M.LT. Laboratory for Computer Science Request for Comments No, 250
July 26, 1983

Congestion Control at Internet Gateway

by Lixia Zhang

1. Introduction

Congestion control has been a long-standing problem in packet-switched computer
communication networks. A companion paper "A Survey on Congestion Control in Computer
Networks" [9] briefly summarizes preﬁous practical approaches to solving this problem, and
explains, from the author’s point of view, what the fundamental defects are in those approaches,

and what a right direction seems to be for seeking new solutions.

As an application of those viewpoints, this paper proposes a congestion control algorithm for a

specific environment - at gateways in an internetwork environment with DoD Internet Protocol (IP)

implementation.

Section 2 gives the model of the problem environment. Section 3 introduces the current 1P
congestion control mechanism and a simulation result. From there we see that the current
mechanism cannot effectively perform the congestion control without considerable degradation 6f
performance. Hence designing a new congestion control algorithm for IP is necessary. Section 4
discusses some general considerations on the design of the new algorithm. Based on that, Section §
describes an outline of fhe proposed algorithm. Section 6 is a short analysis of the new algorithm

and the conclusion.

WORKING PAPER — Please do not reproduce without the author’s permission and do not cite
in other publications.

2. Modeling the Problem

We model an internet environment as a general store-and-forward computer communication
network. In this "networ ",’ the "packet switching nodes" are gateways (GW) and "transmission
lines" are local networks! connecting hosts to GWs and GWs to one another. In terms of the 1SO
protocol hierarchy terminology [1], IP is the network level protocol in this model. This abstract

network has the following characteristics:

~ Because the transmission speeds of local area networks (LAN) and long haul networks
usually differ by orders of magnitude, so possibly do the "line" speeds in our abstract
network model. Here we see how easily a packet stream from a high bandwidth line can
flood the GW when going out through a low bandwidth line 1f no proper control
mechanism has been installed.

~ A local network connecting hosts to GWs or GWs to GWs may be a high bandwidth local
area network, a long haul network, or satellite channels. Delays between GWs may also
vary by orders of magnitude. Notice the difference between line speed and delay; the
former is the rate at which outbound lines drain out packeté, the latter is the period of
time for a packet to travel from hosts to GWs (or GW to GW) or vice versa.

~ IP does not have an Acknowledgment/Retransmission mechanism for reliable packet
delivery. If an outgoing packet is rejected by the local network, due to either
transmission error or local network congestion, it will be thrown away.

We also make the following assumptions:

1. Each GW has a large, though finite, packet buffer, e.g. enough to hold 1000 packets, so
that we will not consider the buffer shortage problem in the following proposed
algorithm., This is a very reasonable assumption in terms of current microprocessor
memory sizes?, although most present GW implementations do not have such a large
buffer space.

2. The network may use a dynamic routing algorithm, but there is only one single route

lIn an internet environment, any homogeneous network ne matter whether it is wnhm a single building or nation-
wide, is considered as a local network.

2Assume the packet size is 500 bytes, then a pool for 1000 packets is S00 Kbytes large. MC68000 is claimed to be able
to have up to 16 Mbytes memory, an order larger than our assumption.

between a pair of hosts at any instance of time3,

3. The routing algorithm is relatively stable. That is, the route usually is unchanged during
a bursty transmission, or at Jeast a packet stream will not be frequently switched back
and forth between different routes’. Currently the gateway-to-gateway routing uses a
minimum-hop algorithm, so this assumption is valid as long as gateways do not fail too
frequently, as is the case in reality.

3. IP Source Quench _Algoriillm and a Simulation Result

It is well known that congestion is unavoidable in computer networks, every network must have
some sort of control mechanism to handle it. Currently IP uses a source quench mechanism, a part
of the Internet Control Message Protocol (ICMP) [6] functions, for congestion control. It works as
follows: A GW may discard incoming packets if it does not have the buffer space needed to queue
the packets for output to the next network on the route to the destination. When it does so, it may
send a source quench message to the source host for every packet it discards. This message is a
request to the host to cut back its sending rate. On receipt of a source quench message, the source
host should cut back the rate at which it is sending traffic to the specified destination until it no
longer receives source quench messages from the GW. The host can then gradually increase the

sending rate until it again receives source quench messages.

Although specified in the IP document, so far there are few implementations of this source
quench mechanism. There is no report on their performance. In this section we analyze the
algorithm first, then give a simulation result. From there we will argue why we do not think this

algorithm is sufficient in congestion control, hence we need to design a new one.

3A bug here: in the case that there exist more than one route with the same minimum number of hops, the cw will

route packets to them in round-robin. This fact is temporarily ignored here due to the following reasons:

~ 1 think this algorithm is a subject to change. We can ask several questions on its performance: Should it keep
round-robin routing even in the case that one of the minimum hop routes is congested? Should it count a long
haul network as cne hop, as it does for a high bandwidth local area network? Should it not consider the
type-of-service of the user data packets when there exist more than one available route, but going through
different networks with drastically different characteristics? Etc.

~ There is an intrinsic relation between the routing and congestion control problems. A general belief is that we
cannot solve one of the two completely without solving the other. At this early stage of investigating
fundamental issues of congestion control, however, I try to simplify the problem by making some reasonable
assumptions on routing, leaving exposing this relation and routing consideration for later.

3.1. Advantages and problems of IP source quench algorithm

We immediately see some advantages of this simple algorithm:

1. The two facts that GW can drop packets whenever necessary and that 1P does not have
acknowledgment/retransmission procedure together make the IP environment deadlock
free, no matter how heavily the network is congested.

2. Because a GW sends a quench message to the source host for every dropped packet, it
need not keep any traffic record.

3. 1t chokes the source hosts directly, trying to reduce the excess traffic coming into the
network as soon as possible.

4. A host actively participates in this algorithm. It can always try to make higher
throughput with no penalty except its own resources spent on possible retransmissions.

But there are also some questionable points about this algorithm:

1.1t is too late to quench the source host after the GW runs out of buffer space. The
quench message takes some period of delay to get back to the source host. All packets
sent during that period might be discarded. The source host should be warned well
before the GW starts dropping packets.

2. The algorithm does not specify how much a host should cut back its transmission rate
upon receiving a quench message. Since the host has no knowledge about the
congested GW, such as its capacity to drain out the congestion, and how many other
packet streams are passing through at the same time, it cannot feasibly figure out a right
cutoff rate on the fly. |

3. By current specification, IP does not control the transmission rate itself. The source
quench algorithm puts an implied implementation requirement on the higher layer at
the host. It requires that each host have precise control of packet transmission rates to
different destinations and have the ability to change them at will. But the current
implementations of most higher level protocols built on top of IP do not have such
control!, We cannot pass this requirement to the lower layer, the local network
protocol, because that would make IP incompatible with the local networks that do not
have such a function.

4For example, TCP, the mostly used IP based protocol. sends out packets at a rate determined by the end-to-end
windowing scheme, a form of flow control that is dependent on the (unknown!) round-trip delay and not based onm real
time.

4. In the case that the GW CPU cycle is the bottleneck that causes the congestion, the input
line(s) will have queued up incoming packets, filling up the buffer space. As a result, no
more packets will be accepted. The GW may not be aware of dropping packets and will
not send back quench messages. In another word, not every source host will be aware
of the congestion even its packets have been dropped by some GW.

5. According to the specification, when there is no space available to forward an incoming
packet, the GW should drop it and send back a quench message to the source host. But
sending quench messages is resource consuming by itself. It takes both CPU time and
buffer space, probably no cheaper than forwarding a packet, except that the reverse
direction may or may not be congested. Consider a heavily congested GW, why does it
necessarily quench the host for every dropped packet? If this is used just as a way to
inform the source host that the GW is still congested, it is too expensive, and may not
reflect the true situation of the GW since the quench message takes an unknown period
of delay.

3.2. A simulation result of IP source quench algorithm
In his BS thesis Haldane Peterson studied the IP source quench algorithm and built a simulator

to test the performance [4]. The following assumptions were made in the simulation:

1. The simplest network configuration was used, one host connected to one GW.
2. The transmission delay between the host and the GW was constant but unknown.
3. An infinite packet stream from the host was being sent to the GW.

4. The GW drained out packets at a constant rate. When its buffer was full, it sent out
quench messages to the host with no affect on data transmission, i.e.the expensive
control cost was ignored,

5. The host had precise control of the packet transmission rate. It tried several algorithms
upon receiving a quench message from the GW, such as null algorlthm bang-bang

5 The host completely ignores quench messages and keeps sending at the same rate no matter what happens.

speed control®, event-based changes7, time-dependent changess, event-slotted

windows,” and some even more complicated ones.
The throughput and loss coefficient (i.e. the ratio of the number of quench packets the host
received to the total number of packets the host sent) were both used to measure the performance.
It turned out that the "toe-in-water” algorithm1® gave better performance than the others (the
throughput reached 99% of the gateway's capacity with the loss coefficient under 5%), because it
was the best way for the host to tune to the proper transmission rate in order to match that of the
GW. But a fatal drawback was that even in this extremely simple model, it was still expensive for
the host to figure out the GW’s capacity by such blank guessing and trial. In a real world situation of
multiple host with random data transmissions and several networks with different speeds, it will not

be possible at all, even without considering the cost.

Although this simple model of a single host and infinite packet stream transmission is not very

close to actual network traffic pattern, we did learn a number of things from the simulator:

1. The inherent unknown communication delay between the host and the GW is a subtle
problem, which easily causes traffic oscillation when the GW tries to control the source

host sending rate,

2. Instead of letting source hosts guess their cut-off rate, the Gw should decide
transmission rate limits for them, quantitatively controlling the resource sharing among

6Upon receipt of a quench, the host stops entirely for some amount of time, after which it begins to send again at the
same speed as before.

7Upon receipt of a quench, the host immediately multiplies its sending rate by some constant less than one. Every time
it sends a packet, it multiplies its rate by some other constant greater than one.

8In this method, no action is taken at the time a quench occurs, except to note the fact that one did occur and to record
the time T. Every time the host sends.a packet, the new inter-packet delay time, d(n+1), is computed as

dn+1) = d(n) + (kI - k2(1-T))

where d(n) is the inter-packet delay computed at the last sending, t is the current time, and k1 and k2 are constants.

9Keeping a window on the recent past and counting the number of quenches in that window, and using this
information with current sending rate to decide new sending speed.

m”Ihe name of this algorithm comes from a common practice of prudent swimmers. Before diving into new water, they
will dip a toe in (o test the temperature. The analogy here is in the speedup part of the algorithm. The host first tries a
very short, very fast packet burst to the Gw to see how full the queue is. If it is not too bad, then the host speeds up,
otherwise holds its speed.

all users. One reason is that, as mentioned above, a single host does not have the
knowledge of the total network traffic. Another more important reason is that the GW
cannot safely rely on each host.

3. Therefore, it is necessary to have some sort of communication between hosts and GWs in
order for them to work out the problem together. The quench message is one-way
communication only and contains very vague information.

I feel that the basic defect of TP congestion control mechanism is that, for some reason, it did not
intend to try hard to control the situation and to achieve high performance. People know that

congestion control is needed but probably have not learned how to do it well,

4. Design Considerations on Proposed Congestion Control Algorithm

We concluded in [9] that the network congestion control is a distributed resource sharing
problem, and the basic principle of this sharing is to enhance the network with packet traffic
knowledge and to let the network properly regulate hosts’ transmission rates. The implementation
of this principle, however, may be different for different networks and protocols. Most

considerations in this section are closely related to the special characteristics of IP.

4.1. General Principles
The following can be considered as general design principles for congestion control algorithms:;

1. It should be quick to take effect. ‘

2. The techniques should be preventive in nature, rather than being of disaster-detection-
recovery typeu.

3. The contro! should be smooth; that is, it should be an incremental procedure rather
than an "on/off" switching,

4, The overhead should be kept at a low level, preferably a constant level independent of
the network load. .

5. It should be fair, according to whatever the definition of fairness is given.

“In this sense, the name congestion control is sort of misleading. If we believe that a good congestion control
mechanism is the one that prevents congestion, then traffic control might be a better name for the mechanism.

4.2. Design Philosophy
IP itself is not designed to be highly reliable. For simplicity and flexibility reasons, it is

intentionally limited in scope to only provide functions necessary for delivering a packet of bits
from a source to a destination over an internetwork. As part of IP, the purpose of ICMP is to
provide feedback of problems in the communication environment and hence its use is optional.
The congestion control algorithm proposed in this paper is planned to be part of ICMP. To be
consistent with 1P's goals, it should also be simple, optional, aiming at improving network
performance and throughput, rather than being imperative to the correct functioning of the

network.

Another consideration is that the networks connected by gateways may belong to different
administrations that may or may not all have (or be willing to have) the congestion control
mechanism installed. In such cases, the original IP functions should not be affected. However, the
network will not have guaranteed performance for those hosts that do not support network

congestion control.

4.3. Difficulties
We listed in [9] the four fundamental difficulties in congestion control, which are all caused by

the geographical distribution of network resources:

1. Difficulties in allocating the distributed resources on dynamic demands;
2. Inherent communication delay between hosts and gateways;
3. Expensive control overhead, the control mechanism will consume critical network
resources;
4, Difficulties in detecting and recovering from failure.

The dynamic demands and communication delay together make the general scheduling or
reservation methods of resource sharing infeasible. There is no possible prediction of traffic load to
do scheduling. There is no precise resource availability/unavailability information in making
reservation: the resource might not be available at the time a reservation request is received by a
GW but a little later, or vice versa, due to the load change or GWs failure/recovery. Because of
communication delay, any reservation will also introduce delay in responding to user requests; the
reserved resources will be wasted during the time the reservation is made and the time the resources

start being used (this includes the time for the confirmation getting back to the user and the time

data packets arriving at the switching node). Thus the resources must be allocated dynamically

based on the network's knowledge about its current load, which can only be abstracted from the

traffic instant by instant.

If we let the network control the resource sharing, the communication delay also brings
difficulties. It will cause the asynchrony and inconsistency problem between the network and the
hosts when anything changes, for example, when a GW fails, or when it finds a host starts (or
terminates) a bursty transmission, because the control updates will take time. It should be the

control algorithm’s responsibility to handle the situation properly during transient periods.

Both GWs and hosts may crash at any time. A host failure will not affect the network, while a GW
failure may lose all its previous control information and leaves hosts with a low transmission rate
limit for a long time. So on one hand, the network should have the control over its own resources;

on the other hand, hosts must protect themselves from network malfunctioning due to GW failures.

Facing all these hard problems, the congestion control cannot possibly be done in a trivial way.
But if we believe that nothing can work well in a shared world without control, then the control

overhead is a necessary expense. We can only try to reduce the cost, but not to eliminate it.

4.4. Relation to local netwofk congestion control and end-to-end flow control

Here we are designing a congestion control mechanism for a network level protocol like IP which
has the goal of being implementable on top of a wide variety of local networks as well as supporting
a wide variety of higher level protocols. The new algorithm should be consistent with this goal. It
should not put more dependencies or restrictions than the original IP on the functionality of either
higher or lower level protocols. In this paper, we ohly consider the problem down to the IP layer

and temporarily ignore local network issues!2.

12” neglect the small percentage of the network traffic due to protocol peer messages at each layer, we see that all
requests are from applications and eventually served by physical media. Restrictions to users requests due 1o finite
physical resources come from bottom up. 1SO layering structure gives a logical division of functions among layers. Since
each layer uses functions offered by ‘the layer below, its performance also directly depends on the lower layer. The
interfaces between layers have been well defined in terms of functions, while the issues of performance dependency are
mostly ignored. Congestion control is such a performance issue. After we learn how to add performance issue to the
interface between IP and the higher layers, we expect (o be able to deal with the lower level interfaces as well.

10

For example, we cannot assume that the higher level protocol has some fixed form of flow
control. The trivial file transfer protocol TFTP [7] was built on top of IP (through UDP [5]). Due
to TFTP’s lock-step feature, any transmission rate restriction will be trivially met. Whereas another
file transfer protocol, BLAST 8], is an example at the other extreme. Its goal is to achieve high
transmission throughput. Thus it does not have conventional "window" flow control mechanism.
It sends the whole file, no matter how long it is, at once, then checks over and retransmits those

packets that were damaged or lost.

Therefore, the mechanism we are seeking should be able to handle the congestion by itself, and
give a clear cut interface to the higher layer reflecting how well the network can serve the
transmission requests. It should not rely on the flow control from the higher layer, nor imply any
severe restrictions. The end-to-end control should be administered as far as possible by the users
with the network intervention only when the service as a whole is endangered. It may require the
IP module residing in each host be able to control transmission rate in some way. Under the
limitation of the given physical resources of networks, it should try best to meet users’ performance

requests. When demand from the higher layer exceeds the limitation, it should be able to reject the

excess part.

4.5. Local nature of congestion in IP environment

A distinct feature of IP is that it has no hop-by-hop acknowledgment/retransmission procedure.
This makes congestion inherently a local phenomenon in nature, if we look at the problem only at
the IP level. When congestion occurs at any GW, the pure effect is packets being dropped at that
particular GW. The GW does not stop or slow down any incoming traffic, nor speed up or slow
down its own outgoing traffic. The packet loss will eventually be discovered by end-to-end
protocols and retransmission will be done if necessary. The real disaster of congestion manifests

itself as degraded performance seen by network users, due to the delay and wasted resource of

retransmission,

Since the congestion is local in nature in this particular environment of IP, it should be possible

to solve the congestion problem locally, i.e. building the control mechanism on individual GWs and

11

3

without worrying about global situation’?, Every GW arranges its own resources according to

moment-to-moment traffic fluctuations that may be visible only at the local level.

4.6. Traffic pattern

There usually exists no magic as a universal solution to a problem that is not based on any
assumptions, no matter what kind of bizarre the environment might be. When an algorithm is
proposed, some assumptions must be made on the behavior of the’ problem to be solved, either

explicitly claimed or implicitly assumed. The closer the assumption is to reality, the better the

solution will be.

In solving the congestion control problem, we consider the network traffic as consisting of two
classes: a large amount of single (or say low frequency) packets and bursty packet streams. The
former kind of traffic may be composed by some service request/responses, remote interactive
processings, TFTP transfer, etc.. They are either human-oriented or round-trip deléy dependerit,
hence are not the main cause of network congestion. The packet streams are due to fast data

transfers and will be the target of our congestion control.

Imagine the traffic pattern in the near future, there are two reasons that we probably should be

expecting it to be more and more stream-like:

1. The desire to integrate all kinds of telecommunications, such as voice, video, as well as
data, and all kind of applications, such as newspaper, information retrieval, etc., into a
single network.

2. The tendency that cost effect (computation price decreases more rapidly than that of
communication) and better performance requirement will gradually change the current
way of interactive computer communications, such as remote login. More computation
will be done locally, and computer communications will be in the form of large chunk
of data. Consider the huge amount of short data packet of Telnet currently flowing in

13Be warned: by saying so we have made an assumption that the routing algorithm is responsible for network resources
utilization, i.e. the routing will make full use of the network resources in a global viewpoint. But in any case, 1 don’t think
that the global congestion, whatever it means as many people mentioned, would ever occur in an 1P environment,

12

networks'*, we are now actually trading communication cost for computation power.
We expect this to change. Don't forget that Telnet was designed over ten years ago. At
that time people perhaps did not foresee today’s PC revolution.

4.7. Tradeoff considerations
Tradeoffs exist in doing any kind of control. We consider that only two kinds of resources are

fundamental in the network, i.e. processing power and communication bandwidths, although many

other people think the buffer space should also be counted. Our considerations are :

~ The most expensive resource in networks is the communication bandwidths that should
be best used’®. The control mechanism itself should not compose more than a small
portion of line overhead.

~ Processing power at each packet switching node is finite, and the CPU-bottleneck is one
of the potential causes of congestion. The congestion control mechanism will surely
bring some CPU overhead. But even so, we are willing to trade a small amount of CPU
time in doing control functions

* to prevent congestion from occurring in order to reduce the waste of both CPU
time and bandwidths of the network as well as hosts resources resulted from
retransmission;

* to make better coordination with the higher layer protocols; for example, to
reduce the uncertainty of the end-to-end protocols as mentioned in [9}; and

* to offer a better service to users, since a controlled network will be more stable.

Packet buffer space at each gateway, as a necessary tool in the control scheme, is
assumed to be large enough.

The next section gives the outline ofa proposed algorithm based on these viewpoints.

14A big amount of Arpanet traffic is Telnet packets with single byte data. Sorry I lost my reference paper on Arpanet
measurement. .

15This is not true for high bandwidth local area networks, but because gws connect all kinds of networks, we should
consider the problem in a more general situation.

13

5. Design of a New Congestion Control Algorithm for IP
To do congestion control, a GW need have two things: an efficient control algorithm, and the

information required by the algorithm. We describe the algorithm first, then consider how to get

the information.

5.1. Brief description of the algorithm
Assume a gateway knows all the information it needs, the control algorithm should be able to

perform the following functions:

1. According to the GW's capability and traffic load, decide whether, when, and to whom
to send control messages;

2. Compose the contents of the control messages, which give the source hosts the

transmission capacity of the GW they may use.

3. Take into account the communication delay and be able to properly handle the
transient situation during the short period the traffic load and the GW capacity do not
match.

4. Be able to handle the case that some hosts do not responds to the control properly and
keep the GW functioning well.

5. The algorithm itself should be robust to GW failures.

Basically, the GW tries hard to avoid dropping packets. Whenever it feels that traffic becomes
exceeding its capacity, it sends control messages at an early stage to source hosts to request them to
slow down; in the meantime, it uses its fairly largé buffer pool to hold continuing flooding in
packets, even though it may not be able to send them out at the rate they come in. But this is only a
temporary situation. If all hosts cooperate properly, the traffic should be back to normal soon. If -
(some) hosts do not respond to GW’s control messages, dropping packets is still the last thing the
GW can resort to. |

5.1.1. When to send control messages »
We want to let the network control and manage its own resources. So control messages need be

sent whenever a load change is observed and readjustment of the network resource sharing is

needed, namely, when load increases or decreases.

When the load increases, the GW may send a quench message to source hosts in two cases:

14

~ The length of a single output queue is over a threshold, which reflects a line speed
bottleneck.

~ The length of total input queue is over a threshold, which indicates a CPU bottleneck.

Since we desire the control algorithm to be preventive, control message should be sent to hosts well
before the GW has accumulated too many packets and let hosts be aware of the GW’s forwarding
capacity as early as possible. Therefore we set multiple thresholds for measuring the traffic load,

and in particular, choose the first threshold to be very low for the reasons below:

~ To warn hosts in advance.

~ Although we have large pool to buffer more packets, as soon as the GW detects that
incoming packets rate exceeds the CPU processing rate or line output rate, it should
start controlling the hosts rate immediately.

~ We must not forget that the control message takes a one-way delay to get back to the
host, and the GW is responsible for those packets sent out before its control messages get
there.

Because IP packets are not guaranteed for delivery, the control messages may be lost. The multi-
threshold is also a solution to deal with this loss. When the load passes each threshold, control
messages will be sent to hosts. The probability of losing all of them should be negligibly small. The
messages sent at each threshold can also give hosts the transmission rate limits upon the most recent

information of the GW load.

When the traffic load down passes each threshold, i.e. when the load decreases, the GW should
recompute the new transmission capacity it can afford to each packet stream passing through and
check its control record to see if it need send out new control messages to avoid under-utilization of
its resources. Because there should still be fairly many packets waiting at the GW after a heavy load
period, the GW will not become idle during the communication delay period if it has good measure

on the load change and controls in time.

The control messages may also be sent upon requests from hosts, as explained below.

15

5.1.2. What's in the control message
We criticized that the current IP source quench message contains little usable information to let

source hosts figure out what to do. We want to put in a control message

1. the destination address of the packet stream, which causes (or is likely to cause)
congestion;

2. the GW address the control message is sent from,

3. the acceptable transmission rate to the above destination, expressed in terms of burst-

period and burst-length pair (BP-BL), i.e. requesting the host not to send more than BL
packets in BP period.

The destination address tells to whom the source host should slow down the transmission. The GW
address may be useful to the hosts which can do source routing. They then can try other possible
routes to get higher throughput if need to. The BP-BL pair is computed according to the GW’s
capacity and current load (e.g. assign its capacity equally among current users). The reason that the
transmission rate is expressed in BP-BL rather than in strict rate of second/per-packet form is to
give the host more flexibility in the way it handles packets. The GW tries to make BP as long as
possible, and the host may like to send all BL packets at once and stop for BP time in order to save
process switch time, or sends in some other way, as long as the average rate does not exceed BL/BP.
This also has an impact of suggesting the host to send larger packets to achieve higher throughput,
because the allowed throughput is equal to (BL X # bytes per packet)/BP.

Since IP does not have priority transmissions, let us temporarily assume that the fairness
definition is equal sharing among all users. After take the consideration of those low frequency
traffic (for example; allocate certain percent resources for it), the GW computes a fair share for all '
bursty packet streams and puts it as the parameters BP-BL in the control messages. A limit on a few
high-speed traffics may preserve the traffic of a larger number of low-speed transmissions, i.e. *
making fewer users unhappy. The important point here is to let the GW _have the information of
traffic and some way to control it. Then the different fairness definitions become simply different

ways of setting control parameters.16

16Take the favoring transit-over-input congestion control mechanism as an example, it is known to be unfair to local
input packets. But if we drop local ‘incoming and transit packets equally when congestion occurs, we also drop the
resources spent on the transit packets already. The real problem is that the algorithm has no way to stop the transit traffic
al the beginning. Many other fairness problems can also be solved after we build the traffic control functionality into
networks,

16

5.1.3. On forwarding control messages

Control messages should be given special consideration. The delay or loss of a user data packet is
unfortunate to that user, but it does not have any globally deleterious effect. The delay or loss of a
control message, on the other hand, is directly related to the network performance and therefore all
users may suffer. Currently all ICMP packets are treated equally as user data packets. I think this
policy should be considered to change, because ICMP packets, such as routing updates, echoing,
and the proposed congestion control messages, do carry more important information than general
data packets. Therefore they should be handled differently. For example, the congestion control
messages should not be dropped whenever possible, and they should be sent to hosts as soon as
possible. This necessity can be explained by a real life analogy: everyone hears the traffic reporter
in early morning radio broadcast, who gives information about traffic situation on all main streets to
those hurrying drivers on their way to work. If we assume this reporter does not use the radio, but
rather drives a car to distribute his information (forget how he gets it), then he may likely be stuck
in a jam himself, just.as anyone else, and his effect will be meaningless! Without priority in

network transmission, the proposed congestion control would result in a similar situation.

5.1.4. If some hosts do not respond to control message

What should a GW do in this case? One way to punish those hosts that keep sending at high rate
after a fairly long period the GW sent them control messages is to selectively put packets from those
hosts to the end of the waiting queue if buffer space allows and drop them otherwise. Care must be
taken in order not to let them affect packets from other hosts that do support the network

congestion control.

5.2. Host reactions to the control message

Basically, I think the host should trust the gatéway and Set the transmission rate according to the
control message if it receives one. That is its share of the network resources given by the Gw, and
the GW has the full control over it anyway. Fairness issue is the gateway policy and hosts cannot
change it. Intuitively, the network should be willing to accept as much traffic as it can afford

because that is the purpose it is there for.

The proposed congestion control requires.that each host have control on its transmission rate to
each destination host. One suggéstioh to do this is to build a transmission table in the IP module at

each host. Each destination of packet transmissions will be the identifier for each entry in the table.

17

The host may record how many packets it sends out to different destinations during a certain time
period, or may put nothing in the table until receiving control messages from the network. Upon
reéeiving a control message from the GW, it should record the control limit in the table and reject
further sending requests from the higher level protocols when it reaches the transmission limit. Or
it may pass the limit directly to the higher protocols to ask them to send out packets accordingly.
There are probably some implementation difficulties here. At IP level, GWs only see hosts, while at
one level above, a host may have several protocols using the same IP module, and a protocol may
again have several simultaneous connections to the same destination. Thus a host, especially a
time-sharing mainframe, might face a problem of sharing given network resources among these
protocols and connections. Someone will need to work out this sharing problem. But I do not

117 Let me repeat the thought one more time to make

expect it to be as hard as congestion contro
things clearer: it will not be very difficult to propose a control algorithm of the sharing for a host,
but it does seem difficult to make an implementation, because we have no experience on how to do

it, nor some concrete prediction about how good the performance can be.

An even better thing the host can do is to take into account the transmission delay upon receiving
a control message. From the transmission table, it may compute the excess traffic it has sent out
before receiving the message and stop for a proper period to let the GW drain out those excesé
packets. Ideally, this will help GWs avoid accumulating up too many packets and hosts will not

suffer long delay.

Although we give the GW the full control on network traffic, a host still cannot rely on listening
to the control information from GWs. A GW may fail and lose its previous control information, and
this may result in locking some hosts at low rate for a long time. To prevent this situation, a host
may ask the GWs, from which it received control messages before, for new transmission rate

permission either periodically or when necessary.

17There are fundamental differences between the two;
~ This sharing control in the host does not suffer any delay.

~ The control overhead is independent of the shared network resources.

This is one of the reasons that I suggest to have separate control algorithms for the net and within a host. [also think that
the network’s algorithm should be well defined and known to all users, while the sharing policy in a host should be left to
each host to decide.

18

Because a packet stream may travel through a series of GWs, a host may receive control messages
from several Gws with different BP-BL values. In such case it should limit its transmission to the

lowest rate.

5.3. Information Needed for This Algorithm

ol

To implement the above algorithm, a GW need know nl

1. the capacities of its CPU and output lines for processing and transmitting data packets;
2. its current traffic load for the CPU and each outbound lines;

3. The source-destination host pairs of current packet streams, which will be used to send
control messages when congestion occurs,

(1) is assumed to be constant and known (it may be the GW’s real capacity decreased by a small
percentage, which is used for handling ICMP packets). We use the packet queue lengths to

measure (2), because
~ The queue lengths are easy to know;

~ it can be used to measure both lines and CPU loads: the length of total input queue for
measuring CPU load, and the output queue length at each outbound line for line load.
The processing time for each data packet is independent of the packet length, so the unproceSsed
packet queue length is an accurate measure of CPU load (forget the byte swapping!). The line load,
however, is packet length dependent, hence the number of packets waiting at a outbound line may
not be an accurate measure of the line load. We expect that the average packet length does not vary

drastically, and hence ignore this inaccuracy unless later on some evidence shows that it is not

negligible. : R

(3) is much harder to get. From the traffic pattern assumed above, we need :a table to record
those packet streams that are contributing significant part of the current net traffic, and ignore other
packets with low frequenqy, random occurrence. We imagine a device like a high pass filter (HPF)
in electrical circuits that can filter out low frequency traffic, and build a packet stream table from
the "HPF" output (see Figufe 1). Whenever the GW is becoming overloaded, it will look up this
stream table and send a contrpl message to those source hosts on the table, requesting them to
restrict the transmission rate by a specific limit in order to release the situation. When the load

decreases, the GW can then reset the limit to a new value.

19

packet stream ‘| . n
table

|
.- T

- R /-—> L
' H _
RN i o '
— i =y | v
’ _n——_— -'F'“‘".‘!'_‘. . S ————————
cPu NS
input packet \>___._..

Ve

queue : S CCT I VA (SRR RPN S
output line queues

Figure 1. Outline of a GW structure.

5.3.1. How to build the HPF I .

We are actually looking for some tool that only counts the packets that arrive at the GW with the.,
same source-destination addresses at relatively high frequencies., and then we record this..
infbrmation in the packet stream table. We also expect that the packets of a bursty transmission will

arrive at the gateway closely to each other. Therefore we build the HPF in the following way:

1. It is a table with two components in each entry: a source-destination host pair identifier
of a packet stream, and a counter of packets sent from the source to the destination,
The table is empty initially, S

2. When CPU gets a packet from the input queue, it looks up the table from bottom up,
increases the counter if the same source-destination pair has been recorded already, or
makes a new entry in the table if not found.

3. This HPF table is reset periodically. Every Tipr (= HPF reset period) milli-seconds,
the packet stream table will be updated by those source-destination pairs with the
number of packets transmitted greater than N in the HPF. Then the HPF will be
cleared and step 2 will be repeated again.
Because the HPF must be looked up for every packet, the lookup should be done fast. HPF table is
expected to be small, i.e. the reset period should not be long, and there are not many simultaneous

conncctions passing through a gateway at one instant.

20

5.3.2. How to manage the packet strcam table
Each current packet stream has an entry in this table. Since this table is the basis on which the

GW does congestion control, we require that

1. It should beeasy/fasttoupdateandt’oloc.)kﬁlpl.‘ T,

2.1t is not a counter of the number of packets in a stream, but a meter measuring the
source host sending rates. Due to differences in higher layer protocol implementations
and the traffic fluctuation in the net, we do not expect packets of a stream arriving with
an accurate rate. Thus this meter should record the average rate of each stream over a
proper period to avoid the rate fluctuating too much.

3. It must be able to automatically erase those streams that have terminated or have
R
changed routes in a short period to keep the correct traffic information.

4. 1t should also contain the information of whether the source host of each packet stream
has been sent a control message, and if so, the transmission rate limitation in the control

message. RS R R R | E S S T

e
To meet the first requirement, we set the stream table to a limited size, only those streams

contributing significant part to the net traffic are put under control. We may also divide it into

subtables according to the output lines, so if one line is overloaded, it is easy to find out all packet

A T

streams flowing out that line.

To meet requirements 2 and 3, we set an auto-erase period Tp; and erase the table in the

A,

following way:

AT IR
1. There are two subfields in each table entry to record the number of packets of that
stream. We use one at a time and switch between the two every T seconds.

2. At the time of switching, if a stream has no packet sent during the last T seconds, it is
erased from the table. ‘

| source-destination | # packets | # packets | control msg |
| host of the stream | in first Tg | in second T, | recording |

- - - - - —n e = e MR T e e e MR S A e B e A e e e - - A e .

When we look up the table, we consider the sum of the numbers in the two subfields and get the
average rate over 2T period. We will always have information available even when aging out old
information. Note also that the time periods Typp and T, are independent, and Tipp 1s expected

to be much smaller than T, to keep the HPF small in size.

21

5.4. Problems to Be Worked Out
Under above outline, there still remain some problems to be solved.

1. Get fairly accurate parameters on the things below

~ the CPU packet processing capacity at the gateway.
~ BP-BL as a function of the GW buffer space, capacity, and the load.
~ The multiple queue threshold values for measuring the GW load.

2. Estimate the total overhead of the control algorithm,
3. Estimate the performance of this algorithm by simulation.

4. The hardest one: investigate the relation between the routing and congestion control.
Using dynamic routing to spread the congestion does not seem correct, though routing -
being independent of network load does not sound right, either. On the other hand,
congestion control, being distributed, does require some knowledge about routing to
work well.

6. Analysis and Conclusions ,

In terms of implementation, the above proposed congestion control algorithm requires a fairly
large buffer space to handle unpredictable packet bursts. All the control tables will not take much
memory. It does not need a fine clock, even 60 ticks per second will do. The algorithm itself is
simple, but it will take some amount of CPU cycles because some check has to be done for every
packet. The amount of traffic it will create for sending control messages is adjustable (by changing
the number of control thresholds in load measuring). 1 am coding a simulator for this congestion
control algorithm to verify that

~A controlléd network can have higher throughput and lower delay than an uncontrolled

one, especially under heavy load condition.
~ The saving of retransmissions will be much greater than the control overhead,

The congestion control algorithm cannot be independent from other network functions. For
example, its responsiveness will largely depend on whether the network supports priority
transmission. If a control message has to wait in long transmission queues in the heavy load
situation, the performance of congestion control itself will be load dependent, hence the goal of
control can hardly to achieve. It is possible to implement good priority transmission at a gateway.
For example, in the C-Gateway every packet can be examined before being processed, and we can

22

easily put those packets with high priority to the fronts of processing queue and the transmission
queue to make their transmission delay traffic load independent. One thing needed now is to set up

priority transmission rules in IP.

When designing a network level protocol, we should consider that the network is a distributed set
of shared resources, and build into the protocol the functions of controlling the sharing among

users. This control should be seen through the interface to the higher level protocols.

Look back ten years ago, the builders of the first computer network might not understand the
functional position of buffering at the packet-switch node as we think it now. They probably just
put whatever seemed to be economic or reasonablel8, But even they had thought the same way for
doing congestion control, they would not be able to implement anyway due to lack of hardware
support. While we are designing the congestion control based on today’s computation and
communication facilities, people working on hardware are designing new machines and devices for
tomorrow, It is probably hard to imagine how fast the line speed will be for a new network that will
be built up ten years later, and the congestion control mechanism might change to totally different
contents (imagine that all Arpanet lines were 10 mbps and all IMPs were 10 timés faster, the
network would be quite different). But the hardware technology by itself will not solve congestion
problem, no matter how fast a network can run. We should expect user demand increasing, too.

And in any case, certain control or regulation functions will always be needed for shared resources.

In a recent paper, Kleinrock gave an interesting remark to congestion control (well, remember he
calls it flow control):"It seems fair to say that flow control has the following cantankerous
propeniés: you need it, it’s tough to design, it's nearly impossible to analyze,and it’s almost sure to
cause you trouble (i.e. create deadlocks, degradations, and other lovely castastrophes).” [3] We are
facing a hard problem that has not been solved over years. But after we gained a better

understanding and try to attack it from a new direction, we hope to get some interesting new results.

18A‘n early paper by R. Kahn [2] gives some reasoning about the choice, which shows different viewpoint than ours.

23

References

(1]
ISO-SC 16.
Reference Model of Open Systems Architecture.
Technical Report ISO/TC97/SC16, International Standards Organization, November, 1978,

[2]
Robert E. Kahn,
Resource-Sharing Computer Communications Networks.

IEEE Proceedings (11), November, 1972,

B3]
L. Kleinrock.
A Decade of Network Development.

Journal of Telecommunication Networks , Spring, 1982,

[4]
Haldane R. Peterson.
Design of Source Quench Congestion Control Algorithms in Interconnected Networks.

MIT-LCS B.S. Thesis, May 1980.

[5]
J. Postel.
User Datagram Protocol.
Technical Report IEN 88, USC-ISI, May, 1979.

[6]
J. Postel.
Internet Control Message Protocol.
Technical Report RFC 792, DARPA, September, 1981.

M
Karen Sollins.
The TFTP Protocol.
Technical Report RFC783, MIT-LCS, June, 1981.

8] .
Dan Theriault.
BLAST, an Experimental File Transfer Protocol.
Technical Report CSR-RFC217, MIT-LCS, March, 1982,

9]
Lixia Zhang,
A Survey on Congestion Control in Computer Networks.
Technical Report CSR-RFC 249, MIT-LCS, May, 1983.

