M.L.T. Laboratory for Computer Science Request for Comments No. 261
July 3, 1984

DSG Report Draft, July, 1983 -- June, 1984

by David D. Clark

{ ,
Attached is a draft of the DSG Annual Report for 1983 - 1984. If you have suggestions for

additions or improvements, please let me know, promptly.

~

D’I'STRIB‘UTED COMPUTER SYSTEMS GROUP

Principal Research Scientist
D.D. Clark, Group Leader
Research Staff

L.W. Allen ‘ " M.B. Greenwald
E.A. Martin

Graduate Students
R.W. Baldwin J.C. Gibson
W.C. Gramlich P. Ng
K.R. Sollins L. Zhang

Undergraduate Students

D.A. Bridgham E.D. Crisostomo
T.H. Kim J. Leschner
M.B. Macaisa J.L. Romkey
H.J. Shinsato - E.H.Siegel
G.D. Skinner ’ C.A. Warack

Support Staff
E.L. Felix

Visitors

A.J. Herbert

DISTRIBUTED COMPUTER SYSTEMS GROUP

1. INTRODUCTION

1.1. Introduction

The Distributed Computer Systems Group is a new group this year, formed from
certain members of the Computer Systems and Communications Group and the
Computer System Structures Group. The major project of this group has been the
development of the Swift Operating System, but there are a number of other projects
which are described in the sections to follow.

2. SWIFT

2.1. Project Summary

The Swift Operating System arose out of our earlier research in the implementation
of network protocols. Recurring performance problems with protocol software led
‘us to the conclusion that there was an underlying problem more general than
specific design flaws in certain protocol suites. Our conclusion was that existing
operating systems, such as UNIX, failed to provide the correct run-time support for
highly interactive parallel software packages such as protocols. Swift is intended to
demonstrate that proper support for this kind of software can be easily supplied.

The most novel aspect of Swift is the general structure provided for inter and intra
process flow of control and information. Swift supports a programming style loosely
built around two inter-related concepts, multiprocess modules and upcalls.

In traditional systems, the supervisor consists of a set of entry points which are
invoked by the application program. That is, the application makes a subroutine call
to a lower level, which performs some service for the application and then returns.
in a network driven environment, most of the actions are initiated, not by the client
from above, but by the network from below. Therefore, the most natural flow of
control is not down from above but up from below. Most systems support this
upward flow of control poorly, using either very inefficient interprocess message to
achieve this upward flow, or a very efficient but unstructured interrupt. Our system
permits subroutines to be arranged so that the natural flow of control can either be
up from below or down from above. Permitting control to flow in a natural direction
eliminates many unnecessary process schedulings within software such as network
protocols, and has in some cases permitted a tenfold reduction in the bulk of the
code, as well as a tenfold increase in its performance. '

DISTRIBUTED COMPUTER SYSTEMS GROUP

The upcall strategy eliminates process switching as a means of invoking a software
module such as a protocol layer. Traditionally, a protocol layer would be organized
as a separate process, but now it is organized as subroutines which live in a number
of processes, each callable as appropriate from above or below. There must thus be
a.mechanism for these various subroutines to share state in such a way that the
function of particular module is carried out. For this purpose, Swift uses the
operarting system mechanism called a "monitor," a shared data object whose lock is
managed by the system itself. Subroutines in different processes that collaborate
with each other constitute a multiprocess module. Swift supports a programming
style in which interprocess communication is never used as a way for one module to
~ invoke another, but rather interprocess communication is only used within one

module, through the mediation of the monitor locks.

Programs written using the philosophy of upcalls and multiprocess modules turn
out, if written by sophisticated programmers, to be very simple, short and efficient.
However, these tools, in the hands of tasteless programmers, have the possibility of
creating the parallel programming. equivalent of FORTRAN "spaghetti code." One
of the concerns of our research is developing constraints on the programming style
which lead to coherent and readable programs without severely impacting the
efficiency and natural structure of the code.

There are two other features to Swift which, along with these new ideas for
program structure, distinguish it from other operating systems. The first of these is
the support which Swift supplies for real-time support, and the other is the support
for management of its address space.

Swift is concerned with tasks such as network protocols, which involves
scheduling a number of small computations to run in the 1-10 millisecond region.
For this reason, the operating system that supports this task must have something in
common with a real-time operating system, rather than a general purpose time-
sharing system. Swift contains a task scheduler which assigns a priority to tasks
based on the real-time deadline of the task, measured in milliseconds. This rather
sophisticated scheduler is integrated into the monitor lock facility, so that a high-
priority task encountering the lock set by a low-priority task can promote the low-
priority task to run until such time as the lock is released.

The other important feature of Swift is its approach towards management of its
address space. There are, historically, three ways toward dealing with the address
space in an operating system. The first, typified by MULTICS, provides a multiple
address space environment, with a very rich set of tools for sharing data between
these address spaces in a controlled manner. This provided efficient interprocess
communication, but required special hardware support which limited the portablity
of the system. The second, typified by UNIX, provided a multiple address space

»

DISTRIBUTED COMPUTER SYSTEMS GROUP

environment with limited tools for sharing between them. The elimination of
sophisticated sharing mechanisms meant that there were no special hardware
requirements for support of the -system, so it could be easily ported onto new
machines, but it meant that highly parallel computations were very difficult and
inefficient to program on the system. For Swift, neither of these approaches
appealed to us. We could not tolerate the inefficiency of a UNIX-like interprocess
communication mechanism, and we were not interested in a system with strong
requirements for specialized hardware support. Swift thus chose a third option for
address space management, which is to put all the computations of the system into a
single large address space. Clearly, this requires no special hardware support, and
it certainly provides very efficient communication between different tasks. The major
drawback of this approach, which is almost overwhelming, is that the broad sharing
of a single address space means that program bugs cause corruption of arbitrary
parts of storage, leading to crashes which are almost impossible to debug. We thus
set ourselves a goal of building a single address space operating system with
sufficient restraints that program development and execution would be stable and
predictable, even though each task address space was nominally shared with all of
the other tasks on the system.

The approach we took to this is to program Swift in a language which uses compile
and run-time checking to detect erroneous references to memory and other similar
bugs. Specifically, we have implemented Swift in the CLU Programming Language.
CLU performs such tests as bounds checking for array references, and most .
important it prevents the use of an arbitrary bit-pattern as a pointer, so that
references through arbitrary bit-patterns cannot corrupt unexpected locations in

memory.

The most insidious bug which can arise in a system such as this is the use of a bad
pointer, not because the pointer has been created incorrectly, but because the
pointer points to a location in memory which has been de-allocated and reused. This
can easily happen in a multi-task environment, if one task believes that an object is
no longer needed, while another task continues to use that pointer. The only way to
avoid this class of bug is to take de-allocation of storage away from the application
and perform it in the system. This is the function called Garbage Collection. One of
the challenges of the Swift system is to develop a garbage collector suitable for the
operating system environment.

2.2. Project Status

A major effort effort over the last year has been the moving of the Swift system from
the VAX on to a 68000 processor. This move was necessitated by several
architectural limitations of the VAX, in particular the very inefficient 1/0 structure, by
the lack of an all-points-addressable display for the VAX, and by the high cost of the

DISTRIBUTED COMPUTER SYSTEMS GROUP

VAX, which prevented the deployment of the machine in suitable numbers. Swift is
now running on a 68000-based machine which we have assembled out of
commercially purchased cards. In retrospect, a great deal of group effort went into
making usable a machine which was somewhat cheaper than would have been ideal:
however, Swift is now running and we are proceeding with a number of
improvements which were not possible within the VAX version of the system.

Considerable effort has been invested in the design of a suitable garbage collector
for Swift. Ideally, our garbage collector would have the following characteristics.
First, it is incremental, collecting garbage a little at a time while the system runs,
rather than stopping the system while all of memory is examined. Second, it should
not move objects around as a part of collecting garbage, because 170 devices may
have pointers into memory, which are difficult to find and change arbitrarilly. Third,
it should not require a large quantity of additional memory to use as the temporary
storage area for the garbage collection process.

‘ A number of very creative ideas were proposed for the Swift system, taking into

-account that the system is intended to run on a desktop workstation or similar node
of a networked distributed system. If we truly believed that network communication
‘was extremely rapid, then an obvious way to garbage collect one’s environment is to
make a snapshot of it and send the snapshot across the net to a cleaning machine
which would send back a laundered version of the address space. However, it
seems difficult to get the necessary throughput across the net. Certain garbage
collection strategies, in particular the one proposed. by Dijkstra, seem directly
relevant to what we are doing and have been implemented for trial later this year.
Perhaps the most novel garbage collector we have proposed is the Probablistic
Parallel Garbage Collector (PPGC). This superficially silly idea involves allowing the
garbage collector to run in parallel with the other tasks, without the traditional
interlocks. This raises the possiblity that, under certain very anomalous
circumstances, the garbage collector may declare as garbage something that is not.
However, there are ways that this event can be tested after-the-fact, which means
that the investment of additional background cycles from the machine can reduce to
an acceptable level the probability that we have made an error. Unfortunately, we
cannot come up with any analytical model that tells us exactly what the probability of
failure is. Thus, we are experimenting with PPGC, under a variety of program loads,
to determine under what circumstances errors may arise. It has been difficult to
assess. the probability so far, since we have not yet had a single garbage collection
error due to the probabilistic assumption.

CLU, as it is used as an application programming language at M.1.T., does not have
any dynamic linking capability. That is, one compiles all the programs that are to be
part of the current run, then one statically links them, and then one brindgs this static

‘load-image into execution. Swift requires a dynamic linking capability, and over the

DISTRIBUTED COMPUTER SYSTEMS GROUP

last year this has been designed and implemented. We are now testing a dynamic
loader which will bring sub-systems into a running CLU environment and
dynamically resolve all of the cross-module references.

A more difficult problem is unlinking the module and removing it from the
environment after it is needed. It could be argued that this step is unnecessary.
However, this will cause the size of the link-image to grow continuously, which
means that the memory management algorithm must be more sophisticated than if
modules can be thrown out when they are no longer needed. Since we do not wish
to make sophisticated assumptions about our virtual memory (since we want the
system to be portable on to a wide variety of hardware) and since virtual memory
techniques are fairly well understood, we are concentrating our energy on exploring
the higher- level question of whether or not programs can be unlinked and removed
from the address space of the system, either to suspend them while they are running
or to remove them when they are no longer needed. Preliminary design for this
approach is now completed.

Most operating systems provide a file system for their users and Swift is no
exception. However, we were uninterested in writing the necessary device drivers to
permit Swift to support disks. Instead, as part of Swift, we have developed a remote
file system protocol, which permits Swift to utilize file systems stored on other
machines. We have implemented a simple server for this protocol, and the
implementation of the Swift interface is almost complete.

We have implemented a number of test applications on Swift, in order to detemine
system performance and to stress the garbage collector. Perhaps the largest is the
text editor TED, which is a very popular CLU program on both TOPS 20 and UNIX.
As soon as the file system is working, we will be able to run a fully usable version of
TED on Swift, which will give us a considerable test of the system’s performance.

One of the most interesting applications has always been network protocols
themselves, and we are currently rewriting our earlier implementation of the protocol
package for Swift, in order to improve its performance, and to get more experience
with the proper structure of such programs inside Swift.

2.3, Future Directions

The major implementation effort on Swift will probably finish within the next six
months. At that point there will be a major project review to determine what future
direction the project will take. There are two important questions which we wish to
answer before the project terminates. The first of these is whether we can
understand how to structure programs built around the concepts of upcalls and
multiprocess modules. These concepts give the programmer great freedom, and it

DISTRIBUTED COMPUTER SYSTEMS GROUP

has been noticed in the past that great freedom sometimes leads to very poor
programming style. We thus identify a conflict between our desire for the efficiency
which comes from the these new tools, and the desire to have contraints that lead to
good style. We feel that Swift has taught us some fresh insights about the
construction of multiprocess programs, and we are anxious to understand this in as
general a manner as possible. Second, we are anxious to learn how effectively we
can achieve our goal of supporting reliably a single address space operating system.
In order to this we must experiment further with garbage collection and with linking
and un-linking.

In order to achieve these goals, we feel that it may be necessary to implement
additional application programs which utilize the features of Swift. However, the
hardware base on which we run is sufficiently unstable that large-scale software
development is not tractable. We must, therefore, make a decision as to whether we
will move Swift onto yet a third hardware base.

2.4. Related Activities

There are a number of small activities which, although not strictly a part of the
Swift Project, are closely associated with it within our group. These include our
support of UNIX, which is used as the program development environment for Swift,
development of a tasking package for the IBM PC which supports many of the same
programming conventions of Swift (most particularly upcalls), and the support of the
Remote Virtual Disk Protocol.

‘Remote Virtual Disk (RVD) is a protocol which lets one machine attach to a file on a
server machine and to use that file as if it were a disk. Our group initially developed
RVD to expand the disk space on our VAXes, and the tool has now become a widely
used facility within the VAX-UNIX community of LCS. However, the server which we
initially implemented, which was not really intended to provide serious operational
support, needs rewriting in order to be sufficiently robust, and the Computational
Resources Group has undertaken the task of producing and running a better server
for RVD. User programs for RVD exist for UNIX 4.2, and for the IBM PC.

3. DISTRIBUTED ARCHITECTURES FOR MAIL

For many users, computer mail has been the most important application of
computer networks. The software for distribution and forwarding of mail is very well
developed at this point, but the software for displaying, generating and archiving
mail is still based on the assumption of a centralized time-sharing machine. The goal
of this project is to develop a user interface to a mail system which is suitable for a
personal computer model of distributing computing.

)

DISTRIBUTED COMPUTER SYSTEMS GROUP

In the centralized view of mail, each user is served by a particular machine on
which is located the user mailbox, as well as the necessary software to manipulate
this mailbox. The assumption is that the user directly logs in to the machine on
which the mailbox is located. The machine containing the mailbox uses some
standard mait forwarding protocol to communicate with other mailbox machines
located around the network, in order that mail is properly forwarded. For this
reason, the mailbox machine must be available as a server on the network essentially

all the time.

Since the mailbox machine must operate like a server, it is not appropriate for a
personal computer to be the mailbox machine. A personal computer may be
powered-off much of the time, and even if it is physically powered-on and connected
to a network, may not be able to run server code as a background job.

We have developed a new architecture for mail software, to cope with the
characteristics of a personal computer. Our design divides the traditional functions
of a mail processing node into two parts, the management of the mailbox and the
execution of the user interface software. These functions are implemented on
different machines; the mailbox is stored on a centralized server called a repository,
and the user interface software runs on a personal computer.

The goal of this research is twofold. First, this project is attempting to produce
software that can be used in practice. Several of our existing mail nodes are heavily
overloaded, so the ability to read mail on a personal computer would simultaneously
remove a burden from our centralized time-sharing systems, as well as providing a
mail processing environment which is more responsive and interactive. More
importantly however, this research has a goal of exploring how traditional
applications should be retructured in the context of a distributed computing
environment. Several interesting problems arise, which we cannot yet solve in
general, but which we can explore using mail as a particular example.

The first problem is that the personal computer may not have continuous access to
the data stored in the repository. In fact, the personal computer may be
diconnnected from the net much of the time. In particular, we would like to permit.
the user to send and receive mail at a time when a network connection is not open.
This will permit a portable computer to be used as an interface to the mail system.
This means that a temporary copy of the user’s mailbox must be created in the
personal computer, matching as closely as possible the master copy which is stored
in the repository. We thus have multiple copies of the database describing the
mailbox, which are almost always partitioned, but only occasionally able to talk to
each other. Updates can occur to either copy, and the software must do its best to
keep all of the versions consistant.

The second problem is that the user may wish to interact with thé mailsystem from

DISTRIBUTED COMPUTER SYSTEMS GROUP

a number of personal computers, and he would like to see a consistant view of his
mailbox, no matter which personal computer is acting as a frontend. This means that
in addition to the master copy stored in the repository, there may be several rather
than one auxiliary copies, each of which has a slightly different version of the
mailbox in it. This, plus an additional requirement that the system must recover
whenever a personal computer crashes and looses its copy of the mailbox, makes
very difficult the problem of keeping the user’s view of the mailbox consistant.

During the last year, we have designed the mailbox repository, the user interface,
and the protocol which hooks them together. The protocol contains some rather
sophisticated error recovery mechanisms, so that the connection can be disrupted
at an arbitrary point without causing the various copies of the mailbox to diverge in
an irreconcilable manner. We have a prototype implementation of the repository,
and over the next six months we intend to demonstrate a running repository and a
user interface program running on an I1BM personal computer.

4. NETWORK ROUTING AND RESOURCE CONTROL

Elizabeth Martin continued to study dynamic routing problems in an internet. We
have been participating in the development of the Exterior Gateway Protocol, which
will be used to pass routing information between gateways in the DARPA internet,
and have proposed some schemes for dynamic routing within the MIT internet, a
subsection of the DARPA internet.

4.1. Exterior Gateway Protocol

The Exterior Gateway Protocol partitions groups of gateways in the DARPA
internet into Autonomous Systems of gateways. The gateways in an Autonomous
System(AS) are programmed, maintained, and administered by one organization.
Gateways in different Autonomous Systems exchange routing information using
EGP. EGP consolidates the amount of routing information that is exchanged and
provides a more controlled method of passing information between gateways who
may or may not trust eachother. Gateways within an AS use their own conventions
for passing routing and up/down information among themselves; these gateways
are free to experiment with different routing algorithms.

Defining rules for the internet routing topology and for the dispersal of routing
information that prevent routing loops has proved to be very difficult. Consequently,
the early version of EGP which is expected to become a DARPA standard this
summer is very restrictive.

We have participated in specifying EGP and in studying the routing issues this
protocol is attempting to address. We have implemented EGP for our C gateway.

DISTRIBUTED COMPUTER SYSTEMS GROUP

4.2. Interior Gateway Protocol

The MITnet consists of about 45 interconnected LANs (called subnets), and is
expected to grow to about 200 LANS by 1990. It is becoming increasingly
inconvenient to manually change the subnet routing tables in all the MIT gateways
every time a new subnet and gateway is added to the MITnet. Therefore, we have
specified a subnet routing protocol (our Interior Gateway Protocol) to be used to tell
gateways within the MiTnet 1) which gateway to use to get to which exterior nets
outside the MIT network and 2) which neighbor gateway to use to get to the various
MIT subnets.

This IGP should serve the MiTnet's needs for the next five years or so at which
point the amount of routing information that must be processed may become too

cumbersome.

4.3. Internet Congestion Control

Lixia Zhang began a study of network resource allocation techinques suitable for
the DARPA Internet. The Internet currently has a simple technique for resource
allocation, called "Source Quench."

Simple simulations have shown that this technique is not effective, and this work
has produced an alternative which seems considerably more workable. Simulation
of this new technique is now being performed.

5. DISTRIBUTED NAME MANAGEMENT

Karen Sollins continued work on her doctoral thesis, "Distributed Name
Management." This research is being supervised by Prof. David P. Reed. Based on
identification of issues underlying name management in a distributed computing
environment, a naming framework has been developed and applied in two domains,
electronic mail and software management.

5.1. Introduction

Names form the basis of all communication, of all verbal expression among people.
They also form the basis of much of private cataloging and record keeping. Without
some agreement on or understanding of names, most interpersonal, and even much
personal record keeping would be hampered. If communication is with or through a
computer, all communication would cease without a common understanding of
names and their meanings.

DISTRIBUTED COMPUTER SYSTEMS GROUP

5.2. The Problem

If we look at the history of naming in computer systems, we see a progression
toward making names more useful to and usable by humans. In the earliest systems,
every nameable entity had a globally unique name. In the last resort, these names
were physical addresses. Early on, in order to help organize and segment the name
spaces used by humans in communicating with computers, hierarchically organized
directory systems and user naming facilities were developed. These required
“humans to remember only small subsets of the names and provided some hints for
large parts of the names. But, there was generally little flexibility in generating such
names. Users were assigned directories; names within them had limits on the
number of characters or form. An improvement on this situation was to allow the
user to define private nicknames. Linking in Multics is an example of this.
Nicknaming improved the situation for the individual, but still did not address
problems of sharing or cooperatively defining names using computer systems as the
medium and the source of objects to be named.

One of the purposes of a naming faility is to provide humans with names. In
addition, humans provide a good paradigm for studying cooperative name
management among a group of relatively autonomous participants. Therefore, we
have identified eight observations about human naming to guide in the determination

of the framework.

1) Communication: Names are the basis for communication. Therefore
sets of names used by individuals should be sharable, reflecting
common interests and communication patterns.

- 2) Multiplicity of names:
o Different people use the same name for different things.
« Different people use different names for the same thing.
e A single user uses different names for the same thing.

e A single user uses the same name for different things in different
situations or at different times.

3) Locality of names: A person uses sets of names to reflect his or her
focus of interest. A user also may use two or more sets of names to
reflect a focus between or including several focii of interest.

4) Individuality: Each participant carries a personal environment that he

or she can bring to bear at any time. For example, part of that personal
environment includes the names defined in conversations other than the

10

DISTRIBUTED COMPUTER SYSTEMS GROUP

one currently in progress. Various parts of the environment may take on
more or less importance to the individual in different situations. The
individual manages this personal environment for each topic privately by
specifying a mutable partial ordering on the parts of the environment,
and using them as sources of candidate names for the topic at hand.

5) Flexibility of name usage: Humans use several sorts of names. For
example, names are often descriptions. People use both full and partial
descriptions. Humans also use generic names to label classes of
objects. These generic names may be labels or descriptions. In fact,
humans often use combinations of generic names and descriptive
names.

6) Manifest meaning of names: The meaning of a word used by humans
is constrained by human language in a way that is understood by other
humans as well. -

7) Usability of names: Humans are able rapidly to define or redefine
names and shift contexts on the basis of conversational cues. They also
have mechanisms for disambiguating names, such as querying the
source of a name for further information.

8) Unitication: Humans apply a set of naming conventions uniformly to all
types of things. This is in contrast with more automated situations in
which the particular method of indicating an object is based on the
nature of the object itself. For example, in many computer systems, user
names must be in one restrictive form, file names, another, process
identifiers a third, etc.

5.3. The Framework

The framework that this research proposes consists of a new type of object and the
facilities needed to support and manipulate it as a source and repository for
cooperatively managed names. An individual accesses the names through an
aggregate, the user’s private view of a name space shared with other users. An
aggregate consists of a shared context and a partially ordered set of contexts from
which the individual may wish to draw names and objects. A context is a mapping |
from names to named objects. Within a context there are no restrictions that names
be unique; i.e. a name can be applied to more than one object within the same
context. Indirection is also provided, allowing a name to be resolved into another
name. Operations on aggregates include the ability to create and delete aggregates,
create, delete, examine and modify entries, manage the partially ordered set of
background contexts (which involves being able to name contexts), and move from

11

.
{ I
| :

; DISTRIBUTED COMPUTER SYSTEMS GROUP

e

'one aggregate to another (which involves being able to name an aggregate from
within another aggregate).

5.4. Application of the Framework

The framework is applied in the areas of electronic mail and software management.
To date the first has been implemented; the second will consist of a paper design. In
the mail project, contexts and aggregates are used to manage the names of mail
recipients for both incoming and outgoing mail. The mail itself is the vehicle for
transfer of information, including both the user community’s choice of names for
individuals and the network mailbox identifiers for the same individuals. Participants
in a "conversation" indicate the aggregate name in an additional field in the
message. When a message is sent or received, a filtering process translates the
names in the various mail header fields using the specified aggregate. A subprocess
running under the user’s mail reading program has access to all the user’s
aggregates and provides the translation service. The implementation is on a VAX
running 4.2 Berkeley Unix and is written in a combination of CLU and Mlisp, an
extension language of Gosling’s Emacs.

Among the issues brought to light by the electronic mail implementation, the
question of name addition and deletion from the aggregate is especially interesting
and novel. In human name management, when a name is proposed as part of a
cooperative effort, the name passes through several stages. It is proposed initially.
As it is used several times, it becomes accepted. In addition, it may experience
modification, typically simplification, during this process. If it falls into disuse, it may
need further explanation to refresh other participants’ memories. After a period of
disuse it may finally in time become completely obscured. The issues raised include:
the possible states of a name, the criteria for accepting and obscuring names, and
methods of keeping local copies of a shared context in synchrony.

5.5. Contributions

The contributions of this work lie in three areas. First the research extends our
understanding of naming requirements by recognizing three factors that enhance
the utility of names: sharing, uniformity, and the uniqueness of the individual users.
The second contribution is the approach taken to solving the problem. Sollins
proposes non-hierarchical, small, shared namespaces coopertively managed with
the provision of additional, privately defined sources of candidate names to
complement the shared namespaces. Finally, with the completion of the thesis

Sollins will have categorized issues in naming by whether they are application

specific or universal naming issues.

12

~/

DISTRIBUTED COMPUTER SYSTEMS GROUP

6. CHECKPOINT DEBUGGING

Wayne Gramlich continued work on his thesis in the area of debugging distributed
‘systems.

The specific debuggihg technique that is being investigated is called checkpoint
debugging.

The basic idea is to regularly take an atomic snap-shot of the process state and
then record all subsequent process input until the next atomic snap-shot. When a
bug is encountered, the previous snap-shot and all of its process input is retained for
subsequent analysis. Debugging is performed by reloading the snap-shot and
replaying the process input.

Since computers are deterministic finite state machines, the sequence of events
leading up to the occurance of the bug can be recreated as many times as
necessary. A conventional interactive debugger can be used to help find the bug
when the checkpoint is being replayed. For a distributed computation, all the
processes in the computation must be regularly checkpointed. When a bug is
encountered in any of the processes, the checkpoints for all processes must be
retained. Checkpoint debugging can also be effectively used to help debug real-time
systems. Checkpoint debugging is also useful for debugging high availability
programs (such as printer servers) where the system maintainer can not be available
for debugging 24-hours a day.

13

DISTRIBUTED COMPUTER SYSTEMS GROUP

References

Publications

1. Saltzer, J.H., Reed, D.P., and Clark, D.D., "End-To-End Arguments in
System Design," to appear in ACM Transactions on Computer Systems,
November, 1984.

2. Greenwald, M.B., "Remote Virtual Disk Protocol Secification," MIT LCS
Technical Memorandum (in preparation -- expected publication date
1984) : '

Theses Completed

1. Gobioff, B., "An Investigation of Development Methodoibgies for
Communications Software," M.S. thesis, MIT, Sloan School of
Management, Cambridge, MA, May, 1984.

2. Kim, T.H., "A Distributed Mail System Repository,”" S.B. 'thesis, MIT,
Department of Electrical Engineering and Computer Science,
Cambridge, MA, May, 1984.

3. Krajewski, R.P., "Required Capabilities for a File Access Protocol," S.B.
thesis, MIT, Department of Electrical Engineering, Cambridge, MA, May,
1984.

4. Shinsato, H.J., "A CLU Interface for a Bit-Mapped Display," S.B. thesis,
MIT, Department of Electrical Engineering and Computer Science,
Cambridge, MA, May, 1984,

5. Skinner, G.D., "An Implementation of an ARPANET FTP Server for
UNIX," 8.B. thesis, MIT, Department of Electrical Engineering and
Computer Science, Cambridge, MA, May, 1984.

6. Spurlock, J., "A Comparative Study of Distributed File Systems," S.B.
thesis, MIT, Department of Electrical Engineering and Computer
Science, Cambridge, MA, May, 1984.

Theses in Progress

1. Siegel, E.H., "Dynamic Linking in a Type Safe Environment," S.B.
thesis, MIT, Department of Electrical Engineering and Computer
Science, Cambridge, MA, expected date of completion, September,
1984, ’

14

DISTRIBUTED COMPUTER SYSTEMS GROUP

. Gramlich, W.C., "Checkpoint Debugging," Ph.D. thesis, MIT,
Department of Electrical Engineering and Computer Science,
Cambridge, MA, expected date of completion, September, 1984.

. Romkey, J.L., "Reliable Datagram Multicast on the Internet," S.B.
thesis, MIT, Department of Electrical Engineering and Computer
Science, Cambridge, MA, expected date of completion, December,
1984. :

. Soltins, K.R., "Distributed Name Management," Ph.D. thesis, MIT,
Department of Electrical Engineering and Computer Science,
Cambridge, MA, expected date of completion, August, 1984.

Talks

. Clark, D.D., "Remote Virtual Disk Protocol," Internet Research Group,
January, 1984.

. Clark, D.D., "A Case Study: The Campus Network Plan for the
Massachusetts Institute of Technology," ACIS, IBM, Rockville, MD,
January, 1984, March, 1984.

. Clark, D.D., "Overview of Research at Massachusetts Institute of
Technology, Laboratory for Computer Science," Digital Equipment
Corporation, Hudson, MA, March, 1984. '

. Clark, D.D., "The Reality of the Newtwork Protocol Jungle,” MIT
Industrial Liaison Program, Cambridge, MA, April, 1984,

. Greenwald, M.B., "Swift: An Operating system for a Personal
Computer," Ninth ACM Symposium on Operating System Principles,
Bretton Woods, N.H., October, 1983.

. Greenwald, M.B., "Accessing Secondary Storage Across a Data
Network," Digital Equipment Corporation, Littleton, MA, June, 1984.

. Martin, E.A., "MIT Gateway Projects: Campus Network/Project Athena
and Dynamic Routing,” Gateway Special Interest Group Meeting, USC
information Sciences Institute, Marina Del Rey, CA, February, 1984,

. Sollins, K.R., "Distributed Name Management,”" Ninth ACM Symposium
on Operating System Principles," Bretton Woods, N.H., October, 1983.

15

DISTRIBUTED COMPUTER SYSTEMS GROUP

Conference Participation

1. Clark, D.D., Panel Session, ACM Sigcomm ’'84, Communications
Architectures and Protocols, Montreal, Quebec, Canada, June, 1984,

Committees

1. Clark, D.D., Chairman, DARPA Internet Configuration Central Board and
Internet Research Group.

2. Clark, D.D., Treasurer, Panel Session and Program Committee Member,
Ninth ACM Symposium on Operating System Principles, Bretton Woods,
N.H., October, 1983. '

16

