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Abstruct

A desktop personal computer can be greatly extended in usefulness by attaching it te a local
area nctwork and implementing a complete sct of host network protocols. Such protocols are a set
of tols that allow the desktop computer not just to access data elsewhere, but to participate in the
computing milieu much more intensely. There arc two challenges to this proposal. First, a personal
computer may often be disconnected from the network, so it cannot track the network state and it
must be able to discover and resynchronize with that state very quickly. Sccond, complete host
protocol implementations have often been large and slow, two attributes that could be fatal in a
small computer. This papcer reports a network implementation for the IBM Personal Computer that
uscs several performance-oriented design techniques with wide applicability: an upcall/downcall
organization that simplifies structure; implemcentation layers that do not always coincide with
protocol specification layers; copy minimization; and tailoring of protocol implementations with
knowledge of the application that will use them. The size and scale of the resulting package of
programs, now in use in our laboratory for over a year, is quite reasonable for a desktop computer
and the techniques developed are applicable to a wider range of network protocol designs.

1. Massachusetts hnstitutz of Techinology, Departinent of Electrical Engineering and Computer
Science, and Laboratory for Computer Science.  Address: M.LT. Room NE43-513, 545
Technolopy Square, Cambridge, Massachusetts, 02139,
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Overyiew

This ‘paper describes the issues encountered and lessons Icarned in the design,
implementation, and deployment of a full-scale nctwork host implementation for a desktop
personal computer. The protocol family implemented was the United States Department of
Defense standard Transmission Control Protocol and Internet Protocol[TCP, IP]. The desktop
computer was the IBM Personal Computer attached to one of several local arca networks: Ethernet,
proNET, Clusternet, and a serial line network. The collection of programs is known as PCIP.

The project was undertaken in December, 1981, shortly after the IBM PC became available.
Initial implementations using a serial line network werc in operation in the summer of 1982, and a
complete implementation for the Ethernet was placed in service at M.I'T. in January, 1983. Since
that time the implementation has been polished, drivers for other networks have been added, the
software has been used in many applications unrelated to network rescarch, and the programs have
heen placed in service at several other sites. Fnough expericnce with the inplementation has been
gained to provide a convincing demonstration that the techniques used were successful.

Introduction

Several years of experience in attaching networks to "large mainframe™ computer operating
systems make o clear case for the value of such network attachments. The value includes such
abilities as: to move files from one machinc’s file system to another that has better long-term
reliability, more space, or cheaper storage: to use a unique printer that has better fonts or higher
speed on another computer; to log in as a user on another machine to get to a different data base
manager or diffcrent programming language; and to send and receive clectronic mail within a targe
community. Such abilities have all proven to be important extensions of the basic standalone
capability of a computer system. The desktop personal computer, whose main advantage licsin its
administrative autonomy, potentially can be extended in value by network attachment cven more
than the large shared mainframe. The reason is that by itsclf it is likely to have a smaller range of
facilitics than does a large, shared mainframe, and thus a mechanism that offers the ability to make
occasional use of unique services found clsewhere is especially useful,

The same experience in adding networks to large mainframe computers carrics bad news
along with the good. Implementations of network protocols have usually tuined out to be laree and
stow. Although size of software packages is of somewhat less concern than it once was (heeause the

-’
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cost of memory to hold those large packages seems to drop faster than the packages grow) long path
lengths through those packages can produce bottlenccks and limit data rates. For example,
although the hardware links in the ARPANET arc mostly of 56 Kbits/sce, few attached hosts can
sustain a data rate much above 15 Kbits/scc. When those same hosts are attached o local area
networks that can accept data rates of 10 Mbits/sec their software continues to be a bottleneck in the
15 Kbits/sec area.

Thus the question arises: can one put together a uscful host implementation of a network
protocol family, one that fits into a desktop computer that does not have a virtual memory to hide
bulky programs and that has a processor perhaps one-tenth the speed of a mainframe? Our
particular experiences in doing protocol implementations for several different mainframes suggested
that the slow, bulky implementations are not intrinsic. Inslcad, they are brought about by a
combination of several conquerable effects:

1) Although protocols are described in terms of layers, the particular layer structure chosen
for description is not necessarily suitable for direct implementation. A naive implementation that
places software modularity boundaries at the protocol layer boundaries can be extremely
inclficient. The reason for the inefficiency is that in moving data, software modularity boundarics
usually become the points where buffers and queucs are inserted{GC]. But the protocol layer
honndaries are nof necessarily the most effactive noints for buffering and queueing. A particular
issue is that it is vital to minimize the number of times that data gets copied on the way from the
application out to the wire and vice-versa.

2) There are usually many ways to implement a protocol, all of which meet the specifications,
but that can have radically different performance; the way that produces best performance for onc
application may be quite different from the way that produces best performance for another
application. An implementation that trics to provide a general base for a wide variety of
applications can perform much worse than one that is designed with one application in mind. This
application variability of performance shows up strongly in the choice of data buffering strategies
and in the choice of flow control strategics.

3) The current generation of operating systems is ill-equipped for intcgration of
high-performance network protocols. Good implementation of network protocols requires a very
agile, light-weight mechanism for coordination of intrinisically parallel activities—sending packets,
receiving packets, sending packets at low Ievels as a result of receiving packets that require further
processing at high levels, dallying in packet dispatch in hope that further processing will allow the
pipgybacking of responses at different levels into a single reponsc packet, and so on. ‘The various
parallel activitics of a network implementation are characterized by substantial sharing of both
protocol state and packet data, so shared-variable communication is another ¢ssential feature,

One might summarize all three of these points by the single obscrvation that current network
protocol implementations are quite carly on the learning curve of this software arca. Most
eaperience so far is on large mainframes and with networks that operate at telephone line speeds.
Onc would cxpect that as experience is gained implementations will improve. One of the primary
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purposcs of the PC network implementation was to take one or two steps higher on that learning
curve.

In the remainder of this paper, we first describe what was implemented, and then discuss the
organizing strategies that make the implementation interesting.

What was implemented

Figure one shows the various protocols and drivers used within the PCIP software packages.
PCIP divides naturally into three levels—the driver level, the transport level, and the application
fevel. At thedriver level are modules that manage four different local arca nctwork hardware
interfaces: the 3COM EtherLink Ethernet interface, the Proteon ProNet 10 megabit token ring
interface, the IBM PC/Clusternct interface, and the IBM RS232 serial line port, (The PC/cluster
net driver has not been implemented yet.)

The transport fevel has three major components. The Internet Protocol (1P) provides for
packels originating on one nctwork to be sent to a destination on another network. The User
Datagram Protocol (UDP) is a connection-less protocol intended for the transmission of a single,
uncontrofled packet. The Transmission Control Protocol (TCP) provides a rcliable, full-duplex
byte stream conncction between two hosts,

Onc application-level protocol, Remote Virtual Disk, is built directly on the [P layer. RVD is
implemented as a device driver that allows onc to read and write individual disk blocks on a remote
machinc as if they were on a local disk.,

Several application-level  protocols are  built on UDP, c¢ach providing its own
application-specialized error control. For example, the host name protocol takes a character string
name for a host and consults a series of name servers {o learn that host’s 32-bit internet address,
using UDP. The Trivial File Transfer Protocot (TFTP) is a lock-step file transfer protocol built on
UDP. in which cach data packet must be acknowledged before the next packetis sent. The Print
File program permits a uscr to print a text file using TFTP to transport the file to a printer server.
The get time protocol obtains the time and date from a set of time and date servers.

The application programs that use TCP arc the remote login protocol, named TELNET, and
several information lookup protocols. In addition, some TCP-based mail facilitics are currently
being implemented. 'The TELNET program uses a Heath HI19 terminal emulator in managing the
keyboard and screen of the PC[H19]. Our experience suggests that the current applications and
protocols are a base on which many future applications can be built.

-
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You get more than remote terminal emulation

Although a remote login protocol is an important function, it is not by itsclf justification for a
network implementation—if that were the only function obtained, one could use one of the many
terminal emulator programs for the PC instcad. The interest in a host-oriented protocol family
implementation for a PC comes about when considering the range of services that become available
for the PC user, and the casc of building new applications. Examples range from seemingly trivial
ongs Lo major work-savers.

Among the apparently trivial features are the PC command that sets the PC system clock
(date and time) by sending datagrams to several nctwork servers[PCIP]. This command is included
in most of our PC users’ automatic bootload batch files, where it climinates the need for an extra
battery-powercd clock card. Only after this command became available did the date and time
records kept in DOS floppy disk directories become reliable indicators of which version of a {ile one
was loaking at. Another remarkably useful command is onc that obtains from any fimesharing
system in the internet a list of currently logged in users and identification informaiion on any
particular named user of that system. A similar command obtains directory informaiion from the
ARPANET Network Information Center. These tools, each not very important in itself, become
part of an operation repertoire that makes the desktop computer much more useful than when it
stands alone.

Probably the single most important tool is the file transfer protocol, TETP. TFTP provides
the ability to move a file between the PC and any network—attached timesharing system or file
server. With TFTP, one can casually undertake quite complex operations. A typical use, such as the
preparation of this paper, involves several authors cach using a favorite editor on the PC to prepare
individual contributions. Fach moves contributions to a common directory on a central file server,
so the others can look them over and provide comments and suggestions. One author moves all the
paper fragments to a private PC, asscmbles them, runs them through a formatter and then sends
them, again using TE'TP, to a sophisticated laser printer server located elsewhere in the network.
Because the network is not just local, but is scamlessly interconnected by the ARPANET to many
other sites nation— and world-wide, the authors and other facilitics can be assembled from a
geographically dispersed set.

When added to this sct of nctwork tools, a remote login protocol becomes even more usclul,
since it makes any missing functions casily available by allowing the PC user to attach to a
timesharing system anywhere in the network. 'The most prominent example of'a function currently
missing in our repertoire is electronic mail handling.  While waiting for a mail handling package to
be implemented for the PC. sending and recciving mail is accomplished by logging in to one of the
large timesharing hosts. Another uselul feature of remote login as anetwork package is that THTP
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is available at the same time.  This feature allows one to use any timesharing system commands (0
locate, collect. or create files, and then send them immediately back to the PC.

Remote Virtual Disk

A good example of an extended scrvice possibility is our implementation of the Remote
Virtual Disk protocol (RVD) for the PC. This protocol, locally developed at M.LT., permits a
machine to have access to disk storage which appcars to be local, but which is in fact remotely
located at a server across the network[RVD]. To accomplish this appearance, a device driver is
written that, instecad of reading and writing to a real disk, sends messages across the nctwoxkto the
RVD server host which does the actual reads and writes.

Therc are a number of uses for the function provided by RVD., Most important, the disk
madc available through RVD can be shared, thus providing a mechanism for distribution of
software, especially making a large library of tools available to acommunity. In this use, an RYD
disk strongly resembles the virtual minidisk provided by the VM/370 operatirg system{VM]. (Note,
however, that if sharing is the primary goal, sharing at the physical disk write level is not as flexible
as sharing at the logical file level. Remote file sharing protocols have been the subject of much
rescarch and development activity lately, and some are becoming available for the PC[Novella, ITC,
Vianctics].) '

A simple but helpful usc of the RVD disks is as an extension to the private disk storage of the
individual machine. The economics of large and small disks is currently such that one hasonly a
modest price advantage over the other, but the functional advantage of RVD is threcfold. First, any
RVD disk can be available to every PC on the net, so in contrast to the permancntly attached
Winchester disk, the file stored on an RVD disk can still be reached if onc’s private PC is down, by
walking down the hall and finding another nctwork-attached PC. Second, since all the RVD disks
arc actually partitions of centrally located large disks, one can arrange for a central operations staft
to make backup copies of the information stored on RV disks. 'The need to make backup copics
of information stored on private Winchester disks has proven to be one of the operational headaches
of those devices: with RV the headaches can be subcontracted to somcone else. Third, the
cilective data rate of the RV disk is comparable to a local hard disk and substantially better than
that of a foppy disk. Large block transfers using RVD take place across the Ethernet at about 240
kilobits/second.
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The PC environment

Development of a network implementation for the PC required that a number of choices be
made, both in the development environment and in the programming environment, ‘This section
describes thosc choices.

The development environment. while it entailed difficult choices, did not involve any new
ideas or breakthroughs. Programming was done on a microcomputer development system that runs
on a ncarby UNIX time-sharing system. That approach was used rather than doing the
programming entirely on the PC because in 1981, when the choice was made, very little support
softwarc (editors, choice of compilers, library managers) was yet available to run on the PC. The
programming was done in the C language, with the choice again based primarily on the
combination of compiler and assembler availability. It was apparent that some asscmbly janguage
programming would be required, and the only asscmbler that we could locate for the PC at the time
was one that ¢came as part of an integrated C compiler/assembler/loader packoge.

The programming environment used was the IBM DOS operating system[DOS]. This choice
was casicr than it might have appeared: all of the operating system alternatives provided very little
support for the kinds of operations needed to do a network host implementation, so all required that
support to be added. Thus the choice was madc on predicted ubiquity, on which point DOS
appcarcd strongest. The primary run-time facility added was a tasking and timer management
package that permits as many parallel tasks as nccessary to operate within a single address space.
For simplicity, the tasking package runs cach task to completion (cither "block," awaiting a wakeup,
or "yield," allowing other tasks to run) using a round robin schedule.

The combination of the development cnvironment and programming environment required
one bootstrapping program to be constructed—a serial-line file-copying program for the PC that
could take a file being pushed atit by UNIX and store it in the PC file system. The development
environment on UNIX produced loaded, ready-to-run command files; the bootstrap provided a
way of getting those command files into the PC for cxecution. The first real nctwork program
developed was one that implemented a standard file transfer protocol, and as soon as that program
was operational the bootstrap was no fonger needed[KW].
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PCIP over serial lines

When the IBM PC was first announced there was no local arca network interface available for
it, but several manufacturers scemed intent on supplying them within a year or so. Rather than
building a picce of special hardware that would be soon discarded, we opted to use the PC's serial
linc port as a temporary substitute. To conncct the serial line to an existing local arca nctwork, a
token ring, we configured a Digital LSI-11 to contain both a token ring network interface and a
small number of serial line ports. This LSI-11 came to be known as the PC-Gateway. The
PC-Gateway was programmed to treat the set of serial lines as a local nctwork, and to act as a
‘packet-forwarding gateway between that local network and the token ring. When the PC was ready
to send a packet of data, it merely sent the packet as a sequence of 8-bit bytes down the serial line.
This approach made the combination of the serial port driver, the serial port, the serial ling, and the
PC-Gateway a unit that could later be replaced by a local network driver and a network hardware
intcrface.

There were two uscful results from the PC-Gateway. First, it permitted substantial progress
to be made in implementing and polishing the network code for the PC. When local network
hardware did become available for the PC, the only software effort was to replace the serial line
driver with a network interface driver. Second, it turned out to be surprising uscful, and was not
discarded when nctwork interfaces arrived. Instead, dial-up modems were attached to unused serial
ports of the PC-Gateway to permit people who had PC's at home to connect to the network using
telephone lincs. "There was mixed success with this technique. On a 9.6 kilobit leased line, there was
no major problem in performing either file transfers or using remote login, even with
character-at-a~time remote echo. Ona 1.2 kilobit telephone line, file transfers were reasonably
successful. (Sometimes the transmission time involved in sending a long packet overa 1.2KB line
would cause the remote host to time out and abort the file transfer. Eventually, most other hosts
learned (o be patient enough to tolerate telephone-line transfers.)) For remote login to hosts that
work in character-at-a-time remote echo mode, cach time the uscr typed a character, a packet in
excess of 25 bytes was transmitied over the serial line. It was thus very easy for a fast typist to
saturate the connection to the PC-Gateway, and cchoing fell far behind the typist.

This problem could have been overcome by two techniques. First, some sort of data
compression algorithm could have been employed.  An observation was made that many of the
bytes in each TCP packet arc likely to be identical to those of the previous packet. An algorithm
was discussed, but never implemented, to take advantage of this observation and transmit only the
differences between the current packet and the previously transmitted packet. Second, the TCP
used by the remote login could be tailored so that it would transmit more than one character pcr
packet when it started to run behind. Neither of these techniques were implemented because the
arrival ol high-speed local area network interfaces reduced demand for remote login over 1.2KB
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lincs. However, if the cffort had been undertaken to increase performance on 1.2KB telephone
lines we believe that it would have been tcchnically feasible.

Onc of the lessons learned from implementing the PC-Gateway was that the ability for a PC
to directly send and receive packets via a dial-up modem was very uscful for file transfer. When
only terminal access lines are available, files are usually transferred between mainframe computers
and PC’s using some sort of embedded protocol such as KERMIT, developed at Columbia
University[ KERMIT]. One of the problems with such embedded protocols is that not all
mainframes with dial up lines implement the embedded protocol. When that is the case, some
staging process must be employed whereby the user first moves the file from the original host to onc
that implements the ad hoc protocol and then transfers the file over the scrial line. In contrast, the
PC-gateway allowed implementation of a standard network file transfer protocol for the PC (TFTP)
which was immediately usable with all the other network participants. Our advice to future
implementors of network terminal concentrators is to provide an escape mechanism so that a PC can
dircctly send and receive nctwork packets carrying any protocol the PC finds useful. This escape
can give the PC the opportunity to make fuller use of the network possibilties. '

Tailoring the implementation to the environment

There are a few characteristics of desktop computer operation that are quite different from
mainframe operation, and these characteristics affect the way in which the network is integrated
with the system. The most important of these is that the desktop computer is often—perhaps
usually—not "on the network”. When not in use, a desktop computer is often powered off, perhaps
to reduce the noise and heat in the office in which it is located. Even when powered on, one cannot
expect the network softwarc to be always in operation. Some desktop computer application
software packages operate by taking over the cntire machine, sometimes to prevent pirate copies of
the program from being made and sometimes simply because they require cvery scrap of memory in
order to perform usably.

Thus the softwarc in the personal computer cannot expect to maintain a continuous record of
the state of the network: instead it must be organized so that it can quickly discover whatever state it
nceds when it is called into operation. To cope with the "normally-off-the-network™ paradigm of
operation, the various PCIP programs do not attempt Lo retain any discovered network information
at all for the use of the next program that may usc the network. Because onc has no ideca what other
application program may run between two network programs, the integrity of any state variable
stored in primary memory is questionable, and it is safer to rediscover the network information
rather than to depend on a stored value. ‘Thus ifone initiates a file transfer with another host, such
facts as the round trip time to that host, its network address, and the Ethernet address ofan
intervening gateway are 2ll discovered, used during the transfer, and then discarded. 1 the next
command to be typed is another file transfer to the same host the listed facts are all rediscovered
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again. This approach, while perhaps seeming wasteful, actually costs quite little and has a very large
pavoll in improved reliability of the network software. In contrast with our experience with other
network implementations that maintain network state continuously, in PCIP one almost never
encounters the situation in which anomolous behavior (caused by recorded state getting out of step
with real state) leads to a need to reboot the system or explicitly reinitialize the network code to get
it working again. (However, all is not roses. Because there is no protection between supervisor and
user in the PC, bugs in either the network code or in a user application can cause a system crash,
requiring a reboot to recover. During application programming such crashes arc fairly common,
providing another reason why one cannot depend on maintaining network state records.)

Another aspect of this expectation of frequent detachment from the network is that the PC
network implementation makes no attempt at all to maintain a table of (user oriented,
character-string) names of other hosts and their network addresses. Not only would such a table
take up a lot of storage if the network is very big, keeping itin step with the name tables in hosts
that are always online (and which depend on that usual onlineness in informing one another of
changes) would be a major challenge. So instead the PC depends on the availability of host name
translation services provided by many of the always—online network hosts.

A related problem is that the network software must be able to discover quickly enviconment
narameters (such as network addresses of nearby gateways and other servers or the nnmber of the
network to which it is attached) rather than expecting that the user types them in cach time when a
network program is used. To provide such environment parameters, the PCIP implementation uses
atrick: A picce of code is installed as a DOS device driver, but this piece of code does not actually
control a rcal device. Instead, calls to rcad from this device cause the code to send back a stream of
environment information, in a standard format. Every PCIP program knows how to interpret this
stream, and thereby has a quick way of discovering the facts about the environment it needs. A
customization program allows the application user to set up this pscudo device driver. Usinga
pseudo device driver provides this information much more rapidly than reading a file, and itis far
easier to change as compared with the altcrnative of assembling the information in as constants of
the programs. (The DOS 2.0 environment variable feature in principle provides an equally good
way to do this job, but unfortunatcly the space allocated by DOS for environment variables was
insufficient.)

Tailoring the implementation to the application

Perhaps the most intercsting strategy used by the PCIP software to obtain good performance
in a small machine is the tailoring of the network implementation to match the application that will
use it. There are several examples of this tailoring that illustrate the idcea.
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The primary examples are in the implementation of the end-to~end transport protocol, TCP.
This implementation was designed to work optimally with only one application protocol, the "User
Telnet" remote login protocol[L.K]. The idea of tailoring is that the knowledge that the only
application is remote login should guide implementation decisions in the transport protocol.

Some of the decisions simply rclate to how much standard TCP function to implement. The
PC TCP can only originate connections; no provision was made for other hosts to make connections
to the PC, because that feature is not needed by User Telnet. Similarly, PC TCP can maintain only
one connection at a time, because User Telnet requires only one connection. A substantial amount
of table management code is thus unneeded.

TCP includes a sliding window for flow control. The PC TCP simply ignores the window
valucs sent to it by the remote host, because when it is used for remote login, the only data sent to
the remote host is that typed by a person at a keyboard, and that data rate is almost certain to be
lower than the rate that the other host can accept data. (If once in a great while the remote host falls
behind so far that the typist gets ahead of the offered window, no loss of data occurs—the remote
host simply stops acknowledging the data, and the PC TCP has for error control a timcout-resend
strategy that retries until the remote host catches up.) The simplicity that results from ignoring
windows makes the code both smaller and faster.

To minimize copying of data and space occupied by packet buffers, the TCP send function is
tailored in another way with the knowledge that data comes from a typist. Only one packet bufter is
provided for output data, and this packet buffer is set up with certain fields, such as the source and
destination addresses, precalculated, since they never change. When the user types a character,
Telnet calls the TCP send function with the character as the argument, and send merely drops the
character into the precalculated packet buffer, adjusts any remaining ficlds, and calls the local
network driver with a pointer to the packet buffer. Because the output is to a high-speed local area
network the network driver will complete the dispatch of the packet before returning to TCP. It is
thus sufe for TCP to assume that it now has control of, and can change the contents of the output
buffer. If the user types another character before the remote host acknowledges the earlicr one,
Telnet calls TCP as usual, but TCP's send function simply slips this new character into the same
packet buffer following the earlier character, and dispatches this packet containing, now, two
characters. [fthe earlier packet is lost in transit (and thus no acknowledgement of it ever comes
back from the remole host) this new two—character packet will act as the resend.

'I'his technique of adding characters to the output packet buffer as they are typed has a limit,
of course: if the Lypist fills the packet buffer (500 characters, which allows at least 30 seconds of
frantic typing) before the remote host acknowledges the first character typed the typist must be
asked 1o stop; the TCP send function simply returns an error condition to Telnet when the single
packet buffer is full, and Telnet notifics the typist to desist. 'This situation occurs very rarcly in
practice. Normally, the remote host reccives a packet and sends back an acknowledgement of the
oldest typed characters. The PC'TCP, upon sceing that acknowledacnient, adjusts the characters in
the output packet bufler by sliding them back so that the first unacknowledged character is first in
the output buffer. Even this copying of the data happens only if the remote host falls behind in its
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acknowlcdgements.

This whole collection of techniques of output buffer management reduces path fength, buffer
space, and packet copying. but all of them depend on the knowledge that the send function will be
used in a particular way. If one tried to use this tailored TCP to send a file consisting of many large
blocks of data, its performance would be very poor. It might overrun the remote host, because it
ignores that host’s flow control windows, lcading to many unnecessary retransmissions of each
packet. It could accept only one packet of data to be sent at a time, because it has only one packet
buffer, and it cannot rcuse that buffer untit acknowledgement comes from the other end that the
recciver has accepted the data. There would be much time spent copying the large blocks of data
from one end of the packet buffer to the other as acknowledgements came back. And, finally, the
implementor of the file transfer program would find that the TCP send interface accepts only one
byte on each call, so sending a block of data would require an inefficient repcated cali loop.

For data flowing from the remote host to the PC, a completely different set of considerations
holds. In this dircction, the PC TCP implements flow control windows because it can be overrun by
an active, high-powered time-sharing system, However, there are still opportunities {or tailoring
thc implementation.”

The most serious prohlem with incoming data is not just that it arcives too fast, but that some
hosts sometimces transmit a separate packet for cach byte of data they send. Since the TCP window
controls the number of outstanding bytes rather than the number of outstanding p:ckets, the
window does not prevent a flood of packets if the data is being sent in this very incfficient way. The
problem shiows up if the PC cannot keep up with the rate of arriving packets: fairly soon a packet
gets missed and thus not acknowiedged. The sending host eventually times out and resends starting
with the missed packet. The time-out shows up as a noticcable pause in the flow of data to the
uscr's screen. ‘the PC TCP required a special buffering scheme to deal with a large number of
arriving small packets. Since running a complete terminal emulator is  actually more
time—consuming than processing incoming packets, the PC emulator is permitted to handle only a
few bytes at a time before returning to the TCP level to see if more packets have come in, This
strategy permits as much processor time as possible to be allocated to packet handling, (As
described in the next section, the PC terminal emulator is invoked by an "upcall” from TCP, so
limiting it is actually quite ecasy—TCP simply calls with an argument consisting of the number of
characters for the cmulator to handle.)

This implicit flow control imechanism between the emulator and TCP replaces the more

general explicit flow control system that would have to be implemented if TCP had been designed
to cope with arbitrary client protocols including, tor example, file transfer.

At least onc more, minor opportunity for tailoring exists in this direction. Since the customer
application is remote login, it is a good bet that the largest quantity of data that will ever arrive in a
single burst over a connection from the remote host is one screen full, a predictably finite amount of
data. Thus TCP input butters and window size need be provided just for this amount and no more.
If an ambitious host aspircs to send more than one screenful of data in a burst, the window

A4
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mechanism acts as a throttle, In the most common case everything proceeds sme:::0, ar S
and the window is not a limit. In an unusual case performance may sufter but no at.: ;L

Upcalls

The combination of the tasking package and the C language features of static storage and
procedure variables are used extensively throughout the network implementation in a style of
programming known locally as "upcall/downcall”. (In some of the more recently developed
window management systems, and the Pilot file system, the same style of programming is sometimes
known as "callback"[Pilot].) In this style of programming, some tasks are waiting for events at
"high" levels, for example in application programs. When an event occurs they proceed to operate
by calling "down" to lower level network implementation programs. This is the usual style of
programming of operating systems. However, other tasks wait for signals at low levels, inside
network driver programs, for example. When a signal starts them, perhaps because a packet has
arrived, they operate by handling the packet operations at their level, and then calling "up" to
higher levels of network protocol and eventually "up" to the application.

The denotation "up"” and "down" can be misleading, because a call "up" can lead to a call
"down" as part of its implementation. For example, the arrival of a packet may result in an upcall
to disposc of the packet, and during that upcall one or more downcalls to send acknowledgements,
flow control messages, or an application-level response.

Figure two illustrates in a simplified example the use of this organization in the
implementation of the Telnet remote login protocol. In that figure, in the left column, the top level
application program creates a parallel task (in the right column) to handle arriving packets using
upcalls. The top level program proceeds to initialize static procedure variables in anticipation of
upcalls at the several network protocol levels. The main task then concentrates on sending typed
characters to the remote host.  Mcanwhile, in the right column, all packets coming from the remote
host arc noticed at a low level by the network driver, which calls upward, using the previously
initialized tables of procedure variables, cventually reaching the screen display procedure of the
terminal cmulator. Although the actual programs are complicated by error conditions, the basic
flow of control illustrated in this figure is complete and, relative to other implementations we have
seen, quite simple[JR].

The upcall/downcall programming style, together with a tasking package that allows several
tasks to operate within a single address space is the primary sct of tools used to gain leverage against
the third performance—draining effect mentioned carlier—that the current generation of operating
systems doesn’t provide agile, lightweight support for the parallel operations that are required to run
anctwork implementation. An upcall also provides a natural way for a network implementation
layer to reccive data from below and pass it up higher without having to copy it just to insure that it
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doesn’t get deallocated by the lower level. Thus some leverage is also obtaincd against the first
performance-draining effect—t00 much buffering at protocol layer boundaries. Another example
of the simplifying cffect of upcalls was mentioned in th picvious section, which described their use
to provide implicit flow control between TCP and Telnet.

Getting around DOS

The implementation of the Remote Virtual Disk protocol for the PC was an interesting
exercise. The current version of the operating system we use, PC DOS 2.0, has a provision for
user-installed disk drivers, so there was an obvious place to integrate the RVD interface. However,
the RYD driver is rather different from most drivers; since it implements a network protocol inside,
it contains all the support tools we implemented for the other protocol packages, including our
tasking scheduler and our timer manager. Since PC DOS is not designed to be re-cntrant, the
driver cannot call on DOS for any services, so it must re-creatc any DOS functions it necds. The
resulting exercise causes the implementer of RVD to stand on his head to get some things done, and
nrodnees a device driver for DOS with considerably more sophisticated operating system features
than DOS itself.

There was one limitation of the RVD implementation that we were hard-pressed to
circumvent. Since the network package for RVD was hidden inside what DOS thought was a disk
driver, that network package was not available for use by other applications. Since that package had
control of the physical network interface, the fact that it was not available outside RV meant that
no other network application could be executed at the same time that RVD service was in use. This
limitation meant that, for example, one could not use the file transfer protocol to move a file to or
from an RVD disk. Such transfers currently require a two-stage operation, moving the file via a
disk physically at the local PC and copying it from there to or from the RVD disk.

Our experience with RVD clearly showed that the PC had cnough power to support this kind
of protocol, and that such a feature could be very helpful. Even with its limitations, RVD is in wide
use in our laboratory. However, the limitations of DOS 2.0 increased the difficulty of this project,
and reduced somewhat the value of the final service. Fortunately, this sort of limitation scems to be
going away as the creators of operating systems cxpand their vision of the capabilities of a PC class
machine.
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On size and scale

While the CPU of the PC can access 1 Megabyte of memory, all of the PCIP packages can
operate in a 128 Kilobyte configuration. (This small size was fortunate, because it happened that
the available C compiler used a "small memory model", limiting one loaded program to 64
Kilobytes of code and 64 Kilobytes of data) The individual packages are relatively small;
combined they casily meet this constraint. Consider the decomposition of the code space of TFTP;

tftp user/server 7468 bytes
ubDpP 2914
[P 4605
cthernet driver 5988

network common library 2720
timer and tasking package 2310

_terminal emulator © 4390
C run time support 3932
total 34680 bytes

The largest, most complex package is Telnct. It uses TCP and UDP (for name resolution) and
contains a TFTP server. Telnct consists of the modules above, plus:

telnet 6256 bytes
tcp 6606

total 47542 bytes

The size of telnet includes the size of the screen manager as well as the protocol
implementation. Notice that telnet and tcp are individually the most complex modules
implemented. '

An intercsting observation about the scale of a nctwork package for a personal computer
comes from examination of a typical package, the one that docs file transfer. 'The implementation of
THTP user and server is done in three C language programs and one C language "include” file, of
common data structure definitions. That sct of programs implements just the box labeled "Urivial
File Transfer” in figure onc. These C programs together total about 1020 lines of code (excluding
comments,) of which about 450 lincs implemient the main strcam of the protocol, 505 lines handle
crror conditions, and 65 were provided as aids for debugging. The 50% figure for handling crror
conditions in our cxperience is typical for network code that is intended to be reasonably robust. A
similar fraction was noted by Clark in his implementation of the THIP protocol in PL/1 for the
Multics system. Probably much more than half the intelicctual cffort of design and debugging went
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into that part of the code, since it tends to involve untangling of things that didn't go right, rather
than straightforwardly moving on to the next step of the protocol. The 1000-linc figure for THTP as
a whole indicates that the overall size of network packages is well within the capability of a desktop

computer,

The lesson to be drawn from all these numbers is that with proper system support, good
organization, and attention to the client being supported, a network protocol package need not be a
large module.

When we cxamine the performance of the programs, we find that the bottlenecks are not in
the protocol implementations themselves, butin resources the applications utilize. The code wasn’t
written with great concern for performance because it was expected that the bottlenecks would be
found outside of the protocol implementations. The low cost of context switching and few data
copies allow fast transfer of data through the protocol layers. For instance, TFTP writing to a floppy
disk frequently achieves an end-to-end useful data rate of 13 kilobits/second, about the writing
speed of the floppy disk. With a Winchester disk, TFTP can transfer data over the network at a rate
ofabout 55 kilobits/second, again about the writing speed (for small blocks) of the disk drive itself.
When tests are done in which TFTP discards data as soon as it is reccived, network  transfers run as
fast as 110 kilobits/second. Thus the bottlenecks in file transfer seem to be the disk systems, and
improvements that we might make to the protocol implementation would net subctantially alter the
transfer rates achieved.

A second example is Telnet. Monitoring shows that it spends 50% of its processing time in
the Heath H19 terminal emulator. Another 30% is spent idle, waiting for something to do. Fora
real performance breakthrough in telnet, the terminal emulator should be improved, rather than the
[P or TCP implementation. While some speed could be gained by small changes to the TCP
implementation, the terminal emulator is the real bottleneck.

Conclusions
In the beginning of this paper, we identificd three problems that can besct the implementor
of network protocols:

1) The architected layer structure of the protocol can prove unsuitable as a structuring
technique {or the implementation.

2) An implementation that attempts to serve scveral clients will cither be very complex or
provide poor performance to some or all clients.
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3) The operating system chosen may provide poor support for the needed program stiucture.

The impact of these problems is that a full implementation of a protocol suite tends to be
sufTiciently bulky and slow that a realization inside a pcrsonal computer scems impractical. We
have shown to our satisfaction that this nced not be so. We produced a running and useful
implementation that is consistent with the spced and size of an IBM PC, by identifying and using
techniques that directly combat the problems identified above.

To avoid the excessive interfacing code that results from classical layering, we used an
interface technique, upcalls, that put the asynchronous boundaries in the implementation only
where they are needed. Subroutine calls, always more efficient than process switches, arc used
wherever possible,

To combat the high cost of generality, we abandoned it wherever abandonment really seemed
to pay off. Instead of producing a virtual circuit protocol that attempted good performance for all
clients, we tailored the implementation to remote login. Compared to other implementations of
more generality that we have examined, this code was substantially smaller and simpler to produce.

To solve the problem of an unsuitable operating system, we provided our own, as part of the
network code. This kind of replacement is not always possible, but in this case it both proved the
benefit of proper system support for protocols, and demonstrated the flexibility of the programming
environment of the PC,

We feel very strongly that it is a good approach to produce implementations that are tailored
to specific clients, as opposed to more general implementations. The only drawback of this
technique is that if several clients are to be supported, it is necessary to produce scveral diffcrent
implementations of the support program. In other projects we have done this sort of multiple
implementation, and do not fecl that the effort is substantial. Many parts of the implementation,
such as the protocol state machine, can be rcused. As a result of this effort we are now exploring
different modularity techniquces in which the protocol state machine for a layer is implemented as a
general module, while the data flow paths are supplied by each client using a standard interface.
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