conceptual
Modelling, Pingree Park, Colorado (June 23-26, 1980). SIGPLAN Notices 16, 1
(January, 1981).

Allman, E. Stonebraker, M., Held, G. Embedding a Relational Data Sublanguage in a General
Purpose Programming Language. SIGPLAN Notices 8, 2 (1976), pp. 25-35.

Earley, J. Reclational Level Data Structures for Programming Languages. Acta Infbnnatica 2,4
(1973), pp. 293-309. :

Goldberg, A., and Robson, D. ‘Smalltalk-80: The Language and Its Implementation. Addison-
Wesley, 1983.

Herlihy, M. Transmitting Abstract Values in Messages. MIT Laboratory for Computer Science
MIT/LCS/TR-234 (April, 1980).

Herlihy, M. and Liskov, B. A Value Transmission Method for Abstract Data Types. ACM
Transactions on Programming Languages and Systems 4, 4 (October, 1982), pp.
527-551.

Mitchell, ¥. G., et al. Mesa Language Manual. Xerox PARC CSL-79-3 (April, 1979).

Schmidt, J. W. Some High Level Language Constructs for Data of Type Relation. ACM
Transactions on Database Systems 2, 3 (September, 1977), pp. 247-261.

Smith, J. M. and Smith, D. C. P. D:tabase Abstractions: Aggregation. Communications of the
ACM 20, 6 (June, 1977), pp. 405-413.

[10] Smith, J. M. and Smith, D. C. P. Database Abstractions: Aggregation and Generalization.

ACM Transactions on Database Systems 2, 2 (June, 1977), pp. 105-133.



