~— . M.LT. Laboratory for Computer Science , Request for Comments No. 253
September 14, 1983

Distributed Name Management

by Karen R. Sollins

Attached is my doctoral thesis proposal:
My committee is composed of:
David P. Reed, supervisor

David D. Clark, reader
J. C. R. Licklider, reader

~— WORKING PAPER — Please do not reproduce without the author's permission and do not cite
in other publications.

Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science
Prqposal for Thesis Research in Partial Fulfillment
of the Requirements for the Degree of

Doctor of Philosophy"

. Title: Distributed Name Management

Submitted by: Karen Rosin Sollins
9 Southwick Circle
Wellesley, Mass. 02181

Date of Submission: August 25, 1983

Expected Date of Completion: May 15, 1984

Laboratory where Thesis will be done: Laboratory for Computer Science

Brief Statement of the Problem:

This work addresses the problem of providing a unified naming framework in a decentralized,
distributed computer system. The system designer needs a mechanism of great simplicity and power
for creating and managing names used when communicating with other people through the computer
system. A computer naming facility should reflect closely the patterns of name usage between
humans ‘in communicating directly with each other. We assume a collection of cooperating
computing nodes connected by a communication medium. The underlying model we propose
contains objects called contexts and aggregates. A context can'map names into any type of object,
i.e., a person, a data object, a brocess, a port, or any other type of entity accessible to the client. The
aggregate will provide a mechanism for further exploration of different kinds of naming used in
human communication, some of which are currently unavailable in operating systems. The utility of
the naming model will be tested in part through an implementation of the mechanisms within an
electronic message system.

Table of Contents

1. Introduction
2. The Problem
2.1. Constraints on the Problem
2.2. The mail scenario
2.3. The file scenario
2.4. Review of the problem - human naming
2.5. Review of the problem - additional issues
3. Model for a Solution
3.1. An example: document preparation
3.2. Mechanics of using aggregates
3.3. Review of the model
4. Related Work
4.1. The Nature of Names and Objects
4.2. Locality and Contexts
4.3. Kinds of Names
5. Summary
6. Plan for the Thesis
6.1. An Experiment
6.2. Further Work
6.3. Schedule and Resources
Bibliography
I. APPENDIX:Clu Cluster Specifications of Contexts and Aggregates

—t
OO ~NOOWN

11
12
16
21
22
23
25
27

CRLLE8y

Figure 1-1:
Figure 2-1:
‘Figure 2-2:
Figure 3-1:
Figure 3-2:

ii

L.iéstﬁ 6f Figures

Two Aggregates Sharing a Current Context

Message announcing a new member of NSG -

Message indicating Fran's replacement
Alex's and Terry's Aggregates :
Aggregates in the NSG

2
HWONN®

—

1. Introduction

Names form the basis of communication both among humans and between humans and computers.
In order to communicate with another human, the human must be able to name objects and actions in
- such a way that both humans understand the names. Analogously, in order to communicate with a
computer, the human must be able to name operations and objects in a way meaningful to both the
human and the computer. Therefore, what can be named and how is a central issue in designing a

computer system useful to humans.

This work is an investigation of a naming framework for a distributed computer system, using human
communication patterns to provide a set of goals for the framework. The system model is one of a
federation of loosely coupled computers connected by a communications network. The goals for the
framework based on human communication, plus the constraints presented by the federated system
model, will provide the basis for the technical problems to be addressed in the thesis. In addition,
since the functions provided by this naming facility will not be identical to those functions provided in
past naming facilities, the thesis must address how those additional functions will be provided for the

users of such a computer system.

In the past names in computer systems have been restrictive. The space of file names was likely to
be hierarchical and the name on each branch of the hierarchy might be limited in length. The space
of names identifying users might be flat or hierarchical and might be limited io a small number
characters. Processes, even subprocesses, often were only namable very awkwardly (perhaps by a
number) if at all, even by a subprocess’s parent. None of these has much in common with the way

people name things, particularly when communicating with other people.

There are two reasons for naming entities, both having to do with communication. First, names may
be used by an individual to organize and remember named entities; names provide a catalog facility.
This sort of name is used by an individual or group to organize information. Second, names may be
used among a group of people as the basis of communication. In order to communicate the group
must agree on the meaning of the names used. Over time, they may exband the set of names on
which they agree. Both to reach such an initial agreement and to expand further their basis of

agreement, they will have certain protocols.

The federated system places limitations on anything built on it. For example, sharing of information,
such as collections of names, across node boundaries is restricted by the fact that the only. means of
communicating across node boundaries is by passing messages. The thesis will explore both the
constraints from above (the clients) and the limitations from below (the federation of nodes), and will

provide a naming facility conforming to those restrictions.

Briefly, the mechanisms proposed are based on two new proposed types of objects, the context and
the aggregate. A context translates names into entities. It can be given pairs of names and entities to
remember and translate on demand. An aggregate is a structured set of contexts. Each aggregate
has a current context reflecting that part of the aggregate that is being actively used by all the
participants in the communication and an environment reflecting the private information that a
participant carries to the aggregate. The current context is a single context. The environment is a
collection of contexts, possibly ordered. An aggregate is an individual's view of the name resolution

facility available while communicating with others.

In order to clarify the ideas presented thus far, Figure 1-1 depicts two aggrégates, one being used
by Fran and the other by Alex, representing together an interaction between the two participants. The
shared current context represents that part of the focus of interest that the two have in common.
Each participant also has an ehvironment or set of contexts, some shared and some possibly private
upon which to call when needed. The notation used in this figure will be used‘ in later figures.

This proposal elaborates the ideas presented above. The basis for much of the discussion is a pair
of examples involving communication by electronic messages and a joint development and writing
project among several people. These scenarios are used as a vehicle for exploring and exemplifying
both the problems that arise in communication and, from the ensuing model, an approach to building
a solution. In order to arrive at the model, a set of conclusions are drawn about how humans
communicate with each other. Section 2 explains the problem further by addressing in greater detail
the constraints mentioned above and considering the two scenarios used to explore the problem
further. In Section 3 we present a model for a solution, using the scenarios to elaborate on the model
and a particular approach to an implementation. Section 4 contains a discussion of the work of
others as that work relates to the proposed research. Section 5 summarizes the problems and the
solutions presented. The plan for the research, including discussion of an implementation and -
further work to be included in the thesis can be found in Section 6. Finally specifications in the

tanguage Clu for contexts and aggregates can be found in the Appendix.

2. The Problem

As discussed in the preceding section, a naming mechanism must suit both the system on which it is
built and the needs of the clients of the mechanism. Section 2.1 describes a federated system and
presents a list of underlying ideas that seem to be common to many clients' needs. These ideas
suggest a common set of functions that should be provided by a naming facility. Two scenarios will

be used as the basis for further discussion of naming problems and a solution to those problems.

private context

shared context

aggregate

current context (shared)

0 Qg O

environment

Figure 1-1: Two Aggregates Sharing a Current Context

2.1. Constraints on the Problem
Two sets of constraints on the designer of a naming facility arise from the needs and limitations of
the clients and limitations of the underlying system. In this section, first the term federation will be

discussed and then the issues in human naming relevant to the problem at hand will be considered.

The direction in which computer systems have been moving has been toward a multiplicity of
machines interconnected by networks providing a communication medium. The concerns of privacy
and independence from other users have always been issues among computer administrators and
users, but the nature of those concerns have changed somewhat as smaller cheaper computers have
become available. In.many cases, administrators purchase such computers and put them into service
in isolation. At some later time, the administrators decide to connect the computers under their

management. From here. the collection may continue to grow with little control or consensus among

2
oo

\

the participants in such a "system" An autonomous computer is one for which all decisions are
made mdependently of the decrsrons made for any aother; all the activities on one computer are
isolated from the activities of any other. Many administrators have bursued this option in order to
escape large time-sharing systems. A federation is a loose coupling of computers to allow some
degree of cooperation, while at the same time preserving a degree of autonomy. Ina federation, there
is some agreement on behavior and protocols to be utilized, but the barners apparent in the isolated
machine are still available to anyone who wants to enforce them. If the administrator or user wants to
disconnect the computer from the network by simply not accepting messages, that is possible. If that
computer provides a service to the participants in the network, they must understand that such a
service will nat always be available. On the other hand, federation provides the common ground for
communication (such as agreement about protocols and servrces to be available) should it be
desired. The loose ceuphng labeHed federation is my underlying system model

The human clients of a computer system have been trained since early childhood in using a nammg
-framework for commumcatmg with other humans A move toward the mechanisms used among
humans would be an improvement in the naming facilities provided by computer systems. The
following seven- observatlons about human use of names will clarlfy my basis for an improved
computer naming facility. ‘

1. Communication: Names -are the basis for communication. Therefore sets of names
used by individuals should be. sharable reflectmg common interests and communication
patterns :

2. Mumphcrty ot names

e Different people use the same name for drfferent things.
¢ Different people use different names for the same thing.

e A single user uses different names for the same thing.

® A single user uses the same name for different things in different situations or at
different times.

3. Locality of names: A person uses sets of names to reflect his or her focus of interest. A
user also may use two or more sets of names to reflect a focus between or including
severa/ comexts

4. Flexibility of usage of names: Humans use several sorts of names. For example,
names are often descriptions. People use both full and partial descriptions. Humans also
use generic names to label classes of objects. These generic names may be labels or
descriptions. In fact, humans often use combinations of generic names and descriptive
names in order to narrow the set of objects that are named.

5. Manitest meaning of names: The words used by humans for names have meanings

constrained by human languages. These meanings are understood by other humans as
well.

€. Usability of names: Humans are able rapid/y to define or redefine names and shift
contexts on the basis of conversational cues. They also have mechanisms for
disambiguating names, such as querying the source of a name for further information.

7. Unification: Humans use only one naming system for all kinds of things.

These observations will be discussed further in light of the scenarios presented as examples later in

this section.

A naming facility performs two basic operations. The first is to translate a name into an entity. This
is the more common operation and is generally thought of as the function of a naming facility. The
second is to answer the question of whether or not two names indicate the same entity or not, a
question of equality. The former operation serves as the basis of much of the work presented in this
proposal. The latter is frequently addressed in the literature by assuming that a mechanism for
assigning unique identifiers or uids to entit_ies solves the problem. Neither the problems of equality
nor a solution to those problems is thét simple, and therefore will be considered here briefly before

returning to issues of name translation.

There are two issues that must be addressed in considering the question of equality. Of primary
importance is the question of what is meant by equality. In fact, the issue can be moved back further
to consider what is meant by an entity. What may be viewed as an entity by one client may not be
viewed as an entity or may be \/iewed as a different entity by another client. Consider the situation in
which one client creates a table of the results of an experiment. To that client that table is an entity.
Unknown to the client, the storage facility for the statistical analysis package stores data as files. Is
the collection of bytes comprising the file the same entity as the table? Should these two have the
same uid or different ones? Are the file and the table the same entity even though very different sorts
ot operations are allowed on one than on the other? These questions will be answered differently for

different scenarios and meanings of the word equality. No one answer will suffice in all situations.

The second issue of importance in addressing equality is whether or not uids can be created within
the largest name space imaginable for the system model proposed, even if the lifetime of such a
system is limited'. The model of a federated system precludes truly unique identifiers. If identifiers
are to be unique. there must'ultimately be a single source that is responsible for guaranteeing

uniqueness (although this may be done as a cooperative venture). In order to avoid having to appeal

Theoretically, in a system based on uids, the uids will never be reused. They are unique over all time, making the problem
of creating them even more difficult.

to a single authority for every uid, a group of them might be distributed to potential clients for tuture
use. Federation implies that an individual can dissociate itself from the federation for an arbitrary
period of time. If the private pool of available uvids is completely consumed during such a period, the
temporarily isolated site may be unable to proceed with creating new entities locally, for a lack of uids.
This is a contradiction of the assumptiaon that nodes can operate in isolation if so desired. in contrast

with such a system, in this work | will develop a mechanism that is not dependent on the provision of

uids to support it.

The next two subsections present scenarios that will be used to consider in greater detail the issues
raised by the underlying assumption of a federation of computers and the seven observations about

naming. The discussion in Section 2.4 will also present a categorization of some further problems.

2.2. The mail scenario

Consider the following situation. A group has been formed at the State University (SU), chaired by
Robin Rosenblum to discuss a naming service for SU (the group to be known as the Name Service
Group or NSG). Alex Anderson is a particularly active member, and finds in discussing it with friends
that Fran Fairweather of City University (CU) across town is also interested in naming and is a member
of the National Protocol Committee (NPC). Alex reports Fran's interest to Robin, who invites Fran to

join NSG at SU. Now the NSG consists of, among others, Robin, Alex, and Fran.

Because the computers at SU, CU, and NPC are connected to a network, communications among
the NSG members is by electronic messages. Robin sends out a message to introduce Fran to the
group (Fig. 2-1). To facilitate this and future messages, Robin creates a private mailing list,

containing the names:

me
Kiddo
Fran from CU and NPC

it turns out that Alex and Robin attended the same elementary school and Alex acquired the
nickname "Kiddo", which remains a private joke between the two of them. This message is followed
by one from Fran recommending Terry Thorpe of the Subcommittee on Name Assignment (SNA) as a

replacement (Fig. 2-2). In order to send this message, Fran creates a mailing list containing:

Robin
Alex of SU
me

The name Alex needed the additional descriptor because Fran also knows Alex Ashmont at CU.

From: Robin Rosenblum, Chair, NSG
To: Robin Rosenblum
Alex Anderson
Fran Fairweather, Rep from CU and NPC

Msg: Fran Fairweather of City University and the National Protocol
Committee is joining our group...

Figure 2-1: Message announcing a new member of NSG

From: Fran Fairweather, Rep from CU and NPC
To: Robin Rosenblum

Alex Anderson

Fran Fairweather of CU and NPC .

Msg: I find I am unable to meet all my commitments and therefore
recommend to you Terry Thorpe of CU and the NPC, who currently chairs
the Subcommittee on Name Assignment of the NPC...

Figure 2-2: Message indicating Fran’s replacement

2.3. The file scenario

Before moving into a discussion of how this exemplifies the observations discussed earlier, | will
carry the example further. The NSG has been meeting regularly and decides that Alex and Terry will
write a draft of a specification based on the discussion and work that has been done both at the two
universities and at the NPC and SNA. In order to do this they collect the names of the files containing
all the appropriate documents into one spot and then proceed to create a new file for the new
document. In fact, in order to share the burden of writing, after private discussions, they decide that
Alex will write the introduction and specification of thé database, and Terry will write the specification
of the client interfaces to the database. There will be a separate file for each and a small file called
name.spec for creating the document as a whole. The file containing the sections are intro.ixt,
database.txt, and interface.txt. The SNA had produced a document earlier, a specification for name
assignment. Its authors also created a file named name.spec containing intro.txt, policy.txt, and
implementation.txt. While working on the NSG document, Alex and Terry develop the names spéc for
their own document and SNA spec for that of the SNA specification. Although. the story could be
continued, enough of it has been told to provide two sets of examples of the issués raised in Section

2.1,

2.4. Review of the problem - human naming

This section will address each of the seven observations listed earlier. It will also highlight a set of
problems that a name server or name resolution facility will face. These additional four problems will
be discussed further in Section 3.

1. Communication: All the names used in the two scenarios were being used to
communicate among people, to share the entities themselves, or to share information
about them. For instance, the set of names of the sender and recipients of a message
allows any recipient of it to know from whom the message came and who received it. The
names for files allow Alex and Terry to share them, and later provide access to others.

2. Multiplicity of names: There are a number of examples of multiple names, both in the
sense of using different names for the same thing and using the same name for different
things. For instance, Robin uses me while Fran uses Robin to identify Robin Rosenblum.
Meanwhile Robin uses Kiddo and Fran uses Alex of SU for Alex Anderson. The issue
arises again in collecting files. Alex and Terry name their master file name.spec, but find
for convenience that they are calling it spec. SNA spec is also an alternative name for the
SNA file name.spec. These multiple names for a single item may involve one or more

~ people. Thus, the principle of multiplicity arises frequently and naturally.

3. 'Locality of names: The issue of locality arises at several points in the two scenarios.
Each of the universities is represented as a context. When Fran wants to include the
name Alex in a list of recipients the specification of Alex by university is needed. The
NPC and its subsidiary SNA aiso reflect contexts. one possibly nested within the other.
The NSG reflects a confluence of these four contexts. It is possible that, for instance,
there is yet another Alex at SU, but that within the context of the NSG the name Alex is
unique. There are other names that have meaning within the context of NSG, name.spec
and intro.txt. Many names have meaning in more than one context. in fact, the name me
can be seen to have different meanings in different contexts. There are also names
having meaning in only a single context, such as database.txt and implementation.txt.
Locality is something that is used by humans all the time in order to avoid having to
provide a unique name over all experiences for something being named.

4. Flexibility of usage: There are several different sorts of names that humans use in
addition to unique, or relatively unique, names. The scenarios provide examples of three
of these. In creating a list of recipients, Robin uses two, nicknames and descriptions. All
three names, me, Kiddo, and Fran are nicknames or alternative or shortened forms of the
people’s names. Nicknames were also used for the two sets of specifications, spec and
SNA spec. The phrase from CU and NPC in Robin's list can be considered either a
description or a title. When the mait is created the title Rep from CU and NPC is added to
Fran's name. This will be called here a generic name, a name for a classification of an
entity. Later the same name Rep from CU and NPC will be applied to Terry. In fact, it is
certainly possible that both Fran and Terry might be considered under that name at least
for a while. 1t is also possible that Fran will forward any messages for the Rep from CU
and NPC to Terry, recognizing them by that generic name. To Terry from SNA might also
be added. Then, in the context of NPC. Terry might be thought of as the representative
from any one of CU, NPC. or SNA, or as the representative from all. A human should be
able to use logical combinations of names as well. For instance. one might want to talk
about the person from CU and from NPC or SNA. The possibilities vary widely, and the

choices should allow the client of the naming facility as much flexibility as possible. The
three kinds of names mentioned, nicknames. descriptions. and generic names often
overlap. It may be difficult to determine whether a particular name is one or another of
these types. The categories are useful only insofar as they are distinguishable.

A generic name or partial description often names a collection of entities. Selection from
among that collection may vary with the use of such a name. At times the whole
collection will be used. On other occasions only one or several will be used. This
selection is determined by the use of the name and therefore shouid not be part of the
function of name translation, but part of the function of the client.

. Manifest meaning of names: Clearly, in both of the scenarios, the names discussed
were meaningful to humans, and all could be passed among people outside the computer
system. Certainly the names of people, and especially descriptive names of people must
be manifest. But, the point can be made even more strongly in the file scenario. If the file
system had determined that the master file for the SNA project should have the name
1700010011011011 several problems might arise. First of all, this would have little
meaning to a human because it is not mnemonic. Second, it is unlikely that such a name
is easily transported outside the system:; somewhere in one of the transcriptions a human
is likely to make a mistake in all those 0's and 1’s, because their sequence is meaningless
to the human. Certainly name.spec or SNA spec would be much more meaningful and
therefore more likely to be usable to a human. Names should not be determined by the
needs of the computer, but by the needs of the human users. Both computers and
humans must create names meaningful to other humans. so that the names can be
transported and used outside the computer system as well.

. Usability of names: Usability is a result of making the meaning manifest, although
several other factors make a naming system usable. Changing the name of the CU
representative from Fran to Terry should be as easy an operation as it is for the human.
In the same way, creating some means to name all the files that make up the SNA
specification from within the context of the NPC project should be easy to do. It also
should be easy for Terry to move from working on the NPC specification project, using all
the names for that project, to the CU context, in which Alex means Alex Ashmont of CU.
It certainly should not be the case that Alex Anderson need to know the names of the files
in the SNA project, in order to create the first version of name.spec (and possibly avoid
that name) for the NPC project. Finally, there needs to be some means for Fran to figure
out, beyond a reasonable doubt, which Alex or which name.spec as been named in any
given situation. Disambiguation is often a difficult problem for humans to solve and
therefore is likely to be a difficult problem for naming systems designers to solve.

- Unification: Finally, the previous six points should make it clear that the same
observations hold true for naming people and files. This can be extended to all other
sorts of naming. People do not have different mechanisms for naming different sorts of
entities. A computer system that is supposed to be providing a friendly environment also
should not require that the client use different mechanisms without good reasons. Thisis
a strong argument for avoiding the standard system approach of including a naming
system for a class of objects in the manager of that class.

10

2.5. Review of the problem - additional issues

Up to this point, | have discussed issues of naming related to sharing and communicating names.
Once a client has received or chosen a name, there are four things that might be done with it: pass it
to someone else, save it, ask the naming facility to translate it, or ask the naming facility whether it is
the same as something else. There are variations on these. For example, the recipient might want to
save a name for an entity with some additional names, such as further description or a nickname. The
recipient might use the functions in combination, by discovering whether the name is really naming
the same entity as another name, and then passing along the second name. For simplicity, | will
address only those mentioned first. All four operations require knowing to what the name is relative.
When passing a name, the recipient must know which namespace the sender intended for the name.
When a name is saved, the namespace within which it is relevant must also be specified. Certainly,
for the latter two operations a namespace must also be provided. Passing or saving a name othersie
makes no demands on a name service. The last two, name translation and determining equality,
comprise the basic functions of a name service and therefore are of great importance in this thesis

proposal.

In addition to the seven issues surrounding human naming, there are a number of problems that on
may encounter, especially using a federated computer system. One problem arises from locality of
naming especially in electronic message systems when names cross boundaries of localities.
Suppose Alex sends Terry a message, indicating Computation Center as the return address. To Terry
at a different university Computation Center may have a different meaning. In fact, worse yet, Alex at
the Computation Center may mean Alex Ashmont at CU or Alex Anderson at SU. It is possible that the
content of the message will clear this up, but if it is simply "Meeting at 2pm tomorrow. Okay?" Terry
may respond to the wrong person. This problem has been labelled the reply-to problem; it is a
problem of not being able to distinguish two identical names that have different meanings in
overlappiné contexts. Often it is addressed in human communication by further questioning or

exploring, if that is possible. In a message or mail situation, such questioning is not always possible.

The name-equality problem is a reverse problem. It may arise when Fran recommends Terryas a
replacement in NSG. At CU, people often use initials as their identifiers; Robin has received
messages from a TLT at CU and wonders whether Terry Thorpe is the same person. Because of the
federated nature <;f the electronic message system, Robin may or may not be abie to find out. This is
a problem of authenticating both the names. If TLT and Terry Thorpe had some means of
authenticating themselves, then the authenticators could be compared for equality to discover

whether they were the same person or not. in a federation, this problem may not be solvable.

The who-is problem is similar to the name-equality problem, but goes beyond the computer

11

system. When Robin receives the message from Fran suggesting Terry as an alternative, Robin may
want to know whether that Terry is the Terrance who introduced himself at a party last week, or the
Theresa with whom Fran was lunching at the faculty club yesterday. Both had been introduced as
Terry. There may be no requirement that the computer contain people’s full legal names, so there

may be no guarantee that Robin could discover the answer to the question of identity in this case.

Fourth, as occurred in the scenario, a name or title may change hands from one entity to another,
for example the title representative of CU. Initially, it was assigned to Fran. Later, it was assigned to
Terry. At some other time representative of CU and representative of NPC may be assigned to
separate individuals, rather than both to one person. Most naming facilities do not provide for names
to be reassigned, especially across computer boundaries. This problem will be labelled the
mobile-na'me problem. One reason that this problem arises is that, in general, the location of a

foreign entity is often used as part of its name.

The fifth and final problem is one of selection of a translation. Descriptions and generic names

. may easily refer to more than one entity. Which translation should be chosen in one of these cases

cannot be known by the naming facility. In one case, the client may not care, but wants exactly one,
and will chose the first. In another case, the client may want all the translations, for instance if this is
a mailing list. In yet another situation, the client may want a guarantee that at least one is contacted,
but does not mind if more than one is contacted. There are likely to be other selection procedures
needed by clients at other times. It is the job of the name facility only to translate or authenticate
names, but not select among them. On the other hand, this problem is closely related to naming, and

will be addressed in the thesis.

This last collection of five problems is often not fully resolved when people use names in
conversation or prose. The thesis will address them, but since in our everyday lives we have not
solved them completely, any naming facility that does, will be imposing something on its clients that

they might not do to themselves.

The following section will present a model for a set of mechanisms that adhere to the seven
observations listed above. This model for a solution will be ‘applied as an example in the file

management or document preparation scenario.

3. Model for a Solutibn

The solution to the probiems of creating a more comfortable naming environment for people will
have its basis in two ideas already presented as part of the problem, context and aggregate. These

ideas will be extended and formalized, in order to make it possible to design an implementation of

12

them. The basis for this proposal is a simple type of object called a context. A context transiates
names into entities from the point of view of the user of the context. A name is a label that allows the
user of that label to refer to the entity by the label of his choice. In some cases, a name will be
translated into another name less meaningful to or less easily used by the user of the original name.
Further context translation may then be requested. In the remaining cases, the user ar program will
use the resulting translation as is. The result may be the full name and address of a recipient, the first
hop in a route to the recipient of a piece of mail, or one of many other possibilities. Whether further
translation is needed or not, the decision is not made within the context but by the client ,whether

user or program, requesting the transiation.

In addition to contexts, | propose another mechanism, aggregates. An aggregate has two parts,
the current context and the environment; an aggregate is an individual’s name resolution space.
When two people communicate, there is a small set of names that they use regularly and to which
they may add new names needed in that conversation; it is this current context that they share. They
each also have a large po‘ol of contexts from which to draw names into the current context. These
pools may be different for each participant in the conversation. The pools, which are called their
environments, consist of collections of contexts, which may or may not be partiaily ordered, but which
are needed to translate names not in the current context. The current context is shared by the
participants. Other contexts may also be shared. A context that is the current context of one
~ conversation may be one of the contexts in the environment of another conversation. The reader
should be aware that although the aggregate mechanism is based on the idea of human conversation,
it will have a more general use. The concebts of current context and aggregate are extensions and

modifications of the ideas of working directory and search rules used in may file systems.

3.1. An example: document preparation

In order to understand contexts and environments better, their application to the document
preparation scenario is presented first. This will provide a basis and better understanding for further
discussion. There are a number of methods by which the activities needed here can be achieved.

One such set will be described here, that will be generalized later.

Consider Figure 3-1, in which Alex and Terry are discussing the name server specification on which
they are jointly working. Each has a personal context. In addition. Alex can access the context of SU.
On other other hand Terry has access to the contexts for CU, NPC, and SNA. They share two
contexts, NSG. which is also shared with the other members of NSG. and the current context, which
reflects the current topic of interest. the production of the specification. Note that, in Figure 3-2, the

NSG context is the current context of the aggregates depicted. That figure represents the situation

[

13

name.txt
spec
NA spec

Alex

Figure 3-1: Alex’s and Terry’s Aggregates
when Fran has become a member of NSG and has not yet recommended Terry as a replacement.
Terry has been included to exemplify additional sharing of contexts, although at this point Terry
presumably is in an aggregate having a different current context. The entries in the document
context, the current context in Figure 3-1 will contain among other names, SNA and NSG which point
to those contexts, name.txt and spec which point to the same object. and SNA spec which point to the
specification in the SNA context. There will be many other entries as well, defining all the names

upon which they have agreed and fof which they have found a use. The document context reflects

14

Robin

Robin

Fran

Alex

Alex m Fran

NSG Ccu

Figure 3-2: Aggregates in the NSG

Alex and Terry's continuing discussions and progress on the names server specification.

Given this arrangement of contexts and aggregates, there are a number of operations that Alex and
Terry need. Initially they must create the document context and their own aggregates incorporating
document as the current context. By doing this, they will be creating their own personal views of the
namespace for the discussion and writing of the name server specification; each will need to invoke
an operation creating a new aggregate specifying that the current context is the one being created by
the other. They will then be able to name their aggregates or views of the namespace by the current
context i order to move into that namespace at any time. For example, if Terry walks into Alex's office
and says, "ls this a good time to continue what we were doing yesterday?", Terry will have some

aggregate (current context) in mind. Alex may then ask. "Do you mean writing the document?" Once

15

the subject matter has been agreed upon, the two will have moved themselves into the aggregates
having document as the current context. Both creation of a new aggregate and moving into an

existing aggregate must be simply expressed in a natural human interface.

Now, once the aggregates are created and can be accessed, several further issues arise, falling into
two major categories. The first is the question of how multiple views of the current context can
co-exists. The second is how the aggregates help the client make use of names.

The fact that Alex and Terry can be on different nodes using a shared current context called
document highlights a problem; where should document be located? Since both Alex and Terry
share document, both should be able to include it in the environments of other aggregates. For
example, document may be incorporated into Terry's aggregate for CU, a general aggregate for
discussing activities at CU. If document is located on Terry's node, then Terry can make use of it
whenever necessary. But Alex cannot be guaranteed access. The reverse is true if it is located on
Alex's node. Finally, if a neutral site is chosen, both may be denied access. The conclusion is that
they both should have copies. Maintaining copies is a more accurate model of what happens in face

to face conversations; each participant has a private copy of the information inside his or her head.

This leads to a closely related question of how the multiple copies are kept in synchrony.
. Synchronization is a particularly difficult problem because the desirable behavior pattern can very so
much depending on the application. In conversation between two people, the general pattern is that
after a small amount of negotiation a name is agreed upon by both. Ideally, the computer system
would mirror this. Perhaps after at least one referénce to an entity not in the current context by at
least two participants a name can be added to the current context. This would mean that the
participants would not need to add new names explicitly, although tacit agreemént to some degree
would be required. Explicit additions should also be possible. Part of this issue is how the copies of
other participants are updated either if they are "listening" although not preséntly active and if they

are unavailable at the time. Synchronization needs further research.

Now, consider how aggregates can improve Alex and Terry’s usage of names over what they might
have had previously. Consider that Alex and Terry are writing and assume that they share a log of
activities so each knows what the other has done. Terry decides to prin_t what has been accumulated
and says:

Send spec to printer. (1)

At a later time Terry says:

Send SNA spec to same printer. (2
And finally after more work, Alex says:

Send spec to Terry's printer. _ (3)

16

This example highlights many of the functions that the name service provides for them. When Terry
use the name printer initially, there may be been no name printer in document, but one each in thve
SNA and NPC context. Suppose in Terry's environment SNA and NPC are at the same priority. Whén
(1) occurs, the initial name resolution will produce two printers. A sophisticated system will
understand that one must be chosen, notifying Terry of the location of the selected printer. A simpler
system will leave the choice to Terry, allowing for further querying to I_earn more about the choices. In
either case the name printer with the chosen one may be put into the context Terry temporarily.
(During another writing session, Terry nﬁght opt for a diffe_rent printer.) It should be noted that every
" person carries a personal context. Names may be offered from one of those to be part of the current
context, but personal contexts will probably never be shared in the way contexts that reflect a focus
of ihterest will be shared. When Terry makes statement (2), the system must verify equality. Printers
can move to different rooms, change network addresses, etc., so some non-modifiable authenticator
must be used. ltis very difficult to guarantee uniqueness over the whole world, but Terry only really
needs uniqueness in a small part of it. Such a reasonably unique authenticator can then be used to
compare against the authenticators of other printers. Finally when Alex says (3), an indirect name is
being used and from then on, either participant may mention printer and hopefully documents will be
sent to the same printer, for later collection. At this point Terry’s copy of the document context may
have a direct pointer to that printer and Alex's may have an indirection through Terry's copy of the
context or may provide direct access to printer as well. Both will also include the authenticator. They
have used names for communicating with themselves over time (Terry using the previously defined
name printer), passed names in order to increase the span of the document context (Alex accepting
the name printer into document by using it after seeing it in the log), and have performed both the
functions of name transiation and name equality. In addition they have unwittingly touched on some

other issues such as selection of a single entity when a name is resolved into a set of more than one.

3.2. Mechanics of using aggregates

The preceding example touched on three general kinds of actions: (1) creating and moving between
aggregates, (2) managihg shared current contexts, and (3) naming and otherwise making use of
names. The three will be discussed further in order to elaborate on and generalize the ideas already

presented.

Contexts and aggregates in isolation do not solve the problem. How the client can use them alone
and in cooperation with another user must be clarified. This involves the operations available for
them, the behavior or state transitions visible to the users, and how they, especially aggregates are
created and named. If one considers the functions provided by a naming mechanism to each of many

services in a system, some of those functions will overlap with each other and some will be

17

application or specific to a single service. It is that set of shared and more basic functions that will
provide the basis for the shared naming mechanism. Following is a list of issues related to functions

and behavior patterns for a naming mechanism.
1. Creating and moving between aggregates

e Creating a new aggregate: Creating a new aggregate involves providing some
information for the aggregate. If the current context of the aggregate is to be
shared and the system is to provide of help with managing the sharing, the other
participants in the sharing must be identified to the system. In addition, many
topics of interest are based on other topics. If this is the case, the new current
context in the new aggregate may be initialized based on another context. Finally,
the environment of a new aggregate needs some initializing. It is possible that all
three of these, the list of participants, the current context, and environment will be
modified later.

How this information is provided may vary from one application to another. Single
user applications may not allow for shared contexts. As a result no names of other
participants will be needed in creating a new aggregate. Some applications may
provide the user with a predetermined set of names to which the user can fater add
new names, in which case the initial state of the current context will be application
specific. Yet other applications may assume such things as a particular
arrangement of contexts in the environment. In this last case, the user may have
little or no choice in the initial environment.

¢ Choosing an aggregate: When an aggregate is created it must be given at least one
name. It is assumed that a user will have more than one aggregate in which to
manage names. In order to select an aggregate, it must have a name. The name
will probably reflect the focus of the aggregate. The name of the current context of
that aggregate will also reflect that focus. Since there appears to be no reason to
have several aggregates with the same current context and different environments
for a single person, the names that an individual will use for his or her aggregates
will be the names of the current contexts of those aggregates. Contexts must be
namable separately, since they are members of environments. In order to reflect
the human situation, all contexts and aggregates must be namable from all other
aggregates. One approach to handling this is to create a context for each user that
contains all his or her contexts and aggregates and then assume that that special
context will automatically be a permanent member of every environment created on
that user’s behalf. When it comes to the point of using on of the names that applies
to both a context and an aggregate. the originator of the name will know which is
needed and can specify the type of the object as well as its name to distinguish.
Further research needs to be done on this issue.

2. Managing shared current contexts

¢ One current context or many: as presented thus far, the current context of an
aggregate is a single object. In fact. the name space shared in a conversation
between several people does not behave like a single object. Consider a
conversation amorig three people. To begin with. new names are added only upon
some sort of tacit agreement of the participants. If one participant leaves and later

18

rejoins. that person’s image of the name space does not include anything that was
added during the absence. Only after some updating might the third person be
brought into synchrony. Thus, although the concept behind a current context is a
single conversation, in order to reflect human communication more accurately a
shared current context should be implemented as a collection of context with
synchronizing mechanisms provided.

There is a second more practical reason for providing muitiple copies of a shared
context. At least some of the information in a context may be only of use locally,
such as relative addresses or local addresses. For example, if two communicants
are discussing an object that resides on the machine of one of them, for one
communicant such a reference will be local, and for the other it will not. The fact
that the two translations may or may not be visible to the two communicants, but in
designing a naming mechanism, one must be aware of this issue.

A third reason is availability as was discussed in the example. One of our
assumptions was that an individual node could operate in isolation. For example,
in the case of mail, if a node is isolated from other nodes, the user should be able to
prepare mail to be sent upon later reconnection using contexts and aggregates
representing ongoing conversations. This means that each participant in such a
conversation must have a private copy of the shared information, available at all
times. Having private copies does not imply that an individual can necessarily
make updates independently; that is a separate issue.

Synchronization: There are two aspects of synchronization that must be
considered. First, there is the question of whether the client plays a role in the
synchronization; is the client's approval needed for an update? The issue of client
approval must be addressed at the level of the application. Some applications will
need the approval of ail the clients, some will need some clients, and some will
assume an individual using a name will will be enough to enter it into the current
context.

The other question which is the degree to which the multiple versions are kept in
synchrony. At one extreme, updating duplicates can be done as an atomic
transaction. At the other, versions would never be guaranteed to be in complete
synchrony. Of course there are degrees between those extremes. Synchronization
is an area where further exploration is needed. Itis clearly infeasible to require at
all times that all participants agree before -an update can occur; one of the
assumptions ‘underlying the system is that individual machines and users may
become unavailable, and that this should hinder other operation as little as
possible. One possibility is that an assumption might be made that if the system
were allowed to quiesce all copies of a “shared" context would become identical
within the limitations of relative naming discussed above. There might be some
assumption that an update occurs when a majority of the participants agrees, and
that a log is kept in order to bring others into synchrony when needed. Of course,
this in turn has problems, such as the need for a great deal of storage for the logs.

Due to humans' imperfect memory, the way that synchronization is done in human
communication is that an absent participant may be brought up to date on missed
information to some degree. but that absent individual may never be brought up to

19

date fully. Only with perfect recall (such as filming an interaction) could this be
done. One question here is whether providing such perfect recall is an
improvement, and whether a computer system should provide improvements where
possible. Certainly complete logging would provide for perfect updating. People
operate quite well without perfect recall. but compensate with elaborate reasoning
mechanisms to detect and correct miscommunications. For communications with
and through computers, perfect recall may help compensate. This area of
synchronization is a critical one for further research.

3. Naming and making use of names

¢ Resolving a name: There are two issues related to resolving a name, (1) into what it
is resolved and (2) in what namespace the resolution occurs. The latter will be
discussed separately. In this research a name is resolved into a set consisting of
oneé or more names and/or one or more entities. For example, consider the
resolution of the name of a person with whom one wants to communicate. This
may simply be resolved into a mailbox for electronic mail. But it may be more
complicated and be resolved into a list. One item on the list may be that same
mailbox. Another may be the person telephone number. A third may be the name
of the person’s secretary. In the last case, the resolution will produce a name of the
same form as the name being resolved. One problem that can arise from this
situation is a cycle in the names, and if there is concern that cycles not occur then
there must be a mechanism to avoid them.

One implication of allowing a name to be resolved into such a list is that names are
not typed as entities are. This is at odds with many programming languages where
variable names are typed either implicitly or explicitly and once a name has a type
within a namespace it can never change. In fact, most names, as humans use
them, except proper nouns represent descriptions. Consider the set that
comprises the translation from a person's name. That set may be labelled with the
person’s name because the set represents the set of ways to reach the person, in a
sense means of accessing the person. So although the mechanisms presented
here may not match the programming language approach to typed naming, all
naming other than proper nouns is typed naming. This then leaves the problem of
how to determine which resolution to use when a name is resolved into a set
containing more than one entity. Selection will be discussed separately.

¢ What name space: Aggregates provide the basis for the namespace to be used for
translation of a name. One way of viewing them is as a greatly enhanced version of
working directories and search rules. The current context corresponds to the
working directory, the first place in which to consider name resolution, and the
environment corresponds to the search rules, the set of alternatives in which to
search for possible name resolution. The major differences are twofold. The first is
the lack of any particular organization for contexts or aggregates. There is nothing
in contexts or aggregates to prevent cycles or any other structure based on names.
allowing the user to create any organization he or she wishes. The second major
difference is that contexts are not limited to naming just files. or just something else
specitic. A context can contain names for anything that is namable in the system
including other contexts. aggregates, people, data objects (possibly ftiles),
procedures, types, processes. resources, services, etc.

20

When a name is to be resolved, an aggregate must be invoked either explicitly by
naming it or implicitly by being the “current" aggregate. The current context will
be searched first. If the name is not found there, the entry in the environment with
the highest priority will be searched. The entry with the highest priority may be a
set, in which case all members of the set wide search. When a translation is found,
the translations from all contexts at that priority in the environment will be returned
to the client.

e Selection: Since it is assumed that a correct response to a request for translation is
a set of names or entities, in general some selection procedure will invoked. The
decision about which of the set to use is application dependent, although there are
some common approaches that should be provided, such as "any one" or "all". In
fact, the application may go further than that. Suppose, for example, it is a mail
system. Some messages should be delivered to exactly one member of a group,
others to at least one member, and still others to all members. Each of these
involves a selection procedure on the part of the application, in this case the mail
system. Certainly, procedures for selecting one or all members of such a group
should be provided as a service to the subsystem builder, although some
subsystem builders may want other maore sophisticated selection procedures.

Perhaps special contexts should be provided that have the added feature that each
name has no more than one paossible resolution, at least within that context. This
requirement may be common enough that rather than requiring constant checking
each time a modification is made to a context or using a such a selection
procedure for every name resolution, it should be provided in some contexts.
Indirection would still allow an escape from such a restriction.

e Passing references to other communicants: As part of communicating, there are
three ways in which names can be used. The first is to translate the name into an
entity and pass the entity. Consider the situation in which one person is telling
another about an interesting book. In one case the speaker might say, "This has
some interesting ideas in it," and hand the listener a book. There is no guarantee
that the two people share a name for the book. The second is to pass the recipient
a name that the recipient can resolve. In this case the speaker might say, "The
book by Quine has some interesting ideas in it," leaving the recipient to find the
book. The assumption here is that the two people share a name for the book, so
that either can resolve that name. The third situation is one in which the speaker
passes a name and an object to the recipient on the assumption that that name
translation pair is one that the recipient does not know. In this last case the
speaker might say, "This book by Quine has some interesting ideas in it,” while
hancing the book to the recipient. In the future, if both have agreed to include
"book” and "written by Quine" in their current context pointing to the book that
was just handed from one person to the other, then they can use the second
approach of simply using a name on the assumption that both can translate it.

In the third situation above, if the assumption is made that names are only added to
the current context alter some agreement has been reached, the original
translation by the speaker must have been done in some other context that was
part of that person’s environment within which he or she was operating. It is by this
means of passing names and translations from one environment to another sharer

21

(or all sharers) of the current context that new entries will be generated for the
current context. There is only one other source of new entries to the current
context; consensus on a new name for an entity given a name and translation for it.
It is this sort of name creation that Carroll discusses in his paper on name creation

[2].

3.3. Review of the model

The seven basic principles provide a basis for discussing a naming mechanism. The preceding

mechanism will, therefore, be discussed using the principles as a guideline.

1.

Communication: The partitioning of an aggregate into an environment and a current
context provides a balance between what the individual brings to the communication (the
environment) and that part of communication that involves sharing and cooperation (the
current context).

- Multiplicity of names: As can be seen, Fran can name two Alexes. in fact, the

mechanism easily provides for the four options listed on page 4. Contexts allow different
names for the same entity and the same name for different entities. Aggregates allow
several people to share some names and at the same time use some names of their own
choice without interference from other people.

- Locality of names: It is the locality of aggregates and within that contexts that make the

usage of muitiple names possible. Aggregates allow clients to reflect an issue or topic of
interest in the naming mechanism, as-humans do in discussion. In fact, aggregates as
described thus far, reflect each individual’s view of a conversation or topic.

. Flexibility of usage: In the examples, names are not restricted in length, content or

quantity. The design of an implementation requires careful thought about how such a
facility might be built. There is no restriction that names be unique; the same name can
be applied to more than one entity. Logical combinations of names are handled in the
procedure that translates a name. Several possible implementation strategies exist; these
strategies correspond to methods used for joins and projections in a relational database.
Choice of strategy is part of the design of the name implementation

. Manifest meaning of names: The facilityvallows for names to be manifest, because the

client chooses the names in contexts. Therefore the names can be chosen in order to
reflect whatever meaning the client wishes to impose. What is more, the client or other
clients can add additional names, providing for another route to naming an entity, and
allowing for private names to be used for entities. :

- Usability of names: Usage of such a naming facility will, in the end, fail if the facility is

not easy to use. This will be investigated in the implementation. Various operations must
occur quickly and efficiently. The operations that are used frequently should be easy to

use. and not time consuming.

- Unification: [t is clear from the examples above that names have been united within a

single facility. The client may find that for convenience he or she will create contexts for
different types of entities. but the naming mechanism does not impose that restriction. In
fact, the user has the possibility of using one name to label several different sorts of

22

things. It should be noted that this view of names conflicts with "strong typing" which
associates types statically with names. Consider that one of the objects named in the
NSG context might be a list of ways of accessing different members of the group. For

" each name, there may be an electronic mail address, a telephone number, and a U. S. .
postal service address. The electronic mail box and the telephone number havg little in
common from the point of view of the computer, but to the client, they have a great deal in
common. In this case, a collection represents ways of accessing some one. At other
times, it may be useful to organize this information as a list of electronic mailboxes,
providing an electronic mailing list. In this case, the collection represents a single route
to accessing each member of a group. Incorporating the goal of a unified set of
mechanisms provides the client with greater functionality and flexibility.

The mechanism of aggregates also addresses the four problems identified Section 2.4 labelled
reply-to, name-equality, who-is, mobile-name. The selecfion problem will be discussed further,
among the problems to be addressed in the thesis. The naming facility cannot solve any of these
problems completely, because humans have yet to learn themselves how to avoid them at all times.
The problems can be ameliorated by a mechanism such as that suggested here, for instance,
because contexts and aggregates are labelled, helping to avoid ambiguities and confusion. At the
same time, because names need not be unique, a certain degree of ambiguity wili survive. Both the
name-equality problem and the who-is problem arise from a client not informing the computer of all
the information that the client later would like the computer to have. In human to human situations,
what occurs is that one participant provides additional information or asks more questions. That is
not always possible, for instance, if the client is a program and a server needs to ask it questions. The
client may or may not be prepared to deal with queries. The mechanism should shield the client from
the mobile-name problem to the extent that location of an entity is invisible to the client. None of

these problems is solved completely, but all are addressed.

The next section introduces the reader to some of the work related to this research. Some of those
papers discussed had a strong influence on this work, others did not, but present closely related
ideas. The‘proposal concludes with a section describing a plan for the thesis including: (1) a partial
list of problems to be solved; (2) a brief discussion of an implementation of some of the ideas; (3) what
might be gained from such an exercise: (4) what the limitations are of such an exercise; (5) a schedule

for completing the thesis.

4. Related Work

Because this work has its roots in several areas of Computer Science research (systems, languages,
databases. communications) as well as linguistics. a discussion of related works is interdisciplinary.
The list has been restricted for the thesis proposal; for the thesis it will be more inclusive. The

discussion will also be limited only to those aspects of each that are relevant to the sutbject at hand,

23

and the ways in which this work differs from those mentioned. The references will be discussed in
three subsections: those that have had a particularly strong influence on the nature of names and
objects as reflected in this thesis, those that reflect localiiy of reference and contexts, and, finally,
various forms of names, in particular descriptive names, generic names, and aliases or nicknames. A

number of the documents will fall into several of these subsections.

4.1. The Nature of Names and Objects

One issue regarding the nature and kinds of names is whether various names share some qualities.
Is there justification for a unified naming mechanism? Both Quine [18] and Carroli [1, 2] suggest that
the nature and use of names does not vary with the kind of object that is being named. The work of
both of these authors is concerned with human communication and the nature of names. Both
authors have studied underlying human name usage patterns and conclude that, although humans
use names as labels, they also impose semantics on names. Therefore, | conclude that a computer
system should allow humans the flexibility to create their own names suitable to the semantics

desired.

Most operating systems have naming mechanisms that distinguish. among different kinds of entities
that are namable by ;;roviding different naming facilities. Both Shoch [23] and Saltzer [21] find
differences in the nature of the names or labels for various kinds of namable entities in networking.
They disagree slightly on the categories of namable entities, but both are concerned with categorizing

the entities as a basis for differentiating categories of names.

In contrast, this thesis proposes to provide a common naming mechanism shared by several
applications as discussed by Saltzer in [20] and provided in Swallow [28, 27], CAP[13, 14, 12], and
the Clearinghouse [15]. Saltzer carefully analyzes a fully hierarchical naming scheme, modifying it to
produce full locality, while keeping it ger{eral enough that the same mechanism can be applied to
virtual memory management and a file system. A conclusion to be drawn from Saltzer's work is that

such a mechanism could be applicable to any situation in which a purely hierarchical naming

structure was desired.

The Swallow project [28, 27] carries the idea of utilizing a shared need for a mechanism beyond
naming and into storage as well.. Swallow will store anything that anyone wants to store, as a
collection of bits with no assumptioﬁs made about typing or internal structure of what is stored. It is
this concept of a common need for a mechanism, albeit for a naming mechanism, that is one of the

driving forces in this thesis.

The CAP File System [14] has a common maning mechanism for a large number of kinds of objects.

24

This file system is built on a capability system and provides translation from any kind of name into a
capability. Therefore, anything for:Which a capability exists can be named through the file system.
Unfortunately, this excludes users. alihough'ohcg the user has been authenticated properly, he or
she is issued a capability for his or her own directbry. The file system only allows for translation from
a name into a capability, not into another name. Thts rfem&es the poséibility of delayed bindings.

The Xerox Network Systems Clearinghouse [15] is built on the assumption that anything that is
namable across a distributed system should be namable through the Clearinghouse. Although the
Clearinghouse sounds much closer to the work of this thesis, there are some underlying differences.
Because it provides contexts, descriptive names, aliases, and generic names, all to some degree, it
will be discussed again. Suffice it to say for now that, unlike this thesis, the Clearinghouse is not
designed for frequent and efficient local use. Although Oppen and Dalal make a strong statement
about combining pre-existing Clearinghouses s0 as to cause the least disruption by allowing local
naming, in order to cooperate, Clearinghouses must recognize a central authority that dispenses

unigue names.

One of the conclusions of our initial work is that unique identification is not only impossible in a
distributed environment, but also unnecessary. There are a number of situations in which this has
been a basic assumption. For example, because the Cap File System is not strictly hierarchical, it
allows for non-unique naming. In fact, no particular structure is imposed on the collection of
directories and other objects named in it. Halstead [5] uses only relative names (addresses) for his
lowest level entities in the Mu-net. As processing is passed to a neighboring processor that might be
available to help with the work to be done. the names that allow objects to be located are maintained _
so that messages to the objects follow the paths along which objects were relocated. Source
routing [4, 26, 21] also provides an example of a situation in which the same name can have
completely different meanings in different situations, especially at different locations. In this case, the
route used in a network is determined by the source of whatever is to be sent through the network,
and is done relative to the source. Therefore, beginning at different sources, the same route will lead
to ditferent destinations. Saltzer [20] discusses reasons and a mechanism for achieving such local
naming. to provide modularity at the operating system or even user level, in a centralized system.
This local naming has been provided to some degree in systems such as Multics [16] and Unix [19],
each of which provides a different kind of linking, resulting in different semantics for sharing.
Saltzer's work and the Multics and Unix operating systems assume that the basic naming mechanism
is hierarghical, and that being able to bind a name to different objects is the exception, not the rule.
Only the CAP file system does not impose a hierarchy on the client while freeing the client from a

requirement of unigue names, as this research intends to do.

25

One finds, when reading the literature, that various people have done work that relates to parts of
the underlying assumptions and philosophy of names proposed here, but none has pulled all the
ideas together in a single work.

4.2. Locality and Contexts

Almost every system provides its clients with some degree of locality of naming, based on one or a
small set of directories. Often this is only thinly veiled, and as soon as the client tries to use a name
that is not defined uniquely within what the system considers to be the client's local name space, the
client comes face to face with a message such as "lllegal access: no such name as
users.students.class.dbms.sollins.flmult." The routine fimult may only have been invoked on the
client's behalf, yet somehow the client, who may not have a clear understanding of the hierarchical
naming structure, is expected to fix the problem. We will not address the majority of work done in this
area because much of it is repetitive and has not made much progress. Only those that have had a
strong influence on this research or that have made progress in areas where there had not been ény

progress previously will be mentioned.

The works of Saltzer [20] and Carroll [2] have had the strongest influence on the concepts of
contexts and aggregates. Saltzer analyzes how one might provide for sharing while simultaneously
allowing for modutarity and isolation from having to know about the names used by cthers with whom
one might be cooperating. He proposes contexts and closures as a solution to his problem. His work
assumes that the system is centralized. As a result, physical copies of names can be shared.
Although this cannot be assumed in a federation of computers, Saltzer's work as discussed earlier

has strongly influenced the work of this thesis.

Carroll's work suggests that mechanisms in a federated situation need more flexibility. Carroll
studied the mutation of descriptive names into nicknames or abbreviations, in small groups of people.
He led me to a better understanding of how people cooperate in creating and sharing a name space,

and thence to my proposing aggregates as part of my sblution to the problems.

Another strong influence on my work has been the Argus project [11], which proposes guardians,
entities to manage resources, composed of one or more processes. Processes within a guardian
share a name and address space. But across guardian boundaries communication is very restricted,
and therefore naming is done at arms length. The guardian provides a strong boundary for locality.
In fact, the work by Saltzer and Liskov were strong influences on previous work by this author [24, 25]
based on an assumption of contexts similar to Saltzer's, but across the boundaries of which the only
means of sharing was through messages. It became clear from thev work of Carroll and further

thought on my part that such a mechanism did not provide enough flexibility.

26

Four other works bear mentioning here as having made progress in this direction in related areas:
the treatise by Pouzin and Zimmermann [17] on networks, the Clearinghouse project [15] at Xerox by
Oppen and Dalal, Lindsay’s work on the catalog for System R* [9], and the Flavors mechanism in the
language Zetalisp for the Lisp machines [29] at M.L.T. Pouzin and Zimmermann describe briefly a
distributed system, in which contexts play an important role. They hypothesize that the user
connecting to a system will always be in some context that will be modified with time. This is a first
step in the direction that this thesis is moving, but the thesis intends to provide much mare flexibility

and begins from an assumption of providing a basis for communication.

Clearinghouse provides layers of naming contexts, within each of which all naming is independent
of naming anywhere else. Naming within one of these contexts need not specify the context, and, in
fact, one of the underlying assumptions in designing Clearinghause was that pre-existing networks
and systems would be able to joiri without having to revise all their names to fit another scheme.
Clearinghouse names are composed of three parts, two of which can default to the local names.
There is no facility for changing the default context, 'although client software accessing the

Clearinghouse could be written to do this.

Lindsay, in the area of database management systems, also approaches the problem of creating
names in a distributed environment without having to resort to a central service. His approach is to
assign each entity a unique, hierarchically structured system-name at the time of creation,
consisting of the user’s (creator's) name and site, and the object’s name and birth site. When a client
refers to an object, at least the object’'s name must be used. By not specifying one or another of the
other components of the system-name, name resolution may vary from one context to another, using
default values for those undesignated fields. The sites are assigned globally unique names by a
central authority. This mechanism meets the goals specifiéd by Lindsay, but would not suffice to

meet the goals of this thesis, for example in the areas of flexibility and federation of sites.

Finally. the Lisp machine project has produced an interesting approach to contexts called flavors.
Flavors have more to do with object type than name, but issues of scoping are addressed. A flavor is
composed of components of other flavors possibly with additions and modifications. A flavor
specifies among other things a set of operations that can be performed. A flavor based on another
flavor can include modifications to occur both before and after any particular operation inherited from
another flavor, in addition to new operations. In fact, a flavor can modify an operation provided by a
flavor included only indirectly, by having been included in something else that was included. The
flexibility provided by flavors is similar to the relationship between contexts and aggregates as

discussed in Section 3.

27

4.3. Kinds of Names

In addition to basic assumptions about names and patterns of use, this thesis proposes to allow
different sorts of names, descriptions, nicknames, generic names. Other researchers have taken

steps to provide some of these features. This section presents a sample of this work.

Some of the earliest attempts to provide descriptive names began with allowing character string
names, and then allowing multiple part names. For example, Multics [16] and Unix [19] allow
extensions to file names. The guidelines set for these extensions include that they can provide
additional descriptive information about the file. For example, the client might»create four files with
the names testprog.pl1, testprog.run, testprog.documentation, and testprog.data. In this way, the
name testprog allows another client to find the four related files while the extension identifies the
purpose and content of each. Two papers from the COCOS project [3, 7] discuss the approach in
that project to allowing some attributes to be assigned to mail recipients in their mail system, COCOS.
There is a fixed set of possible attributes, and the attributes can be used to help distinguish recipients.
Clearinghouse carries this much further. A name has associated with it a property list, composed of
an unordered set of triples. Each triple or property consists of a propertyname, a propertytype, and a
propertyvalue. The propertyname must be registered with the Clearinghousé. The propertytype is
either individual or group. If the propertytype is individual, Clearinghouse assumes no meaning for
the propertyvalue. If the propertytype is'group, then the propertyvalue is considered to be a list of
names. This mechanism allows the client to name an entity using a property as well as the name. The
Clearinghouse does not provide the full flexibility nor assume federation that this thesis proposes,’

although it has taken a step in the same direction.

Many systems have provided some form of aliasing and/or nicknaming. For purposes of distinction
here, we will define aliases as alternative names chosen by the owner or manager of an entity, while
nicknames are names chosen by the client of the naming mechanism.. Multics allows users to have
aliases chosen by the user being named and installed by a system administrator. It also provides a
form of nicknaming in links in the client’s directory. A link allows the client to equate the name of his
choice to a full path name for a segment. Clearinghouse is more explicit about allowing a set of
secondary names, but they must be registered explicitly with the Clearinghouse. Carroll [2] provides
a scenario for the development of names or nicknames. When two people converse, one will
introduce a new entity by a description. This description or part of it will be used only a small number
of times (generaily under three) before it is transformed into a name or nickname. There will be
agreement on a name that probably is closely related to the original description. Such a

transformation arriving at a nickname has not been provided in a computer system before.

Although generic names may, in fact, be closely related to descriptive names and possibly simply

28

partial descriptions, the work in this area has only begun to move in that direction. The ea;liest
generic naming was probably for mathematical operations. "+ " and "-" were and continue to be
valid for both floating and fixed point numbers in most prégramming languages. The ’National
Software Works [8] attempts to allow generic naming of services to be provided on a heterogeneous
group of timesharing systems. The sysfems are different enough that thel_services provided under a
single name are quite diverse; As a result, in order to be useful to a client, the client needs to specify
the host in addition to the generic service name thus negating the effect of the flexibility that generic
naming might have provided. The 1SO Reference Model [6] provides for generic naming in the
Service layer. The intention here is to allow multiple applications to respond to a request for service.
How this generic naming is handled is not made specific and will have to.await an example in a
protocol specification. The Clearinghouse attempts to provide generic names for its namable entities
by allowing thve client using a pair cbnsisting of <name, propertyname) to indicate the first name as

anything by using "*". This is very stylized and still not very flexible.

in accordance with the all-purpose mathematical operation notation, this author, in earlier
work [24, 25] proposed generic copy operations to provide support for type specific copying
operations in a strongly typed language, in which, generally, generic operations do not exist. The
flavors mechanism in Zetalisp [29] carries the idea of generic naming of operations much further. In
this case, the attempt was to share not only names, but as much supporting code as possible by
including and modifying type information and operations from one type to another. The idea is that if
several types share many features, the programmer should be able to make use of that knowledge of
shared features to modularize along those lines. This means that a simple type may provide generic
operations for a number of more sophisticated, more specific types. In all the cases mentioned
except Clearinghouse, which has other limitations, generic names are restricted to a single kind of

entity.

We can see in all these kinds of naming as with the concepts of contexts, aggregates, federation,
and uniformity of mechanism, that the research of this thesis is bringing together ideas that may have

been considered by others at least to some degree, but not simultaneously.

5. Summary
A summary of what has been discussed thus far will provide the basis for a discussion of the plan for

the thesis itself.

The problem being addressed is that the naming mechanisms available in computer systems, in

general, are awkward, inflexible, and overburdened with functions that are not part of naming. The

29

thesis will address the issue of proViding a more human oriented naming facility for communicating in
a distributed system. In order to understand the problem better, it can be partitioned into two sets of
issues. First, a model of the system on which the naming facility will reside must be considered; the
model consists of a federation of cooperating computers. Federation has several implications. One
is that a member of the federation may have had an existence prior to joining the federation. A
second is that a member may leave the federation temporarily after joining. A third is that even while

participating in the federation, a member may want to maintain a certain degree of autonomy.

The other part of the larger problem is an analysis of what is'needed in the client interface. To this

end, seven points about human communication were enumerated and are summarized here. -

1. Communication: Since names are the basis for all communication, sets of names
should be sharable.

2. Multiplicity of names: The use of a name should not be restricted by other uses of a
name. Nor should the use of a name for an entity restrict the use of other names for that
entity.

3. Locality of names: Local naming should be possible.

4. Flexibility of usage of names: Humans use different kinds of names, not bound to the
nature of the entity being named, but the result of choices made by the namer. Therefore
various forms of naming should be available for naming any sort of entity.

3. Manifest meaning of names: Names must have meaning to users communicating with
a computer as well as outside the computer between communicating users.

8. Unification: Any naming facility available for naming one sort of entity should be
available for any others.

7. Usability of names: The naming facilities that humans use in human communication
are easy to use. Any human to computer naming facility should also be easy to use in the
same sorts of ways. ”

The mechanism proposed to address these issues is based on a simple structure called a context.
A context provides a service; it translates names into entities. There are very few limitations on
contexts. To as great an extent as possible, a name is anything the client of the context wants to use
as a name. Contexts need not be organized hierarchically unless the client wishes to do so. A name
can be mapped by a context into several entities, and several names can be mapped into a single
entity. From contexts, aggregates can be buiit. An aggregate has two components, a current
context and an environment. An aggregate can be imagined to be one person’s view of the name
resolution support mechanism present during communication with anather person. Each person

brings his or her own set of contexts from previous experiences; these comprise the environment.

30

One context represents the shared names common to all participants: this context is the current
context and reflects the focus of interest. Most of the contexts in an environment will be shared with
others. not necessarily those people involved in communication at hand. With these simple
mechanisms, the issues above can be addressed, as was described in presenting the two scenarios of

electronic messages and file management.

6. Plan for the Thesis

The work for this thesis falls into two parts, as reflected in the next two subsections. The first stage
will be to use the ideas presented here to implement a user environment for mail management. This
work will be done in conjdnction with an on-going project to create a new mail system. The second
stage will be to continue the study of name management, both in the direction of higher level issues of
functionality that must be addressed and also lower level, mare technical issues of implementation.
The final subsection of the thesis proposal will present a schedule and brief outline of resources

needed to complete the work.

6.1. An Experiment

A mail system is currently being designed and built under the guidance of Dr. David Clark. It will
provide a testbed for contexts and aggregates. This project was chosen for two reasons. First, one of
the underlying assumptions is that the distributed en\;ironment for which it is being designed matches
my assumptions of a federation among cooperating computers. The second reason is that the project
is being done in Clu [10] at M. I. T. A similar mail system Grapevine [22] was developed in Mesa at
Xerox PARC, but is not available at M. |. T. as a testbed.

There are several goals of the project itself. The primary goal is to build a mail system to serve a
community using, possibly slow, small, personal computers communicating over a network and not
always available. For this reason, the storage function and user interface functions are separated.
One or more repositories send, receive, and store all mail. When a user wants to read mail, the
personal computer will update its information about the user's mail and the user will interact only with
the personal computer. When the user decides on the disposition of a particular piece of mail, the
personal computer notifies the repository. If the user "sends” some mail, it first is moved from the

personal computer to the repository, and from there is sent.

The second goal is to create a tlexible yet helpful interface for the user. For example, the user will
have access to several windows. One will be used to manipuiate headers of received messages. A
second will be used to read and possibly edit the text of a received message, coordinated from the

header window. A third window will provide message creation facilities, for replying , forwarding, or

S,

31

creating new messages. Editing in this window will have two forms. The user will be provided with
guidance in creating header information; for example.certain fields are required, while others are not
required but permissible. At the same time the user should be free to include anything he wants in the
text. The third goal is to create a mail system in Clu, so that it can be used on the VAX'es and other
machines at M. I. T. while taking advantage of work already done in Clu, such as parts of the editor
TED.

My work will involve certain parts of the user interface. 1 will write clusters for contexts and
aggregates.® They will be utilized in all three windows, the header window, the reading window, and
the sending window. A partial list of the issues that must be addressed in this implementation are:

1. Management of shared contexts such as current contexts.
2. Implicit versus explicit modification of context.

3. Implicit versus explicit management of aggregates such as adding, deleting, ordering
contexts in the environment of an aggregates or switching from one aggregate to
another.

4. Binding - when and to what extent names are translated.

5. Authentication:

a. Are two names identifying the same entity?

b. Is this the entity that | thought it was? (E.g., is this the same one | had yesterday?)
6. Selection algorithms - which ones are needed in a mail system?
7. Representation of descriptions.

This implementation will provide a useful experiment because the mail system is being built with the
intention that it will be used. Since the user interface is separate from mail delivery and receipt, it
should be usable for mail delivery and receipt on the ARPANET as well, thereby making a large

amount of mail management a likelihood.

6.2. Further Work
The implementation will be in a single domain, electronic messages; therefore there are a number of

issues that it will not address or will not address fully. Further work must be done to investigate these
issues. One important issue in all decisions in the implementation must be whether or not they are

specific to a particular application or whether they are generalizable. The additional work will include

2Sce the Appendix for Clu specifications of the context and aggregate clusters.

32

the following issues:

e Binding: Since names may be mapped into other names, whenever a binding occurs,
there is a question of to what degree binding is done. In mail, there are several distinct
sorts of bindings. For nicknames used for a recipient, a name must be transiated into an
address. For nicknames used within the body of the message, nicknames may be
translated into full names, or simply left as is. Whether these translations occur while the
message is being created so that the sender can see them or whether they are only done
upon sending is another part of the question. For naming other entities in other
applications, there may be other requirements. If the transiation is simply to provide
another name, we may need some facility for deciding whether a name is of the right form
and, if not, manage further translation until the right form is found.

e Indirect naming: Indirect naming has not been addressed in this proposal, but must be
provided in the thesis work itself. Indirect naming would, for example, allow the name
SNA spec to be translated into a pair of names {SNA, name.spec} naming another
context and a name to be translated further within that context. This would provide
deiayed binding, allowing the translation of name.spec to change without needing to
change the translation in the document context. The meaning of that entry in the
document context would be "that entity which is named name.spec in the SNA context.”
This problem is closely related to binding.

e User interface: As described in the example in Section 3.1 a user interface for a
particular application is an implementation of the underlying model. Ditferent
applications will have different interfaces implying different expressions of the concepts.
The thesis must explore some of these various views of the underlying facility and how
any particular interface limits and recasts the supporting mechanisms.

e Authentication: Authentication may not be a serious problem in the electronic message
system, although the related problem of disambiguation is. In general there is a more
difficult problem of proving that a particular entity is the one it is thought to be.

e Efficiency versus distribution: The electronic message system will have to implement
contexts that are replicated at several sites, but because of the slow speed of mail
systems, updates to the multiple copies probably will not need to be reflected in
immediate updates to a current context. On the other hand there may be situations in
which more immediate updating is required. At the same time, using contexts and
aggregates must be easy and efficient. The question of implicit versus explicit aggregate
switching needs careful thought.

» Sharing contexts: The policies and mechanisms needed to provide sharing of contexts
must be explored. The problems of sharing become more severe when the participants in
sharing are on different machines and may not be available at all times. Policies and
mechanisms for sharing and cooperating on updates to shared contexts must be
provided as part of the protocols of managing distributed contexts.

¢ Mulliple implementations of contexts and aggregates: It is possible that multiple
implementations of contexts and aggregates will be needed to provide different behavior
patterns under various conditions. One might want one implementation that allowed for
very efficient translation, and another that provided efficient modification of contexts or

33

environments. If more than one implementation were provided they would all have to
meet the same specifications. Research is being done in this area in the Argus project,
but | may also need to do some more practical work in this area in order to implement my
ideas within the mail project, especially in light of the sharing mentioned above. If
different implementations are allowed, the issue of whether copies of a single shared
context can be implemented differently becomes even more complicated than otherwise.

Yellow Pages and generic naming: Clearinghouse requires that all names and
property names be registered. One reason for this is that the list of used property names
is then available in order that the same property name can be used for different entities
when they have the same property. This same concern must be addressed in the thesis.
It might be done in conjunction with a "yellow pages" service that would allow public
look-up of descriptions or generic names. It is in this area that the distinction between
descriptions and generic names becomes especially blurred. Such a service might be
provided by creating a context that is shared by anyone who wishes to share it. In this
case, careful thought must be given to managing such a context. Should or need it be
distributed? Is there any control over who can make entries or what entries can be made?
Is there any validity checking to catch "false" advertising?

Implications of a federation of computers: One question that must be addressed is
what it means to have the name of an entity or the translation of a name. Does that mean
that the entity exists? Does it have any implication for permission to access the entity?
What happens to a name when the entity being named is temporarily unavailable, as
happens when a user logs out of the system? Is there some way to discover whether an
entity’s unavailability is temporary or permanent? How is this information related to
naming? :

Selection among multiple names: A context can map a name into more than one
entity. Therefore, when a translation occurs, the client must be prepared for the
response to be a collection of entities, and must be able to select among them. Selection
algorithms are application dependent, but a careful study must be done of the sorts of
selection algorithms needed, in order to identify common ones. There is no reason to
require that each application create its own selection algorithm, if there are common
ones that can be provided.

What to do with information that was traditionally managed by a directory
system, but will not be managed by the proposed naming facility: There is
information that is not part of the name, but rather the state of an entity that has
historically been managed by the naming facility. Examples of this are date and time of
creation of a file, access permission for an object or service, and type of an object. A
study must be done of these categories of information in order to determine how they
should be handled. There are tradeoffs. For example, the type of an object is an
immutable part of its state. Therefore, perhaps it should be managed in the same way
that its value is. On the other hand, if one is compiling a program should one need to
have access to the object itself in order to do type checking, in light of our federated
policy? Might it not be more efficient if type information were kept with the name
somehow, except that names are not typed? The flexibility of a generic name,
representing a class of entities that may not all be of the same type, should not be lost. -
This is an area that needs careful thought.

. M_’

This is only a partial list. [t should certainly also contain all the issues raised with respect to the
implementation as well, because they will be larger problems in the largef arena of a general system

naming facility.

6.3. Schedule and Resources

The resources needed to complete this thesis are computing time. Since the implementation will be
part of the mail system, the computing time will need to be on a VAX accessible from the Arpanet with
Clu supported on top of Unix. In addition, text editing and formatting facilities will be needed to

prepare the thesis.

Schedule:

August 26, 1983 Complete thesis proposal

September 30, 1983 Complete design and coding of my part of the mail project
October 31, 1983 Complete testing of code

February 1, 1984 First draft of thesis

April 15, 1984 Thesis exam

May 15, 1984 Complete thesis

Bibliography

1. J. M. Carroll. Creating Names for Personal Files in an Interactive Computer Environment. 1BM
Research Report RC 8356, IBM, July, 1980.

2. J. M. Carroll. Naming and Describing in Social Communications. Language and Speech 23, 4
(1980), 307-322.

3. N. W.Dawes, et al. The Design and Service Impact of Cocos, an Electronic Office System.
International Symposium on Computer Message Systems, IFIP TC-6, Ottawa, Canada, April, 1981.

4. D. Farber and J. J. Vittal. Extendability Considerations in the Design of the Distributed Computer
System. Proceedings of the National Telecommunications Conference, IEEE A & E S Society, IEEE
Communications Society, and*the IEEE G & E Group, Atlanta, Georgia, November, 1973, pp. 15E1
- 15E6.

5. R. Halstead. Reference Tree Networks: Virtual Machine and Implementation. MIT/LCS/TR 222,
Laboratory for Computer Science, July, 1979. Also Ph. D. Thesis for the Dept. of Electrical
Engineering and Computer Science, Massachusetts Institute of Technology.

6. International Organization for Standardization. Reference Model of Open Systems Architecture.
Tech. Rep. I1SO/TC97/SC16 N, Internation Organization for Standardization, November, 1978.
Version 3

7. I. H.Kerr. Interconnection of Electronic Mail Systems - a Proposal of Naming, Addressing and
Routing. . International Symposium on Computer Message Systems, IFIP. TC-6, Ottawa, Canada,
April, 1981. : '

8. H. O.Lind, ed. NSW User Reference Manual. Bolt, Beranak, and Newman, Cambridge, Mass.,
1982. Contributors: J. Ata, P. M. Cashman, H. O. Lind, N. Ludlam, S. A. Swernovsky, S. G. Toner.
Prepared for Rome Air Development Center, Griffiss Air Force Base, Rome, NY 13440, -

9. B. Lindsay. Object Naming and Catalog Management for a Distributed Database Manager. Proc.
2nd International Conference on Distributed Computing Systems, Paris, France, April, 1981. Also
Available as IBM Research Report RJ2914, San Jose, Calif., August, 1980.

10. B. Liskov et al. Clu Reference Manual. MIT/LCS/TR 225, Massachusetts Institute Technology,
October, 1979. '

11. B. H.Liskov and R.W. Schiefler. Guardians and Actions: Linguistic Support for Robust,
Distributed Programs. Conference Record of the Nonth Anual ACM Symposium: on Principles of
Programming Languages, ACM, Albuquerque, New Mexico, January, 1982, pp. 7-19. :

12. wilkes. The Computer Science Library: Operating and Programming Systems. Vol. 6: The
Cambirdge CAP Computer and Its Operating System. North Holland, New York, 1979.

13. R. M. Needham and R. D. H. Walker. The Cambridge CAP Computer and its protection system.
Sixth Symposium on Operating Systems Principles, Special Interest Group on Operating Systems of
the ACM, ACM, November, 1977, pp. 1-10. ’

14. R. M. Needham and A.D. Birrell. The CAP Filing System. Sixth Symposium on Operating
Systems Principles, Special Interest Group on Operating Systems of the ACM. ACM, November, 1977,
pp. 11-16.

36

15. D. C. Oppen and Y. K. Dalal. The Clearinghouse: A Decentralized Agent for Locating Named
Objects in a Distributed Environment. Tech. Rep. OPD-T8103, Xerox, Oc¢tober, 1981. _

16. E.|. Organick. The Muitics Experience: An Examination of Its Structure. M.1.T. Press, Cambridge,
Mass, 1972.

17. L. Pouzin and H. Zimmermann. A Tutorial on Protocols. Proc. of the IEEE 66, 11 (November
1978), 1346-1370.

18. W. V. O. Quine. Word and Object. Technology Press of Massachusetts Institute Technology and
John Wiley & Sons, New York, 1960.

19. D. M. Ritchie and K. Thompson. The UNIX Time-Sharing System. Communications Of The ACM
17,7 (July 1974), 365-374.

20. J. H. Saltzer. Naming and Binding of Objects. In Lec't'uré Notes in Computer Science, Vol. 60,
Springer Verlag, New York, 1978, ch. 3, pp. 99-208.

21. J. H. Saltzer. On the Naming and Binding of Network Destinations. International Sympaosium on
Local Computer Networks, IFIF/T.C.6, April, 1982.

22. A. D.Birrell, R. Levin, R.M. Needham, and M.D. Schroeder. Grapevine:. An Exercise in
Distributed Computing. Communications Of The ACM (April 1982).

23. J. F. Shoch. Internetwork Naming Addressing, and Routing. Proc. 17th IEEE Computer Society
International Conference, IEEE, , 1978, pp. 72-79.

24. K. R.Sollins. Copying Complex Structures in a Distributed System. MIT/LCS/TR 219,
Laboratory for Computer Science, Massachusetts Institute Technology, May, 1978. Also M.S. Thesis
for the Dept. of Electrical Engineering and Computer Science, Massachusetts Institute Technology

25. K. R. Sollins. Copying Structured Objects in a Distributed System. Computer Networks 5 (1981),
351-358. Also presented at the Fifth Berkeley Workshop on Distributed Data Management and
Computer Networks.

26. C. Sunshine. Source Routing in Computer Networks. Computer Communications Review 1,7
(January 1977), 29-33.

27. L. Svobodova. A Reliable Object-Oriented Repository for a Distributed Computer System.
Proceedings of the 8th Symposium on Operating Systems Principles, Special Interest Group on
Operating Systems of the ACM, December, 1981, pp. 47-58. Also published as Operating Systems
Review, Vol. 15, No. 5

28. D. P. Reed and L. Svobodova. Swallow: A Distributed Data Storage System for a Local Network.
Proc. of the International Workshop on Local Networks, IFIP Working Group 6.4, Zurich, Switzerland,

August, 1980.

29. D. Weinreb and D. Moon. Lisp Machine Manual. 4th edition, Aritificial Intelligence Laboratory,
Massachusetts Institute Technology, Cambridge, Mass., 1981.

37

— |. APPENDIX:Clu Cluster Specifications of Contexts and
Aggregates

context = cluster is create, delete, equal, copy, add - name, delete - name,
how — many, translate, names

rep = array[record[name: string,translation: any]]

create = proc () returns (cvt)
% create creates a new empty context
end create

delete = proc (context1: cvt)
% delete deletes context1, invalidating any
% remaining references to it. This
% operation is idempotent.

end delete

equal = proc (context1, context2: rep) returns (bool) signals
(no - such - context)
% equal tests whether two contexts are the

% same.
end equal
—
copy = proc (old ~ context: rep) returns (cvt) signals
(no - such - context)
% copy creates a new context that is a copy
% of the old one
end copy
add -~ name = proc (contexti: rep, new - name: string, transformation: any)
signals (no - such - context)
% add - name adds a name and translation pair
% to the context specified.
end add - name
delete - name = proc (context1: rep, delname: string) returns
signals (no - such - context, not - found)
% delete - name deletes the name specified from
% the context specified.
end delete - name
how - many = proc (context1: rep, label: string) returns (int)
signals (no - such - context)
% how — many indicates how many entities are
% named by the given label in the context
— % specified. The label can be a logical

% combination of names.
end how - many

translate = iter (context1: rep, label: string, t1: type) yields
(force[t1] {any)) signals (no - such - context, no - such ~ name)
% translate returns all the entities named
% by the logical combination of names in
% label in the specified context of the
" % specified type.
end translate

names = iter (context1: rep) yields (label: string)
% names yields all the names in context1.

end names
end context

aggregate = cluster is create, delete, equal, copy,
set ~- current - context, copy - environment, append - to - current - context,
append - to - environment, current — context - is, current - aggregate - is,
add - name, delete - name, how - many, translate, list - environment,
add - to - rule, delete - from - rule, add - rule, delete - rule, move - rule

% The only context that is modified through
% the aggregate cluster is the current

% context. Names are added to the current
% context by two operations, add - name,
% and translate. The operation add - name
% is self explanatory.

% Translate will add the translation it finds
% through search rules to the current

% context unless it is already in the

% current context. The.current context is
% always assumed to be at the head of the
% list of search rules. Contexts are

% searched in the order in which they

% appear in the list of search rules.

% Whenever a search rule is added it must
% also appear somewhere in the search

% domain by the name used in the search
% rules. This means that when the current
% context is changed, each context must
% continue to be named somewhere in the
% search domain. This is not a problem

% when search rules are deleted as long as
% each context named in the search rules
% list can be resolved in the current

% context, as will be the case when they

% are originally added. in order to add them.

sas = sequence|array[string]]

39

rep = record[current - context: context, environment: sas]

create = proc () returns (cvt)
% create creates a new aggregate with an empty
% current context and environment.

end create

delete = proc (aggregatet: cvt)
% delete deletes aggregate1 invalidating
% any references to it. This operation is
% idempotent.

end delete

equal = proc (aggregatel, aggregate2: context) returns (bool)
signals (no - such - aggregate)
% equal returns true if the two
% aggregates are the same object.
end equal

copy = proc (aggregatet:rep) returns (cvt) signals
(no - such - aggregate)
% copy creates a new aggregate that has
% the same values as aggregate1.
end copy

set - current - context = proc (current - context: context) returns signals
(no - such - context)
% changes current context
end set - current - context

copy - environment = proc (aggregatel, aggregate2: rep) signal
(no - such - aggregate)
% copy - environment copies the environment
% of aggregate1 into aggregate?2.
end copy - environment

append - to - current - context = proc (context1: context) signals
(no - such - context)
% append - to - current - context appends the
% contents of context1 to the
% current - context eliminating duplicates.
end append - to - current — context

append - to ~ environment = proc (aggregate1: rep) signals
(no - such - aggregate)
% append - to - environment incorporates the
% environment in aggregate1 into the
% environment of the current aggregate
end append - to - environment

40

current - context - is = proc () returns (context)
% current - context ~ is returns the current
% context
end current - context - is
current - aggregate - is = proc () returns (cvt)
% current - aggregate - is returns the
% current aggregate
end current - aggregate - is

add - name = proc (new - name: name, transformation: any)
% adds a name and translation pair to the
% current context '

end add - name ‘

delete - name = proc (delname: name) returns signals (not - found)
% deletes the name specified from the
% current context :

end delete - name

how - many = proc (context1: context) returns (int) signals
(uncountable)
% how - many returns the count of the number
% of entries in context1.
end how - many

translate = iter (label: string, t1: type) yields (force[tt] (any))
signals (no - such - name)
- % translate returns all the entities named

% by the logical combination of names in
% the label in the aggregate by
% searching contexts in the aggregate in
% the order specified in the environment,
% it it has been specified. Where ordering
% has not been specified, the search order
% is random. If translation uses entries
% from contexts other than the current
% context, those entries will be made in
% the current context.

end translate

list - environment = proc (aggregatet: rep) returns (sas)
% list - environment returns a sequence of
% arrays of strings. The sequence
% represents the partial ordering of
% contexts within an environment. Each
% array represents those context which are
% not ordered with respect to each other.
% The strings are the names of the
% contexts.

41

end list - environment

add - to -rule = proc (i: int, labet: string) signals (no - such - rule)
% add - to - rule adds a label for a context to
% the ith rule in the environment. Itis

% idempotent. If the name is already
% there, nothing happens.
end add -to -rule

delete - from — rule = proc (i: int, label: string)
% delete - from ~ rule deletes the label from
% the ith rule in the environment. The
% operation is idempotent.

end delete - from -~ rule

add -rule = proc (i: int, rule: array[string])
% add - rule adds the rule in the ith
% position. This will move everything from
% that point on into the next position. In
% other words what was in the ith position
% will be in the (i + 1)th position.

end add -rule

delete - rule = proc (i: int) signals (no - such - rule)
% delete - rule will delete the ith rule, if
% there are at least i rules.

end delete - rule

move - rule = proc (i,j: int) signals (out - of - bounds)
% move - rule moves the ith rule into the jth
% position, and maintains the relative
% positions of all other rules. If either
% ior j is out of bounds this is signalled.
end move - rule

end aggregate

