r~ M.LT. Laboratory for Computer Scicnce Request for Comments No. 263

September 24, 1984

CS/DSG Report, July 1982 -- June 1983

by D. D. Clark and J. H. Saltzer

a2 WORKING PAPER — Please do not reproduce without the author’s permission and do not cite
in other publications.






COMPUTER SYSTEMS GROUPS JOINT REPORT

1. INTRODUCTION

1.1. Introduction

The Computer System Structures Group and the Computer Systems and
Communications Group have been working jointly on a series of related projects that
are described in this joint report. The projects cover quite a wide territory:

1) The largest effort was the development of Swift, an operating system
kernel with several unique features: multiple tasks in one address space
with compile-time protection, heap allocation with garbage collection,
and upcall-downcall organization. Swift captures in a single design
many ideas developed in the last ten years on how to integrate network
communications and display management with an operating system
kernel.

2) SWALLOW is a unique remote file storage system that uses an append-
only user interface to provide atomicity of file updates.

3) A thesis explores whether names used in computer systems can more
closely resemble the way names are used by people.

4) The interconnection of networks belonging to different organizations is
the subject of a new research direction that explores both the technical
and policy issues that are raised.

5) The Community Information System is a new, experimental approach to
dissemination of information using radio broadcast of large volumes of
data and selective filters implemented by intelligent receivers.

6) A Remote Virtual Disk protocol was designed, implemented, and placed
in service as part of a project to explore models of personal computing.

7) The experience of several years in designing network protocols with
modularity violations was captured in a thesis on "soft layering."

8) The IBM personal computer was turned into a full scale network host
attached to the Ethernet, with file transfer and remote login facilities.

9) Work continued on lnternef protocol and gateway implementation,



COMPUTER SYS_TEI‘:ZS GROUPS JOINT REPORT

including especially an exterior gateway protocol that permits isolation
of the internals of one organization network from another.

10) A ring network monitoring station was completed. Statistics can now be
gathered concerning the relative effectiveness of token rings and

Ethernets.

11) An online directory assistance system, DIRSYS, provides a unique
interface to a telephone and mailbox directory of 20,000 names.

These eleven projects, and many sub-projects, are individually described in the
sections that follow. '

2. SWIFT

2.1. Milestones

The past year has seen significant progress in the Swift effort. The first eight
months, roughly, were devoted to planning the implementation effort, including
docign of the tacking and momory management Systemis. impisindiitaudn slanted ai
the end of January of this year. A stand-alone system with rudimentary memory
management and a preliminary implementation of the tasking system was running
within a month. This implementation also included a simple driver for the console
terminal and support for timers. The next month was devoted to the development of
network code, including a driver for the 10 Mbit/sec token ring network developed
by our group‘and an implementation of the DoD Internet protocol. By mid-Aprilthe
system was regularly sending and receiving Internet packets, and detailed
performance measurements were under way. Also in April, a Remote Debugging

Protocol was designed and implemented.

The detailed performance measurements carried out during April pointed out many
areas where performance could be improved, particularly in the tasking system and
the 1/0 device management. As a result, large portions of the system are being
reimplemented at this time.

1Being sold commercially by Proteon Associates as proNET.



COMPUTER SYSTEMS GROUPS JOINT REPORT

2.2. Lessons

2.2.1 Programming Language

We have gone against traditional operating system lore and implemented Swift in
CLU -- a high-level, strongly typed, object oriented language. This is not a radical
departure; after all, Multics was written in PL/1, UNIX in C, and Pilot in Mesa. The
argument against implementing an operating system in a high-level language is
generally efficiency: there is a general belief that high-level languages cannot
generate appropriately efficient code for the internals of an operating system. The
arguments in favor of implementing an operating system in a high-level language
generally include portability and ease of writing, debugging, and maintaining code --
the standard arguments for high-level languages, in general, over assembly
language. Operating Systems are written in a high-level language because the
designers believe that the loss in efficiency is outweighed by the benefits of a high-

level language.

-

There are additional arguments for implementing Swift in CLU beyond these
traditional arguments. The CLU compiler enforces type safety, provides storage
management, and provides and enforces useful data abstraction mechanisms.

Ciiolued lype sdiely aliows us to eliminaie the kernel/user distinciion, and io nave
many processes peacefully coexist in a single address space. We can trade off
compile-time checking for the run-time overhead of protected areas of memory or
code. This allows us to use the full features of the system even deep within the
bowels of device drivers, historically a difficult place to program and debug code.

Storage management by a garbage collector allows us to freely use variable length
data objects inside the kernel. A large class of operating system problems are
related to allocating and freeing data objects and dangling references. We think that
the system overhead of a garbage collector is a reasonable price to pay to avoid
these problems.

One reason that we chose CLU is that we believed it would be easy to modify the
compiler to support Swift. Though we haven’t done this yet, our experience with
CLU so far has been very positive.

2.2.2 Advantages of CLU
We were able to bring up a first system within a month of coding. Swift has been

through one major rewrite already and currently consists of 4600 lines of CLU code,
1600 lines of machine language(ASM) code, and 600 lines of ASM code for the



COMPUTER SYSTEMS GROUPS JOINT REPORT

remote debugger, RDB2.

We found the same advantages implementing Swift in CLU that application
programmer§ have found: increased productivity, the compiler found a good number
of bugs, we were able to integrate different people’s code easily, and strong typing
did help correct bugs.

Swift, like all operating systems, had its share of bugs, but most of them were in the
ASM code. The CLU compiler detected most errors in the CLU code. After the ASM
code stabilized, almost all the bugs that were not caught by the compiler were
conceptual problems with the design of Swift, and not careless errors. This was
partly because of careful coding on our part, and good fortune, but it has convinced
many of us that the CLU compiler is well worth the cost.

2.2.3 Troubles with CLU .

A good portion (1600 lines of code) of the operating system is written in ASM, the.
assembly language interface of the CLU developement system. Much of this was
written in ASM for efficiency, not because it would have been impossible to write in
CLU. However, most of the cost of these operations is the subroutine call necessary
to invoke them. A good example of this is the word cluster -- a data abstraction we
devised to deal with logical operations on 16 bit quantities. The overhead of a CLU
procedure call is on the order of 20 microseconds, so to do a few simple operations
on a word can take as long as 100 microseconds. If the optimizer performed in-line
optimization on words, this problem would disappear.

Adding these optimizations to the compiler does not seem very difficult, and we
plan to make these additions shortly.

Some characteristics of CLU plagued us throughout. A recurring problem is that of
closely coupled abstractions: two data abstractions that together support an
invariant. It would be useful if there were some way supported by the compiler to
package the two together so that the representation of each was available to the
other, but to no one else.

2
Lines Code Comments Blanks
CLU 4656 1166 1587
System ASM 1611 830 408
Equ 1421
RDB ASM 633 222 207



~

N

N

COMPUTER SYSTEMS GROUPS JOINT REPORT

CLU is a high-level language, and the details of its implementation should be of no
concern to the programmer. Yet, when writing an operating system, a certain
amount of awareness is necessary. There are times, admittedly few, when
allocations are forbidden. It is necessary to know when CLU is allocating objects
from the heap. There are some expensive mechanisms under the covers that are not
always obviously expensive -- programmers writing the internals of Swift must
understand these.

A serious inconvenience throughout Swift was the problem of dealing with 32 bit
guantities. CLU reserves a bit per longword to determine whether the longword is a
reference or an integer. In application programs this rarely matters -- inside the
operating system it can cause no end of trouble. There are many objects that are
most easily represented by 32 bit quantities: virtual addresses, page table entries,
and so on. We spent a considerable amount of effort trying to find schemes that
would allow us to fit 32 bit integers into CLU, to no avail. The strategy that we
adopted was to allocate objects in the heap to hold the 32 bit quantity, or store the
32 bit quantity in two integers. In cases where performance or space was a serious
issue we resorted to ASM.

2.2.4 Deadline Scheduling v

In our experience, computer operating systems often need to respond to some
events in "real-time;" that is, with a guaranteed maximum latency. This is true even
of systems not explicitly designed as real-time systems; it is especially important
when network support is required. Thus one of the design requirements we have
identified for Swift is that it be able to respond to events in real-time.

There are a number of problems involved in designing a system, especially a
general-purpose system, with real-time capabilities. First, there is. the issue of
preemption. Maintaining a guaranteed maximum latency for response to events
requires that activities in the system must be preemptible. Preemptive scheduling, of
course, requires synchronization mechanisms to coordinate shared access to
resources; these synchronization mechanisms may interact badly with the
scheduling system employed, as will be discussed below.

In any uniprocessor multi-tasking system, the processor is a scarce shared
resource, and hence its usage must be scheduled. To insure the desired low real-
time latency in responding to events, most real-time systems define "priority"
schemes, in which activities are ranked by order of importance and the most-
important (highest-priority) activity is given the processor. The problem with such
schemes is that the priorities have a global significance. The priority of a particular
activity cannot be meaningfully assigned without knowing the priorities of all the
competing activities in the system. In a general-purpose system like Swift, in which
tasks are dynamically created and in which new programs may be run at any time,



COMPUTER SYSTEMS GROUPS JOINT REPORT

this complete knowledge is impossible and hence traditional priority schemes are
not suitable.

An alternative approach to processor scheduling may be motivated by going back
to our original definition of "real-time response;" namely, response with a
guaranteed maximum latency. This definition suggests a natural way to schedule
the processor: each activity specifies to the scheduler its maximum allowable
latency; from the latencies a deadline for each activity is computed, and the activity
with the earliest deadline is run. This approach meets the modularity goals outlined
above: any activity can be designed and specified without regard to which other
activities may be competing. Moreover, it has the advantage that deadlines are a
very natural concept for programmers to grasp, unlike priorities (which are
meaningless numbers in and of themselves). :

A problem often noticed with deadline scheduling schemes lies in the specification
of the deadline to be met. Most programs are composed of a variety of
independently-designed modules, and it would be desirable to allow each
independent module to define its own scheduling behavior and deadline. To this
end we have defined the notion of a "scheduler region." Each scheduler region may
independently define the deadline for its own completion. The regions may be
fiesied, subjecl iv. the constraint that the deadlines in nested regions must be
monotonically increasing (this constraint is enforced by the software). Regions both
aid in the modular development of software and assist in solving the monitor
interaction problem, as described in the next section.

2.2.5 Interactions of Deadlines and Monitors

As mentioned above, the use of a preemptive scheduling system requires the
introduction of synchronization mechanisms to coordinate access to shared data;
we chose the monitor mechanism, which integrates nicely with CLU’s clusters.
Other researchers have noted that such synchronization techniques can interact
badly with priority scheduling systems. For example, suppose that a high-priority
task has to wait to enter a monitor held by a preempted lower-priority task. If there is
another runnable task with an intermediate priority, it will be run next, and will
effectively delay the execution of the high-priority task.

Evidently what is needed is a way to temporarily promote the task holding the
monitor until it can get out of the higher-priority task’s way. This is particularly clean
in the case of a deadline scheduler: the deadline of the higher-priority task is
propagated to the task holding the monitor until the monitor is released. This is
implemented by causing the low-priority task to enter an "implicit scheduling region"
in which it will remain until it leaves the monitor in question; its deadline while it is in
the implicit region will be equal to the deadline of the high-priority task waiting for
the monitor.



/\

- COMPUTER SYSTEMS GROUPS JOINT REPORT

This simple form of deadline propagation does not suffice, for it is possible that the
low-priority task which holds the desired monitor is itself wailing to enter a second
monitor which is presently held by a third task; and so forth. We need to propagate
the high-priority task’s deadline through the entire chain of waiting tasks. We can do
this in a particularly simple and clever way: after promoting the low-priority task to
the high-priority task’s deadline, we simply wake up the low-priority task. When the
low-priority task is awakened, it will again try to enter the monitor for which it is
waiting; deadline propagation will again be performed, and the process will recur
until a runnable task is reached.

In practice, of course, we do not expect long chains of deadline propagations to
occur. ltis relatively rare for a task to go blocked with a monitor locked or to attempt
to enter a nested monitor, so most of the time a deadline propagation is required, the
task being promoted will be runnable. In this case the overhead required by
deadline propagation is minimal, and the mechanism cheaply and efficiently solves
the monitor interaction problem.

2.2.6 High resolution hardware clocks are essential
We have relearned the lesson that many people have learned over the years: a high
resolution hardware clock is essential.

Swift has no interrupt handlers. When an interrupt goes off, a task is scheduled to
handle it. We expect to be able to handle interrupts from devices that have a
maximum latency of 100 microseconds. This requires our scheduler to be able to
handle deadlines that are specified in microseconds. We also need microsecond

resolution for metering the code.

The current implementation of Swift on the VAX tries to take advantage of the
hardware interval timer provided.

There are two problems with the VAX interval timer for Swift. The first is the
overhead associated with updating the software clock, due both to the VAX and to
Swift. The second is that the clock is jointly updated: some parts of the clock are
updated by hardware, and some by software, which causes serious interlocking
problems. For this reason, we would strongly prefer a better clock supported in
hardware.

2.2.7 Remote Debugging

Experience with earlier systems has convinced us of the advantages of including
debugging support even in the lowest layers of an operating system. Unfortunately,
many of the facilities needed to support a reasonable symbolic debugger (such as
access to a file system) are not accessible to the low layers of an operating system,
especially early in operating system development. We decided to investigate an



COMPUTER SYSTEMS GROUPS JOINT REPORT

alternative approach for Swift: a remote debugger, in which most of the code and all
of the intelligence of the debugger are moved off the machine under debug and onto
a development machine. The development machine can provide all the desired
supporting facilities, such as a file system, easy access to symbols and source code,
logging facilities, and so forth. The machine under debug, on the other hand,
contains a very small "stub" of code to carry out the debugging requests generated
by the user on the development machine. The two machines are connected by a
network of some description; in Swift this is the local-area network which forms the
backbone of the entire distributed system. The remote debugger is known as RDB.

Several problems had to be solved in designing a remote debugging system.
Although remote debugging protocols had been designed before, none was
adequate for the job; so a new protocol had to be designed. In contrast to existing
remote debugging protocols, RDB gives the user the capability to interrupt the
execution of the program under debug at any time by sending an RDB request
packet. This required tricky design in the remote debugger stub: the existing Swift
network device driver had to be modified to watch for debugger packets and transfer
control to the debugger at the appropriate time. The remote debugger stub then had
to usurp contro! of the network device for the duration of the debugging session.

Tu uae, we remoie debugger nas proved very useful in Swift debugging,
particularly in finding problems related to synchronization and locking problems. As
mentioned in the section on CLU, many of the typical problems arising in operating
system implementations (such as dangling pointer problems) have been essentially
eliminated by our choice of CLU as the systems programming language.
Nonetheless, the remote debugger has proved worth the effort.

We envision a further use of RDB in performance measurement. In particular, we
need to be able to gather statistical information on execution times and call
frequencies, and then analyze this information. The analysis requires access to the
symbol tables of the program being analyzed, and hence must be done on the
development machine. We plan to use RDB for gathering the statistics and
transporting the statistical information to the development machine for analysis.

2.3. Plans

We are still at a very early point in the development of Swift. At this point a
preliminary implementation of the multi-tasking system and deadline scheduler is
operational, along with a rudimentary memory management system, and the low-
level support code required to run standalone on a VAX 11/750. Several device
drivers are available, including a driver for the proNET token ring and an
implementation of the DoD Internet protocol; the device drivers use the upcall model
described above.



£

COMPUTER SYSTEMS GROUPS JOINT REPORT

In the immediate future, plans call for a rewrite of much of the multi-tasking code,
to reflect our improved understanding of the problem and increase performance. At
the same time, we will begin using the Argus compiler being developed by the
Computation Structures Group, which we expect will both improve performance and
keep us on a closer track with the Argus implementation. Also in the near term, we
will bring up a rudimentary, non-real-time garbage collector.

Longer-term work for the upcoming year will focus on the areas of: garbage
collection; network support; file systems, including UNIX file system support and
SWALLOW; and linking.

2.3.1 Garbage Collection

As explained above, an important goal for Swift is that it provide real-time response
when needed, rendering unsuitable conventional garbage collection algorithms,
which result in all computation halting while garbage collection is being performed.
Several schemes have been proposed in the past for performing garbage collection
in real-time; all, however, have been plagued by efficiency problems. Work is in
progress on modified versions of Dijkstra’s real-time garbage collection algorithm;
we feel we have several promising approaches. We consider the design of a real-
time garbage collector to be the most important task facing us in the next year.

2.3.2 Network Support

The level of network support currently provided by Swift is minimal, but the code
already written is quite solid. Major tasks to be tackled in the next year are
completing the implementation of the Internet protocol, including routing and error
handling, and writing a version of the Transmission Control Protocol. The TCP will
be a major test of the upcall model; its design will draw on previous TCP
implementations done by our group for various machines.

An early goal is a version of the Remote Virtual Disk protocol designed by our
group, which is presently providing remote disk access services for the Laboratory’s
VAXes. This is a necessary component of the file system projects described below.
We also expect to soon be running an implementation of the BLINK protocol,
providing remote access to bit-mapped displays and permitting work to begin on the
Swift user interface.

Little effort has as yet gone into the design of the higher-level network services
which will ultimately be needed. Such services as authentication and service finding
will be supported in Swift through the network; much design work remains to be

done in this area.



COMPUTER SYSTEMS GROUPS JOINT REPORT

2.3.3 Filesystems and SWALLOW

Ultimately, we expect long-term data storage in Swift to be performed by the
SWALLOW distributed data storage system. SWALLOW provides an object-oriented
storage system, well suited to the object orientation of CLU; moreover, it solves the
problems of concurrent access to shared long-term data and of recovery after

crashes.

Work to date on SWALLOW implementation has been performed on UNIX and on
the XEROX Alto’s, as Swift is not yet suitable for supporting SWALLOW. We
anticipate that it will take us some time to learn to use SWALLOW and to modify
existing applications to take advantage of its features; until then, the ability to access
files on a standard UNIX file system from Swift programs would be very valuable.
Accordingly, we have begun an implementation of a UNIX file system for Swift. The
implementation should support the basic file system operations of creating, opening,
closing, renaming, and deleting files, and the basic file operations of reading and
writing blocks of data. We hope that the implementation will be useful both for use,
with locally-attached disks and with remote virtual disks. It should provide us with
the ability to manipulate and manage long-term data well before SWALLOW
becomes operational, and thus should help support the development of other pieces
of the system, such as the linker. :

2.3.4 Linking

Ultimately, Swift is intended to be useful as a general-purpose computer system.
As such, it must be possible to initiate new programs and to replace existing
instantiations of routines with new or updated versions. In short, we need a linking
facility which permits new programs to be brought into the system, and which
permits unused programs to be garbage collected. Such a linker must be able to
resolve references from the newly-instantiated program to already-instantiated
modules in the system; it must also provide facilities for resolving references to other
not-yet-linked modules and arrange for those modules to be loaded.

Linkers may be characterized in terms of how early or late they perform the binding
between symbols and addresses. There are three general categories:

1) Static linkers. The key characteristic of a static linker is that the
operation of resolving free references is separated from the operation of
initiating a program; at the time a program is initiated into the system, it
must not have any free references. The free references are bound by an
explicit linking operation, producing an executable image in which all
references are bound. Replacing a module in a program requires
relinking the entire program.

2) Incremental linkers. In an.incremental linker, free references are



COMPUTER SYSTEMS GROUPS JOINT REPORT

resolved at the time the program is initiated. All free references must be
resolved at program initiation time (although some references may be
bound to "stub routines" which simply raise an error condition if they
are ever called). To replace a module in a program, any current
instantiations of the program are simply terminated and the program is
initiated again. Note that this implies that at program initiation time, a
"context" must be supplied to guide the resolution of references.

3) Dynamic linkers. A dynamic linker resolves each free reference only
when the reference is actually used. When a program attempts to follow
a free reference, a "dynamic linking fault" occurs, and the reference is
resolved (with respect to some linking context, which must be avilable at
run time). Replacing a module in a dynamic linking system is very
similar to module replacement with an incremental linker.

A dynamic linking system is the most flexible and probably the most desirable;
however, it generally requires special hardware support to run efficiently. An
incremental linking system is almost as flexible and can run much more efficiently.
We will attempt to implement an incremental linker for Swift.

Thete are a numoer of issues wnicn have 10 be resoived before impiementation or
the linker can begin, including:

« The representation of programs and their static variables in memory.
o Interactions between the linker and garbage collector.

« The representation and usage of the linking contexts, which guide the
linker in performing the symbol resolution.

o Details of the module replacement process, including the issues of
redefining abstract data types.

3. SWALLOW DISTRIBUTED DATA STORAGE SYSTEM

During the past year, the most significant progress on SWALLOW has been the
completion of a prototype broker by Craig Zarmer.

The SWALLOW broker is the software on each node of the distributed system that
manages the store that belongs to that node. Such storage may be on a local disk,
or remotely stored on a shared SWALLOW repository (data storage server).

Zarmer designed and built a prototype broker, running in CLU on top of the UNIX

11

e



COMPUTER SYSTEMS GROUPS JOINT REPORT

operating system. The most interesting aspect of his work was the development of
algorithms for extracting data from the repository in local primary memory. The
cache management algorithms must be carefully designed so that if the node
crashes, with loss of the data in the cache, the system properly recovers. Thus the
cache manager takes into account the concurrency control and failure recovery
algorithms of the SWALLOW system.

In addition to the broker implementation, Zarmer analyzed the performance
improvements due to the cache. For many applications, Zarmer’s cache will
significantly improve performance, as compared with a cacheless broker.

4. NAMING FACILITIES FOR FEDERATED SYSTEMS

Karen Sollins has been working on questions of how people and computers use
names and how computer naming can be brought closer to human naming.

Names form the basis of communication both among humans and between
humans and computers. In order to communicate with another human, the human
must be able to name objects and actions in such a way that both humans
understand the names. Analogously, in order to communicate with a computer, the
human must be able to name operations and objects in a way meaningful to both the
human and the computer. Therefore, what can be named and how is a central issue
in designing a computer system useful to humans.

Sollins’ work is an investigation of a naming framework for a distributed computer
system, using human communication patterns to provide a set of goals for the
framework. The system model is one of a federation of loosely coupled computers
connected by a communications network. The goals for the framework based on
human communication, plus the constraints presented by the federated system
model, will provide the basis for the technical problems to be addressed in her
thesis. In addition, since the functions provided by this naming facility will be
different from those functions provided in past naming facilities, the thesis must
address how those additional functions will be provided for the users of such a
computer system.

In the past, naming facilities in computer systems have been restrictive. The space
of file names was likely to be hierarchical and the name on each branch of the
hierarchy might be limited in length. The space of names identifying users might be
flat or hierarchical and might be limited to a small number of characters. Processes,
even subprocesses, often were only namable very awkwardly (perhaps by a number)
if at all, even by a subprocess’s parent. None of these has much in common with the
way people name things, particularly when communicating with other people.

12



vy

COMPUTER SYSTEMS GROUPS JOINT REPORT

.There are two reasons for naming entities, both having to do with communication.
First, names may be used by an individual to organize and remember named entities;
names provide a taxonomy. This sort of name is used by an individual or group to
organize information. Second, names may be used among a group of people as the
basis of communication. In order to communicate, the group must agree on the
meaning of the names used. Over time, they may expand the set of names on which
they agree. They will use certain protocols both to reach such an initial agreement
and to expand further their basis of agreement.

The human clients of a computer system have been trained since early childhood
in using a naming framework for communicating with other humans. A move toward
imitation of the mechanisms used among humans would improve usability in the
naming facilities provided by computer systems. The following seven observations
about human use of names provide a basis for an improved computer naming

facility.

1) Communication: Names are the basis for communication. Therefore
sets of names used by individuals should be sharable, reflecting
common interests and communication patterns.

2) Muniplicity of names:

o Different people use the same name for different things.
e Different people use different names for the same thing.
e A single user uses different names for the same thing.

e A single user uses the same name for different things in different
situations or at different times.

3) Locality of names: A perSon uses sets of names to reflect his or her
focus of interest. A user also may use two or more sets of names to
reflect a focus between or including several contexts.

4) Flexibility of usage of names: Humans use several sorts of names.
For example, names are often descriptions. People use both full and
partial descriptions. Humans also use generic names to label classes of
objects. These generic names may be labels or descriptions. In fact,
humans often use combinations of generic names and descriptive
names in order to narrow the set of objects that are named.

5) Manifest meaning of names: The words used by humans for names
have meanings constrained by human languages. These meanings are
understood by other humans as well.

13

R



COMPUTER SYSTEMS GROUPS JOINT REPORT

6) Usability of names: Humans are able rapidly to define or redefine
names and shift contexts on the basis of conversational cues. They also
have mechanisms for disambiguating names, such as querying the
source of a name for further information.

7) Unification: Humans use only one naming system for all kinds of
things.

The direction in which computer systems have been moving has been toward a
multiplicity of machines interconnected by networks providing a communication
medium. The concerns of privacy and independence from other users have always
been issues among computer administrators and users, but the nature of those
concerns have changed somewhat as smaller, cheaper computers have become
available. In many cases, administrators purchase such computers and put them
into service in isolation. At some later time, the administrators decide to connect the
computers under their management. From here, the collection may continue to
grow with little control or consensus among the participants in such a "system." An
autonomous computer is one for which all decisions are made independently of the
decisions made for any other; all the activities on one computer are isolated from the
activities of any other. Many administrators have pursued this option in order-to
escape large time-sharing systems. A federation is aloose coupling of computers to
allow some degree of cooperation, while at the same time preserving a degree of
autonomy. In a federation, there is some agreement on behavior and protocols to be
utilized, but the barriers apparent in the isolated machine are still available to anyone
who wants to enforce them. If the administrator or user wants to disconnect the
computer from the network by simply not accepting messages, that is possible. |If
that computer provides a service to the participants in the network, they must
understand that such a service will not always be available. On the other Hand,
federation provides the common ground for communication (such as agreement
about protocols and services to be available) should it be desired. The loose
coupling labelled federation is underlying system model of this research project.

Autonomy in the federated system limits the set of organizing structures it is
possible to build. For example, sharing of information, such as collections of names,
across node boundaries is restricted by the fact that the only means of
communicating across node boundaries is by passing messages. The thesis will
explore both the constraints from above (the clients) and the limitations from below
(the federation of nodes), and will provide a naming facility conforming to those
restrictions.

Briefly, the mechanisms proposed are based on two new types of objects, the
context and the aggregate. A context translates names into entities. It can be given
pairs of names and entities to remember and translate on demand. An aggregate is

14



COMPUTER SYSTEMS GROUPS JOINT REPORT

a structured set of contexts. Each aggregate has a current context reflcting that
part of the aggregate that is being actively used by all the participants in the:
communication and an environment reflecting the private informaticn that a
participant carries to the aggregate. The current context is a single context. The
environment is a collection of contexts, possibly ordered. An aggregate is an
individual’s view of the name resolution facility available while communicating with

others.

Further work will include implementing contexts and aggregates in order to further
investigate their feasibility and utility in supporting human-computer naming
requirements. On the other hand, an implementation that is not a complete user
environment cannot investigate fully all the issues discussed above. The thesis will
consider those issues in more depth than the implementation will allow. In addition,
traditionally, some naming mechanisms have provided functions that are not
provided by the mechanisms of contexts and aggregates such as authentication,
protection, management of other information such as time of creation or last use,
and many more. The thesis will also address the problem of supporting those
functions that users expect from their naming facilities.

5. INTER-ORGAMIZATION NETWORKING

During the past year we continued our efforts to understand the issues raised by
network interconnection across administrative boundaries; Deborah Estrin has
chosen this as the subject of her doctoral research under the supervision of Jerome
Saltzer. We are pursuing three related lines of investigation, each of which has both
technical and non-technical components:

eWhat are the policy requirements for network-interconnection
technology when the interconnections span administrative boundaries?
How must the technology developed for intra-organization use be
modified to satisfy these requirements, e.g., network access controls,
policy filters, authentication mechanisms? How do these requirements
vary as a function of the application supported over the connection, e.g.,
electronic mail vs. remote login.

e What are the organization implications for external interconnection?
How must the connecting organizations modify existing internal policies,
procedures, and configurations, all of which were established under the
assumption that internal resources and facilities wouid be accessible to
internal users only? How do these organization implications vary as a
function of the technical characteristics of the connection, in particular
the degree of integration with internal facilities?

e What are the public policy implications of inter-corporate networking?

What is motivating such interconnection, what industry sectors are
involved, and how will this new form of inter-corporate relations affect

15



COMPUTER SYSTEMS GROUPS JOINT REPORT

market dynamics, e.g., solidification of relationships between buyers
and secllers, for example? What will be the role of public
telecommunication services vs. private networks in providing the
infrastructure for such interconnections?

Following an informal survey of the inter-organization networking activities that are
currently underway (for example, transportation, grocery, insurance, airline, bank,
pharmaceutical, university), we found that the fundamental difference between
computer-communication networks that operate across administrative boundaries
and more traditional inter-organization communication modes is that a user in one
organization can cause some event to occur automatically within the domain of
another organization, without any human intervention or auditing. Given this
observation, it is useful to analyze inter-organization networks in terms of the
application that is supported across the connection since the application determines
the nature of event that a user in one organization can evoke in a second
organization. Interconnection arrangements can be grouped into four categories of
application -- electronic mail, database transaction, file transfer, and remote login.
These categories differ from one another in the range of capabilities made available
to external users and the degree of control over external usage available to each
organization. The potential organization policy concerns intensify as the number of
internal resources that tho external user ig given access to increasce:

« Electronic mail is the most restrictive. It allows users to send and receive
messages but not to extract any information from the remote system.
Therefore, security concerns for the most part are limited to
authentication of message originators and recipients to one another and
to restricting overly burdensome volumes of undesired mail.

¢ Database transaction systems do allow extraction of information via
querying, although typically the extent of interaction is highly restricted.
Nevertheless, due to the active nature of such connections, security
concerns include not only authentication of the remote user, but the
checking of access rights as well.

« File transfer allows a remote user to extract or insert any file such as a
program, data, or document. Therefore, security concerns exiend to
controlling access to all stored information.

e« Remote login permits access to all system resources. Therefore,
security concerns extend to controlling access to all system resources.

For the most part, these security concerns are the responsibility of the internal
systems’ security mechanisms and not of the communication facility. But, the
presence of the more diverse, external community strains what were previously
adequate internal security mechanisms and policies.

One class of policy enforcement mechanisms which might be applied to insulate

16



COMPUTER SYSTEMS GROUPS JOINT REPORT

interconnected networks, and therefore organizations, from one another is policy
filters in gateways. This is for the most part a technical fix but does require that the
organizations explicitly define what their policy requirements are. The current
technological basis for providing policy control between networks ‘is almost
- completely non-existent. Today, whenever a packet of data arrives at the boundary
between organizations it is difficult for any person or program to discover its
purpose, since that purpose is buried in layers of protocols, and this packet may be
only one of many that are part of a single activity (e.g., a file transfer or host-to-
terminal communications stream). Present approaches fall into one of three
categories, none of which provides both satisfactory function and satisfactory
control:

1) Allow the packet to cross, and depend on the end points (i.e., host
systems or users) to initiate only communications that meet policy
constraints. This technique fails, for example, if network B finds that it
can be used as a transit network between stations on network A and
stations on network C. In such a case, network B gets no chance to
exert any policy control.

2) Require that all protocols terminate at each gateway between networks.
ror every application, place a program at tne gateway 10 act as a
monitor and relay. Since the protocol is terminated, the underlying
purpose of the connection is visible to the monitor, which can more
easily enforce policy constraints. This approach is analogous to making
a telephone call in which each party can talk only to an intermediate
operator, who relays the conversation. While acceptable for some
applications, delay and loss of special features cripple other

applications.

3) Do not permit the connection in the first place. This approach provides
conservative control, but is rather devastating from an application point
of view. Given the fear of the alternatives it is probably the most

widespread technique used today.

We encountered inter-organization networking activity in three arenas: industry-
wide peer networks, customer-supplier arrangements, and university/research
cepter networks. Of these three, the university/research center arena employs the
most sophisticated technology and applications. We attribute the relative intensity of
organization policy problems encountered in this arena to the degree of integration
of each participating organization’s internal facilities with its external-
communication facilities. Similarly, we speculate that the absence of such
integration in existing industry-wide and supplier-customer communication arenas
partially accounts for the rarity with which organization policy problems have been

encountered to date.[CSS Publication 4]

17



COMPUTER SYSTEMS GROUPS JOINT REPORT

5.1. IBM Interconnection Project

Recently we embarked on an experimental project with 1BM to study the policy
requirements of interconnected organizations and to implement examples of such
links. The proposed undertaking consists of two parts: implementation of a link
between a M.L.T. and an 1BM local network, and investigation and study of the policy
requirements that arise as a result of this interconnection.:

The initial testbed for policy research will be a link between gateways attached to

the M.L.T. local area networks (largely DARPA-provided and connected to the
ARPANET) and the IBM Corporate Job Network. This link will provide us with first-
hand experience experimenting with policy control mechanisms that are acceptable
to the interconnected parties, but minimize interference with the function and
performance of the underlying data communication systems. The initial milestone of
this project will be the following: electronic mail between authorized parties can be
originated either within the ARPANET or the IBM network and terminate at the other
network, with satisfaction as to policy control expressed by the M.L.T. network and
ARPANET operators (i.e., Defense Communications Association) and by persons
responsible for asset control within IBM. Subsequent activities will include
experimentation with remote login and file transfer capabilities as well as the use of
information corvices. ‘ '
" The initial design of the connection is as follows: Messages destined for 1IBM will
travel from authorized M.LT. users via the ARPANET and local networks to a VAX
11/750 that operates as the site of policy screening on the M.LT. side of the
connection (Don Gillies, a U.R.O.P. student, is implementing the policy-filter and
mail-forwarding mechanisms for the M.LT. half-gateway.) After authorization,
messages will be encrypted and forwarded from the policy-VAX, to the so-called PC-
gateway, and over dial-up telephone lines to the IBM half of the gateway. The PC-
gateway is an LSI-11.which forms the interface between an M.I.T. local networks and
8 dial-up ports. The IBM half of the gateway will decrypt the message files, perform
any policy filtering deemed necessary, and convert the message format into one
suitable for distribution over their internal network. Mail transfer from IBM to M.L.T.
will operate in a similar manner. '

The encryption of messages serves to authenticate to IBM that the messages were
processed by the M.L.T. policy-VAX, and vice versa; in addition, encryption provides
some protection from message interception. We also require a packet-level
mechanism to insure that all packets arriving from IBM are forwarded to the
policy-VAX before traveling elsewhere on the M.I.T. networks. Jerome Saltzer, in
conjunction with David Reed, Deborah Estrin, and David Clark, has specified a
protocol whereby the IBM half-gateway will initiate a connection to an authentication
server via the PC-gateway, before being permitted to forward packets onto the M.L.T.
local network. Once the connection has been authorized, the PC-gateway must be

18



COMPUTER SYSTEMS GROUPS JOINT REPORT

able to certify that subsequent packets are in fact originated by the entity that was
initially authenticated. We will use a link-level protocol developed by David Reed to
provide the necessary link-level authentication. This protocol encodes a ticket in the
header of each packet (the ticket is agreed upon when the connection is first
authenticated) to certify that the packet was originated by the entity that established
the authenticated connection.

5.2. Network Access Control

Network Access Control is an important component of a solution to the problems
of inter-enterprise communications. Network access control is our term for methods
of limiting and accounting for traffic that enters a network to manage the network
communication resource. That is, network access control is a way of controlling
who can use a particular network, and, to some extent, controlling allocation of the
network resources.

We assume that networks are interconnected by inter-enterprise gateways. Such
gateways’ primary job. is to forward packets from one network to another. Our
approach to network access control is to provide gateways with enough information
to decide for each packet whether or not to forward.

An analogy is the international system of passports and visas. In this system, a
person may cross a national boundary if he/she is in possession of the appropriate
passports and visas. The border-crossing criterion is simple and fast to apply.
Border-crossing policies, on the other hand, are implemented by individual countries
through such agencies as consuls or embassies, which make a policy decision

before supplying appropriate visas.

We have designed a system for network access control that resembles the visa
system. [CSS Thesis 4]. Each gateway between enterprises logically combines two
agencies, one for each network. When a packet arrives at a gateway, the agency for
the source network will require an appropriate exit "visa" before forwarding. The
agency for the destination network similarily requires an appropriate entry "visa."

Entry and exit "visas" must be difficult to forge. Our method uses a characteristic
fraction computed using a reasonably secure cryptosystem such as DES (a so-called
cryptographic checksum). At any point in time, the gateway knows a set of keys for
use in computing such characteristic functions. To contain damage (due to lost
keys, stolen "visas" etc.), keys are changed frequently in the gateway.

Corresponding to the embassies, there are Network Access Control Servers
(NACS) for each network. In order to set up communication through a network, the
source of messages must negotiate with each NACS for the networks its traffic must

19



COMPUTER SYSTEMS GROUPS JOINT REPORT

pass through. This is done dynamically. A packet entering/leaving a network with a
"mull visa" is forwarded to the NACS for that network by the gateway. The NACS
authenticates the source of the packet using some encryption-based authentication
system such as that proposed by Needham and Schroeder.[1] If its use of the
network is proper, then a key to generate "visas" is sent to the source of the packet,
and the packet is forwarded on. .

In order that the source can properly control the path of its packets, we strongly
recommend source routing [2] at the inter-enterprise connection level.

Uses for this "digital visa" scheme include control of an enterprise’s information
assets (asset protection) by the use of exit visas, bill source for transit network usage
using entry visas, managing audit trails at the NACS, etc.

6. COMMUNITY INFORMATION SYSTEM PROJECT

Since the Community Information System project started nine months ago we have
constructed software that maintains an inverted full-text data base of articles from
The New York Times and an electronic clipping service that performs selective
dissemination of information. The performance and reliability of the system has now
reached a point where members of our staff use the system in place of a morning
paper.

The goal of the Community Information System Project is to investigate ways of
using computers to help people communicate more effectively. Over the past year
our emphasis has been placed on building a data base of interesting information to
support our on-line browsing and clipping services, keeping in mind the data base
requirements necessary for our extension of the service into laboratory members’
homes next year.

The Community Information System consists of | many subsystems which
communicate over a wide variety of communication channels. Tracing the flow of a
sample piece of information should help clarify the function of the system.

Qur primary information source is currently The New York Times news service.
The news service arrives from New York at Technology Square on a standard
telephone circuit. At Technology Square the signal is de-multiplexed, converted to a
standard EIA signal, and made available to software on a VAX/750 UNIX system
(MIT-CLS) by special-purpose hardware.

On the UNIX system a dedicated process continuously listens to the news wire and
accumulates articles. The process accumulates 6-level Baudot characters from the
serial port dedicated to the news line, converts the Baudot characters into ASCII,

r\



COMPUTER SYSTEMS GROUPS JOINT REPORT

watches for article boundaries, and stores each article in a separate file in the UNIX
file system.

The appearance of a news article triggers several events. First, a program called
the parser converts the text into our standard information item format. Information
such as the author, title, priority, and subject of the article is extracted and stored in
standard headers. If the article was split into several pieces for transmission the
parser recombines it. Once the article is in standard format, the parser moves it to
an output directory for the next step of processing. The parser also uses the
information it extracts from articles to maintain a synopsis data base which is used
by the on-line browsing program.

Once the article has been converted to a standard format, it is included in a full-
text inverted data base of on-line information items. An online tool called "browse"
allows users to access articles by specifying a desired article’s category, type, or by
specifying free text keywords that appear in the article.

In addition to maintaining an on-line data base, users can send mail to
"Clipping@MIT-CLS" to specify a standing query or "filter." After an article is
processed by the parser it is examined by the clipping service. The article is mailed
2 any uscr who has submitted a filter that matches the article. Filters aic booieai
combinations of words and phrases that can be applied to the priority, author, and
text fields of an article.

The data base system and clipping service we have built are general purpose, and
are not limited to processing information from The New York Times. The design of
the system is intended to make the addition of new sources of information as easy as
possible. For example, we are currently finishing software that will allow users to
make data base submissions via ARPANET mail. Once this software is complete,
ARPANET bulletin boards will be included in our data base.

In addition to central site services, we are making our data base available to
geographically dispersed computers. This is accomplished by broadcasting
information on a low-cost digital packet radio system. Remote computers use the
broadcast information to update their local data bases according to the interests of
their owners. The scheduler for the broadcast channel is complete, as is the
engineering work to start digital broadcasting this summer. By next year the
software for the remote computers will be complete. The software will keep remote
data bases up to date and display information according to priorities set by its

operator.

An important lesson that we have learned this year is that text need not be indexed
by hand to be useful. Full-text indexing of articles proved to be very effective in
allowing users to select relevant sets of articles from the data base. Part of our

21

IR



COMPUTER SYSTEMS GROUPS JOINT REPORT

continuing interest lies in human engineering the system’s user interface to permit
non-professional users to use it as an everyday tool.

7. MAKING THE VAX LOOK LIKE A PERSONAL COMPUTER

We have purchased a number of VAX 11/750s from DEC. These are meant to be
used for research in single user machines.

We firmly believe that personal computers as powerful and as large as the VAX will
be available to the consumer within five years. These computers will fit on a desk-
top and will be reasonably priced. We want to determine interesting ways to use
these computers now, so that when the technology arrives, we will be prepared.

Simply using the VAX as a single-person computer does not make it a personal
computer. Personal computers possess certain characteristics. A personal
computer is always accessible, operates for you continously, and is configured to.
your personal taste. It does not have to be portable, but it should not be difficult to
move it. The VAXes do not have these features.

The VAX is large, hot, and noisy, and is therefore not suitable for your office or
your nome. It IS not accessible in the same way that personal computers are. Itis
possible to attach a line from your VAX to your office and maintain the illusion that
the VAX is in your office, but it is not terribly easy to move the VAX to another office.
Several drawbacks come about because there are fewer VAXes available than
people who want to use them as personal computers. This means we must take
turns using a VAX as our personal machine. Sharing personal computers presents
several problems. Sharing prohibits continous operation on your behalf. It is not
polite to simulate a circuit for several days if people are waiting to use the machine.
If more than one person uses your "personal" computer, whose taste is it tailored
to? If we are able to configure a computer according to people’s tastes, does this
then mean that they can only use the single computer that is theirs, even if several
other VAXes are sitting idle?

We have performed research aimed at making the VAXes act like personal
computers. This entailed maintaining the illusion that each person had a VAX in his
or her office that belonged to them personally. We accomplished this by attaching
the VAXes to a local area network®. Two research projects dealt with making the
VAXes your "personal" computer. BLINK allowed you to attach a bit-mapped
display with an input device to the VAX. This display sat in your office, and was
connected to some network. RVD allowed you to attach your "virtual disk drive" to

3The Proteon proNET (also known as the version 2 ring). The proNET is a 10 Mbit/sec ring
network.

22



COMPUTER SYSTEMS GROUPS JOINT REPORT

your computer. The virtual disk drive is really only a segment of a large disk that
everyone shares.

7.1. RVD

Our ideas about personal computers were influenced by our use of XEROX Alto’s.
Each Alto was identical. Each user had their own disk(s) that they inserted into the
Alto’s disk drive when they booted the machine. We tried to do something similar
with the VAXes. The result was RVD - the Remote Virtual Disk protocol.

The goals of the RVD project were to find a way to allow you to approach any
available VAX, "spin up" your disk, and have a personalized environment. Since the
VAXes were located far from our offices, and RKO7 disk packs were expensive,
allocating an RKO7 pack to everyone was unacceptable. RVD provides each
machine with many "virtual" drives in which a user can "spin up" any of his disks.

Other advantages of remote disks are the ability to use machines that have no disk
drives, the ability to obtain economy of scale by purchasing secondary storage in
large chunks rather than an RKO7 at a time, and to share common code, rather than

duplicate it on everyone's disk®.

Why did we implement RVD as opposed to a file server? RVD provides more
flexibility. A file server imposes the clumsy model of files on its clients. Some of our
systems have no notion of files. In general the concept of adding on some number of
disk drives seemed much cleaner and natural than the complicated idea of sharing
files, and retrieving them from some common source. Adding a drive to page off is
understandable in a virtual disk system. Mounting a filesystem on top of a disk drive
seems very straightforward. This allows you to slip in a shared file system
underneath the operating system transparently. Once you have spun up a disk, it is
attached to your computer. You do not have to negotiate with the remote server for
each file access.

RVD consists of two halves -- the RVD server and the RVD client. The RVD server
manages the disks, and responds to the clients requests over the net. The current
server implementation is running as a user program on a VAX 11/750 running UNIX.
It has 3 RA81’s attached to it. The protocol was designed to minimize the
computational overhead at the server so that it should not be a bottieneck. The RVD
client is inside the UNIX kernel. We wrote a device driver for virtual disks, and it fits

neatly under the UNIX operating system.

4The savings can be enormous. At M.L.T., a complete UNIX {man, sources, lisp, pascal compiler,
CLU system, and so on) is larger than an RKO7. A scaled down version still takes a substantial portion
of the disk. Storing most of UNIX on RVD disks allows the full use of UNIX, and allows each of the 22

disks to be used for useful storage.

23

A



COMPUTER SYSTEMS GROUPS JOINT REPORT

RVD has been in service for about 8 months. Until this month the server was
running as a user program on a time-sharing system with a single RM80 used for
RVD. From the client machine reads are comparable to an RKQ7, while writes take
about twice as long. The current version of the server was a quick and dirty hack,
written originally to run on a PDP 11/45. It was meant to test the client code. When
the server is rewritten we expect to see write times comparable to read times.

Because of the limited disk space and the slow writes, we have limited RVD to be
used for shared read-only disks, and for file system backup. A full UNIX can take as
much as 75% of the disk space on an RK07. Most of UNIX is now run off of virtual
disks. RVD has also been very useful for tape backup. Without RVD we would be
required to shut our VAX off, and physically carry our RK pack to a machine that has
both a tape drive and an RKO7 drive. With RVD we just spin up a backup disk on
both machines, and copy the appropriate dump to tape, while our system is running.

We have just brought up our RA81 drives. This has added more than a Gigabyte of
storage to RVD. The writeable disks have just been allocated, so we should probably
see an increase in usage of RVD. Currently, the RVD server receives about 500K
packets every 2 days, and sends about 1M packets in the same interval.

8. AN ARGUMENT FOR SOFT LAYERING OF PROTOCOLS

During the year Geoffrey Cooper completed a Master’s thesis concerning protocol
layering. There are two ways of looking at what the thesis accomplishes. From one
point of view, the thesis begins with the fact of layered protocols, analyses them,
finds them lacking, and suggests a "better way" to write protocols. From a different
point of view, the thesis develops the need for layered protocols, examines their
advantages, and suggests how layering may be maintained in a protocol design
without undue cost to the efficiency of the protocol implementation.

The thesis concentrates on one particular situation, that of a layered protocol
architecture which implements reliable communications between cooperating
application-level entities. In this context one sees that the maintenance of a layered
structure in the protocol implementation could cause it to be so inefficient as to be
unusable. After a good deal of analysis, an extension is introduced to protocol
layering which provided a mechanism whereby the shortcomings of the layered
structure can be fixed.

The thesis begins with a development of the concept of protocol layering, and an
outline of the advantages of the scheme. This discussion notes that because there
are typically many different network entities inside of a computer system, but only
one (or perhaps two) hardware interfaces to the network, it is a requirement of the
network software in the system that it allow all of these entities to share the network

24



COMPUTER SYSTEMS GROUPS JOINT REPORT

hardware. Further, because the task of implementing all the network applications in
a host is a major one, there is a strong desire to modularize the structure of the
network software in a computer system in such a way as to make it possible for the
different network applications to share, at 'ié‘u.,i,'part of the code that implements
them. LET

Protocol layering provides an elegant means of satisfying these two criteria in a
single mechanism. In a layered protocol architecture, each layer of the architecture
provides to the layers above it a more sophisticated set of services than is provided
by the network hardware. The nature of the "refined" service that is provided by
each layer is such that the service fits into the requirements of many of the network
applications. Some applications will wish to make use of this refined service directly,
while others will make use of it indirectly through the device of added layers of
protocol (each of which refines the service further). Protocol multiplexing can also
be provided in each layer of the protocol architecture, to allow applications to use
the layer’s services directly without letting them interfere with transport layers which
wish to further refine the layer’s services. As a side effect of the introduction of
protocol multiplexing, the requirement of being able to share the network software
among many network entities is also met.

~1ol0col layering is, then, a powerfui technique for achieving moduiarity ot the
design and implementation of network software. It has been central to the
discussion of the preceding chapters that the advantages presented by protocol
layering are sufficient that it would not serve to abandon a layered structure entirely.

Still, protocol layering is not without severe shortcomings. Because of the
uncertainty which is inherent in all network communications, a network entity must
always maintain a death timer, which provides it with a mechanism that it can use to
avoid waiting forever for a cooperating remote entity which has failed. In a layered
protocol implementation, the same problem occurs at every level of protocol, so that
it is necessary for the implementation of each layered entity to provide its own death
timer. Since, at a given time, the cooperation of all the layers in use is required for
any useful communications to take place, it clear that all but the shortest of these
death timers are really unnecessary. All but one of the death timers in a layered
structure is thus a parasitic side effect of the introduction of protocol layering.

It is also common practise to set shorter optimization timers for the purpose of
providing different transmission characteristics than are available in the lower layers
of protocol. Since lower layers may piggyback messages with those of higher layers,
an optimization timer at a lower layer which is longer than one at a higher layer is
redundant. Thus, protocol layering encourages redundancy of optimization timers
as well as death timers. The characteristic of layered protocols that caused their
implementations to set many timers, most of which are useless at any given instant,
was entitled the "timer problem."”

25

T



COMPUTER SYSTEMS GROUPS JOINT REPORT

A more severe problem than the timer problem is also investigated in the thesis.
Entitled the asynchrony problem, it stems from the need for network entities to
reliably coordinate state information with their cooperating remote entities. In a
layered context, this coordination of state occurs independently at each layer of
protocol, because of the perceived inability of layered protocols to coordinate this
activity without violating their modularity. The asynchrony problem results in an
increase in the number of packets sent over the network to perform a given function
at the highest level of protocol. This increase is (in the worst case) exponential in
the number of layers in the protocol architecture. Since many of the costs
associated with sending and receiving packets are independent of their size, an
exponential increase in the number of packets sent and received can be expected to
result in a roughly exponential decrease in the relative throughput as seen at the
application level protocol. It is thus a requirement of any protocol implementation
that was to provide a useful service that it avoid the asynchrony problem.

There exist protocol implementations that do provide a useful service. The thesis
examines some of the techniques that are used by these protocol implementations to
avoid the asynchrony problem. These range from the total abandonment of a
layered structure to a series of predictive "tricks" which work well for some higher
level protocols, some of the time. The inherent harm in these techniques is that each
is entirely independent of the protocol specification. Thus, to imple'men_t a usable
version of a protocol, it ceases to be sufficient to simply implement its specification
as written. If a protocol specification does not say how to implement the protocol,
then its value is considerably diminished. Furthermore, the "tricks" needed to
implement a protocol efficiently are generally not codified, and are often specific to
particular protocols or operating systems.

The existing solutions to the asynchrony problem make clear the attractiveness of
any solution to it that works within the context of a protocol layering, and is
integrated into the protocol specification. The major effort of the thesis was to
develop such a technique, which is called soft layering.

In a soft layered protocol, the protocol specification is augmented to include a
"usage model" for the protocol: a model of the way in which the protocol expects
higher level protocols to use it. Higher level protocols which conform to the usage
model may expect to receive an efficient service from the protocol being specified.
Other higher level protocols will still be able to make use of the service defined in the
protocol specification, but the service provided to them will not be efficient. Soft
layering provides a mechanism whereby the meaning of protocol efficiency -- which
is always a part of the protocol implementation -- may be formalized in the protocol’s
specification. This ensures that all implementations of the protocol provide the same
service from the point of view of both correctness and efficiency.

290



COMPUTER SYSTEMS GIROUPS JOINT REPORT

The analyses of protocols that were performed in the thesis led to another of its
contributions. The thesis develops a remarkably succinct and useful terminology for
analysing network entities: "happiness terminology." A network entity is said to be
happy if it has received confirmation from its cooperating peer entity, indicating that
every action requested of the peer has been completed (successfully or otherwise).
Itis unhappy if this is not the case: if there is some action which has been requested
of the cooperating peer for which no confirmation has been received.

It is our belief that the concept of "happiness" is generally useful in the process of
designing and implementing protocols, in a manner analogous to the way in which
data abstraction is useful in the process of designing and implementing other kinds
of software. For example, the question of how a protocol entity is made happy or
unhappy is anlogous to the maintenance of a rep invariant in an abstract data type.

9. IBM PC NETWORK SOFTWARE PROGRESS

This project started one and one half years ago with the goal of making a personal
computer act as a full-scale network host. The first step was to implement a file
transfer program based on the Department of Defense InterNet family of protocols
on an IBM Personal Computer. The second maior application was the remote login
program, Telnet, based on TCP/IP, and on which much of the work of the past year
has been done. Initially, the plan was to run the network protocols over a serial line
to a gateway to the high speed networks. More recently, dlrect attachment to local
area networks has been added.

9.1. Internet Implementation |

Last year’s progress report described a very efficient file transfer package, TFTP,
that achieved its effectiveness partly by being very non-modular. This year’s goal
was to insert modularity without losing effectiveness, so that a common internet
layer could be used for both file transfer and remote login. The first step was to port
the internet and UDP code from a UNIX implementation done by Larry Allen. We
* tried to preserve the software interface for the routines, but a major goal was also to
prevent unnecessary copying of packet buffers between layers. Since the interface
driver and the user program run in the same address space in our implementation on
the PC, we were able to get away with copying data just twice: once into or out of the
packet buffer for the user program, and once to or from the device.

The UDP- based name user code from the UNIX implementation was also ported
with UDP. It resolves textual host names by polling known name servers over the
network, and is integrated with all of the user packages.

We also needed a network interface driver. Anticipating a need for several different

27



COMPUTER SYSTEMS GROUPS JOINT REPORT

network drivers, we modified the terminal emulator’s serial line driver, gutting it and
adding C code to deal with the link level protocol that we use over the serial line. We
also required a serial line driver for the gateway that we used, so that packets
generated by the PC could be forwarded to another network. We used Noel
Chiappa’'s C-Gateway. David Bridgham wrote this driver, though its development was
hindered by the rapidly changing hardware and software substrate (the C-Gateway
was still under development at the time).

Louis Konopelski ported Larry Allen’s TCP and Liza Martin’s Telnet to the PC. This
effort was simplified by the fact that our internet layer kept almost the same interface
characteristics as the one written to work with TCP. The TCP uses a small non-
preemptive multi-tasking package which allows it to be quite responsive to the
asynchronous nature of the network. It also uses some of Dr. David Clark’s ideas

about upcalls.

We also decided that it would be good to have a TFTP which used the same
internet library as the TCP, so we ported that TFTP from UNIX to the PC also, at
negligible performance loss over the old one.

9.2. lnternet Implementation 1l

We decided to modify the internet implementation to take advantage of the
conditions on the PC under which it was running. On the UNIX system, it ran in a
user process and communicated with the kernel via system calls. Here, with all the
network code in a single address space and with our tasking system, we could do
better than that, and have a consistent structure throughout the system based on
tasks and upcalls.

The new implementation has a task associated with each network device. When a
packet is received, the interrupt handling code enqueues the packet and wakes up
the task. Later, when the task runs, it removes the received packet from the queue,
does the processing of the packet that needs to be done at this level (protocol de-
multiplexing) and calls internet with the packet if it is an internet packet. Then
internet does its processing and calls TCP, or UDP, or ICMP, or GGP in turn with the
packet.

When a layer wishes to send a packet, it fills in the parts of the packet that it wants
to fill in and then calls the layer below it with the packet. Finally, the internet layer
routes the packet, looks up the address of the routine to physically transmit the
packet, and calls it.

This modification required an almost complete rewrite of the internet and UDP
layers, as well as the introduction of ICMP and GGP code. (The only GGP function

28



SHFITIIRT

COMPUTER SYSTEMS GROUPS JOINT REPORT

supported is an Echo server). TCP was quickly modified to utilize the new structure,
and it worked well.

January saw the release of a new network interface, the 3COM 10Mb Ethernet
interface. We had to develop a driver for it for the PC, done by John Romkey, which
slipped in modularly in place of the serial line driver, and also one for the C-Gateway,
ported from BBN code by David Bridgham. In addition, we needed some way to
translate from internet addresses (which are 32 bits long) to Ethernet addresses
(which are 48 bits long). To do this, we chose the Internet standard Address
Resolution Protocol, which also required implementation on the C-Gateway.

The new structure of the system proved itself the first time we tried an Ethernet
Telnet. After resolving some differences in the implementation of the Address
Resolution Protocol between the PC and the gateway (this was the first time they had
ever spoken to one another), and one bug fix in the PC code, we had a working

Ethernet Telnet.

At this point, further development was done on the Ethernet driver and much time
was spent refining TCP and Telnet. We also wanted to bring TFTP up on the
Ethernet, but the implementation which we were using would not port easily to the
new internet, nor could it easily utilize a now driver. A new TFTP was then wrilten
from scratch. A TFTP to floppy disk typically has transfer rates around 15 Kbit/sec;
TFTP’s which discard the incoming file have run as high as 98 Kbit/sec. These
TFTP's were with a PDP 11/45 running UNIX, and were done via the C-Gateway.

As we used the programs which we developed more and thought about the
possibilities of having them run at other sites than M.L.T., we encountered several
issues which caused us to build a customizer. The issues included

« having a single program run at different speeds on the serial line
s determining the PC’s internet address on an Ethernet

« determining the addresses of name and time servers
« initial values in the internet to Ethernet address translation cache
« setting up personal attributes to Telnet (such as whether the back arrow

key is delete or backspace)

There is a data structure in a well-known place in every program that contains initial
values for these attributes and others such as what the program is, the version
number of the program, and when it was last customized. Every program uses the
same data structure, and the customizer simply allows editing of this structure

¢

29



COMPUTER SYSTEMS GROUPS JOINT REPORT

through a menu-oriented user interface, as well as duplication of the structure of
another program. These changes previously required recompilation of the program.

A number of other programs were also develonnd. They include TCP whois, which
queries a remote site for information about one of its users; ping, which sends out
ICMP echo requests; setclock, which queries a set of time servers and sets the PC’s
clock based on the results; hostname, which resolves textual host names into
numeric addresses and prints the addresses and the names of the servers which
responded to the request; and cookie, a program which prints a "quote of the day"
after having fetched the quote from a cookie server.

9.3. The Terminal Emulator

The terminal emulator was originally developed by David Bridgham to allow PC’s to
be used as terminals during program development. It emulated a DEC VT52 at the
time. It was later upgraded to emulate a Heath H19, with the exception of ANSI mode
and certain things such as keyboard locking which would be impractical on the PC.

During the development of Telnet, we realized that it would be much more useful to
have the PC appear to be a smart terminal such as an H19, rather than as a dumb
ermmnai wrich couia do no cursor or screen manipuiation. We decided to slip the
same low level terminal emulator code in the standard 1/0 library terminal output
code. This involved breaking the emulator up into two distinct parts, which handled
the user interface, serial line, and actual emulation.

Experience with Teinet later showed that at times, Teinet could receive data for the
screen faster than the emulator could handle it; the emulator became a bottleneck.
This problem was rectified by having the hardware do the scrolling instead of the
processor, as was the case before. With the improved emulator, Ethernet Telnet
often performs better than a 9600 baud line wired directly to a machine.

We also found it necessary to add handling-of some ANSI mode features since
EMACS on one of the machines that many people around the lab use utilizes ANSI
mode operations.

9.4. Remote Logging Protocol

To aid in debugging of a variety of programs, we implemented the remote logging
protocol described by Dr. David Clark. Use of this service allows us to monitor
machines that are in service, discover the reasons for failure of machines, and see
when obscure conditions which should never occur do occur. A server for the
logging protocol was done for VAX UNIX in CLU by Mark Rosenstein. User logging
code was written for the C-Gateway, the IBM PC, the M.I.T. TFTP Dover Spooler, and

°



pee-eT ey

COMPUTER SYSTEMS GROUPS JOINT REPORT

the Network Monitoring Station by David Bridgham, John Romkey, Geoffrey Cooper,
and David Feldmeier.

10. INTERNET PROTOCOL WORK

10.1. Protocol Performance Improvements

Work continued this year on testing techniques for achieving higher performance
from the Internet family of protocols on different types of computers and different
operating systems.

10.2. UNIX Kernel Network Support

Many of the Internet protocols were implemented on our PDP 11/45 running
version 6 UNIX. Since the kernel in this system has a small address space and a
poor debugging environment, only the the most basic networking functions were
included in it. In the kernel are modules to drive a proNET ring device, to transmit
and receive Internet packets, to de-multiplex incoming packets, including UDP and
TCP packets, to reassemble Internet fragments, to maintain a cache of Internet hosts
ana meir pest tirst hop gateways, and 1o route a packet to its appropriate tirst nop on
the local net.

10.3. Application Processes

Outside the UNIX kernel are network application processes to handle remote login,
file transfer, mail transfer, and network diagnostic, error and routing reports. The
user and server Telnets deserve special mention since they run on TCP which is the
most complex of the internet protocols.

10.3.1 Server TCP/Telnet

Server Telnet, the remote login protocol, runs in the same process with its TCP and
IP layers; it supports one Telnet connection. Multiple server Telnet processes run
simultaneously when several remote logins are being supported. Collapsing server
Telnet into the same process with its TCP and IP has several performance benefits -
such as eliminating interprocess communication and data copying, and decreasing
the number of processes scheduled. It also allows TCP to query Telnet about any
data it might want to send out with TCP connection maintenance information; this
reduces the number of packets transmitted on a connection. The jobs of the various
layers can be performed when most appropriate rather than when each protocol
layer is "scheduled." This implementation of TCP supports most features of the
protocol and includes code to prevent "silly window syndrome.™

31



COMPUTER SYSTEMS GROUPS JOINT REPORT

10.3.2 User TCP/Telnet
Network protocols are often specified with a large amount of internal asynchrony;

this greatly complicates their implementation. This is particularly true in systems like
UNIX, in which processes cannot share memory oOf communicate cheaply. The
result is that protocol implementations often use special-purpose multiplexing to
simulate asynchronous activities; this muddies the structure, making understanding
and modifying the code difficult.

We explored a different approach with our implementation of user Telnet. We
designed a small subsystem permitting multiple asynchronous activities ("tasks"),
each with its own stack and machine state, to run within the context of a single UNIX
process. Tasks can be scheduled in response to events external to the process,
such as the arrival of a packet from the network, and by other tasks within the same
process. A non-preemptive scheduling algorithm is employed to avoid coordination
problems in accessing shared data.

The user Telnet includes a small implementation of the Transmission Control
Protocol. This implementation was actually a translation of a TCP written in BCPL by
David Clark for the XEROX Alto minicomputer. The TCP implementation uses three
tasks, of which two are contained in the TCP module and one deals with timer
inatiageiient. Ohe. TGP ask fandies input packeis; it 1s awakened by receipt O a
signal from the network driver indicating that an input packet is available. The other
TCP task handles packet transmission; it is awakened by the TCP receiver task (to
send acknowledgments), by the user of the TCP (to send data), and by timer
expiration (to perform retransmissions). The TCP tasks communicate with each
other by sharing state variables, while communication with other protocol layers is
by means of subroutine calls. A fourth task runs the actual Telnet implementation.

10.3.3 Trivial File Transfer

Due to the size and complexity of the full ARPANET File Transfer Protocol, we have
not yet completed an FTP implementation; instead, we chose to implement the Trivial
File Transfer Protocol (TFTP), a simple file transfer protocol built directly on
datagrams rather than on a stream connection. This simple protocol has proven
very durable and useful in the past; in addition to file transfer service, it is used for
remote printer access, network bootloading, and has been used for mail transport.

It should be noted that, despite its relative simplicity, TFTP exhibits in microcosm
most of the implementation difficulties found in network software in general. It is
significant to note that the current implementation of TFTP on our UNIX achieves
roughly three times the throughput of our previous UNIX implementation while
occupying roughly half the space; this suggests the effects of the learning curve in
network protocol implementations.

32



ﬁ

COMPUTER SYSTEMS GROUPS JOINT REPORT

10.3.4 Simple Mail Transfer \
The simple tasking TCP designed for user Telnet also forms the basis of the Simple
Mail Tranport Protocol implementation. Some extensions were required to add

"server" functionality, but the modifications waora-small.

10.4. Results

We have seen as many as eight active remote login sessions at once with
reasonable response times. Some performance measurements have shown the
following results. Round trip time for an Internet Control Message Protocol time
stamp packet sent from the PDP 11/45 to itself took between 30 and 40 milliseconds;
this required two packet transmissions and two receptions. The maximum TFTP
transfer rate that has been observed was 133 Kbits/sec between our machine and a
VAX on the same ring net. The TCP used in user Telnet has been observed to sink
data in a memory-to-memory transfer from a VAX at 215 Kbits/sec. The server
Telnet’s TCP has been seen to send data in a memory-to-memory transfer to an Alto
on an Ethernet at 300 Kbits/sec; the gateway between the proNET and the Ethernet
was an LS| 11/03 running our C-Gateway code.

1C.5. Catloway unplementation

10.5.1 Exterior Gateway Protocol

M.LT. has been participating in the development and implementation of a new
protocol to be used to pass routing information between systems of autonomous
gateways. The protocol is called exterior gateway protocol (EGP); its purpose is to
'provide a more controlled method of passing routing information between gateways
who may or may not trust each other.

A loose definition of autonomous gateways is that they belong to the same
administrative organization, such as M.L.T., and are fairly homogeneous. The
gateways within an autonomous system will'use their own conventions for passing
routing and up/down information among themselves, and will use EGP to pass
routing information between themselves and the outside world.

10.5.2 Summary of C Gateway Progress _
Copies of the C-Gateway were sent to Stanford and BRL. These installations now

seem to be running quite reliably.

A lot of effort was put into making the C-Gateway more robust; about two dozen
bugs were isolated and fixed, and logging to a VAX at startup time was added to
monitor gateway crashes. It appears that the MIT-GW crashes about 5 times a day.
Most of these crashes are soft crashes in that the machine just restarts without

needing to reboot itself.



£

COMPUTER SYSTEMS GROUPS JOINT REPORT

Better routing mechanisms were added or worked on such as a default gateway for )
packets destined to a net to which we have no route, ICMP redirects, and EGP.

So much work was done on the C-Gateway this year that the easiest way to
describe it is with excerpts from monthly progress reports.

1) August and September 1982

Much has happened on the C-Gateway over the last several months. It
is now in full operational service in the main M.L.T. ARPANET gateway,
and will shortly go into service at Stanford in the ARPANET gateway
there and in several local network gateways at M.L.T.

Substantial work has been done on the internal structure to speed it up
even further, and a fast and simple general tasking mechanism with
priorities has been implemented to allow finer cantral over internal work
scheduling. Extensive analysis of operation in high-throughput
applications internal to M.L.T. is proceeding; some preliminary results
have already resulted in improvements. In one test at M.I.T. a while back,
an LSI-11 was able to maintain a data rate of 1/2 Mbit/sec from a
creNCT to a SMBIt Ethernet; this is quite good considering the slowness
of the LSI-11 and the fact that each packet must be byte-swapped -
before being sent out on the Ethernet. Indications are that a faster
processor with two DMA interfaces could sustain data rates in the
several megabit range. Some initial investigation of data flow and flow
control inside the gateway has been done, and further modifications to
allow more control in this area are planned.

The code to handle PUP was written; it is now relatively complete,
providing full simple gateway service, which is to say complete routing
and ECHO but not name resolution or boot servers. The CHAOS
protocol code was redone, and is now considered complete at the same
level of simplicity (CORUT, STATUS and PULSAR). Work to expand the
IP implementation to a full IP (including ICMP, GGP, class A/B/C
support, etc.) has started; this was delayed until the previous two
protocols were done to allow the experience gained there to be
included. The ARPANET driver has been cleaned up, and plans to
expand it to include per-link flow control are complete. Finally, an
extensive audit of the code has been made to remove places where, in
the initial rush to get the code up, bughalts were placed on unlikely code
branches.

2) October 1982



COMPUTER SYSTEMS GROUPS JOINT REPORT

As a result of analysis done last month, some major changes were made
to the structure of the gateway software to allow better internal flow
control as well as packet buffer reclamation. All packets are now kept on
explicit queues instead of implicit ones (i.e., system message queues,
etc.), and internal flow control code was installed. No code for external
flow control (Source Quench ICMP packets) has been installed because
the algorithms are still under consideration, but all the necessary hooks
exist. Memory allocation was speeded up by keeping an internal list of
free buffers instead of using the MOS memory allocation scheme. A
smarter buffer allocation scheme (using loose pools and minimum
reservation strategies) was installed.

The code has been deployed in additional sites at M.I.T., including the
main gateway between the high-speed local networks at Tech Square,
where it performs adequately. With the addition of a MOS device driver
for the ACC ARPANET interface, obtained from SRI, a C-Gateway was
configured for Stanford University to interface between the ARPANET
and the collection of Ethernets there; this came up with almost no
problems and packets were exchanged between a VAX on an Ethernet
at Stanford and a VAX on a proNET at M.L.T. :

3) December 1982

The C-Gateway code was packaged and shipped to the Army’s Ballistic
Research Lab in Maryland for installation in a gateway there. BRL will
be writing additional device drivers and handlers as needed.

4) January 1983

Efforts are being made to improve the reliabilty of the C-Gateway and to
collect more information about crashes. Software bughalts have been
changed to save information about the crash and then to restart
immediately. Also when the gateway starts up, it now sends a log packet
to alog server on a VAX on the proNET ring; this log packet includes the
‘message that was stored away by the last crash. Currently log packets
are not always getting to the log server; this may be because when the
gateway starts up, it reenters the proNET ring causing some

perturbation in the ring.

Code to respond to ICMP pings was added to the gateway. Code to
generate ICMP redirects when needed was also added. Due to fears
about possible adverse effects on ARPANET hosts, the gateways
presently send redirects only to hosts on the LCSnet.

35



COMPUTER SYSTEMS GROUPS JOINT REPORT

5) February 1983

A driver for the Interlan 10Mb Ethernet interface was written and
installed in the IBM PC gateway. It uses David Plummer’s Address
Resolution Protocol (RFC 826) to translate 32 bit internet addresses into
48 bit Ethernet addresses.

Slightly improved routing code was added to the gateways. Packets
destined for nets to which a gateway has no route are now forwarded to
a default gateway. This is a temporary solution to the Class B/C net
problem. As a result, hosts on the LCSnet can access all Class B and C
networks.

The version 1 ring network code and interfaces were removed from our
gateways which means that this network has been decommissioned.

6) March 1983

The strategy for resynchronizing with the IMP when the IMP goes down
has been changed to be similar to the strategy used by the BBN
gateways. The old strategy was not robust in the cases where the
gateway thought the IMP went down, but in fact the IMP was still up.

Ron Natelie at BRL-BMD is running an old version of the C-GW code
that he has modified somewhat. He found a bug in the ACC driver that
causes the gateway to think the IMP went down. His fix to this bug is
included in the current ACC driver running on MIT-TGW.

Most of the code to implement EGP was written this month. As one
would expect with an early implementation, the implementing process
has turned up suggestions for some fairly minor modifications to the
protocol.

7) April 1983
Several releases of the C-Gateway were sent to Stanford University this
month. Some bugs were isolated and fixed; currently this gateway is

providing a barely acceptable level of service. Debugging continues.

The BRL-Gateway version of the C-Gateway is running as a regular
service now. :

8) May 1983

e



COMPUTER SYSTEMS GROUPS JOINT REPORT

Efforts on the part of Jeff Mogul and Bob Baldwin to debug the version
of the C-GW running at Stanford turned up various packet length
bounds problems. Jeff noticed that better packet length checks were
needed in the Ethernet device driver and Ethernet network handler.
When these checks were installed, the Stanford gateway became
substantially more reliable. It now crashes about once every two days.

Earlier in the month Jeff and Bob figured out that a problem that looked
like an IMP synchronization bug was in fact due to a feature of the ACC
DMA interface to the IMP. The ACC device transfers two garbage bytes
into memory at the end of the received packet. The extra bytes cause an
input overrun when the gateway receives a maximum-sized packet. The
device driver did not check for the overrun, so the garbage bytes would
appear at the beginning of the next packet, causing it to be discarded
due to bad ARPANET header format.

Our implementation of EGP was tested to itself over the M.LT. test
gateway’s two interfaces (ARPANET and proNET) and to itself via an
Echo server. It was also tested to DCN6 and DCN1. These tests have
shaken out a few bugs; EGP seems to run quite robustly in the test
gateway now. |

M.L.T. took receipt of a Bridge Communications 68000 based computer
this month. It will be used to develop experimental gateways.

11. NETWORK MONITORING STATION

In the field of local area networks, two types of networks dominate: an Ethernet
type bus network and more recently the token ring network. Much of the current
interest in rings seems to be due to the pending announcement by IBM of its token
ring network. Although there is much debate over the relative merit of both types of
networks there exists little information on the performance of rings. John F. Shoch
and Jon A. Hupp of the XEROX Palo Alto Research Center produced a preliminary
report on Ethernet performance containing such things as number of packet errors,
performance under high load, stability and fairness. Unfortunately, no such
comparable document exists for a token ring network. The purpose of the Network
Monitoring Station is to collect statistics on the LCS proNET ring.

The Network Monitoring Station currently consists of a PDP 11/20 mini-computer
with a network card for the proNET ring and some specialized hardware. The
network cards for the proNET ring have two parts. The first is a Control Card which
interfaces to the network on one side and has a standardize interface on the other.

37



COMPUTER SYSTEMS GROUPS JOINT REPORT

The second board, the Host Specific board (HSB), has this same standardized
interface on one side and a host specific interface on the other. The special
hardware is placed between these two cards. The specialized hardware has three
major components. The first is a HSB emulator that interfaces with the Control Card.
The second is part is a Control Card emulator that interfaces to the Host Specific
Board. The third part is a 32 bit, 40 microsecond resolution crystal clock.

The HSB emulator is the simplest. It always appears to be an HSB that is ready to
accept a packet. No matter what the state of the true HSB, it will always receive a
packet from the net. The Control Card itself is set in the "match all" mode which
simply means that any packet that comes by will be received no matter what its
address. The HSB emulator counts the number of incoming bytes and also keeps
track of error signals received from the Control Card.

The Control Card emulator acts as a Control Card that only receives 17 byte
packets (actually the first 17 bytes of an incoming message). By only working with
the first 17 bytes of a packet, the Monitoring Station obtains the necessary
information from the IP protocol and allows the HSB the maximum amount of time to
reset for the next packet. The Control Card emulator keeps track of whether or not
the HSB has received the incoming packet.

The clock is used for timing events on the ring and for maintaining the current time
of day. Other things that are monitored include the times that the ring crashes and
reinitializes, bad format packets, and hopefully soon, packets that are refused (not
received by the addressee). The specialized board is memory mapped into the PDP
11/20 and also has an interrupt mechanism for fast retrieval of packet information.

" The software running on the PDP 11/20 does some data compression, simple data
accumulation and analysis. The only two items on the bus that can interrupt are the
HSB and the specialized hardware card. These interrupts are fast (~20
microseconds) and simply place data from on board registers into a circular buffer.
From here, the information in these buffers is analyzed when there is time. The
software accumulates statistics such as number of packets and percentage of
netload over the previous day, hour, minute and second. Also displayed is the time
since last network crash (loss of token). Both network errors and monitoring station
errors are accumulated.

Because the Monitoring Station has little storage or processing power, it would be
desirable to get some information to a larger computer, perhaps with a tape drive for
long term storage. Currently, the Monitoring Station compresses all of the IP
headers down to protocol, ring destination, ring source, length of packet and time of
reception at a factor of 64:1 and sends these packets over the proNET ring to a VAX.
This VAX can do much more complex analysis than can the PDP 11/20. Although
sending compressed information to another computer seems like a reasonable idea,

38



COMPUTER SYSTEMS GROUPS JOINT REPORT

it might be better not to send packets over the network being monitored. An
alternative would be to have the PDP 11/20 use either a serial line or a diffcrent
network in order to transfer information. The best idea might be to have another
mini-computer attached to the PDP 11/20. The PDP 11/20 would run the same
software on a continuous basis. The other mini-computer could be used for real-
time debugging and short-term network analysis running whatever software is useful
at the time. At the same time, a tape drive would store all of the data generated by
the PDP 11/20 on tape so that a complete set of records exist for later analysis. This
later long-term analysis could be done on a VAX and since complete records exist,
could be done any time any new information was required.

With the information collected, it is hoped that various parameters of ring
operations and usage can be determined. Some of these include latency until
transmission, number of defective packets, ring reliability, fairness and stability
under high-load. Questions involving ring usage are protocols used, who is sending
to whom, number of back-to-back packets, interpacket arrival time, distribution of.
packets size and distribution of usage throughout the day.

Currently, the Network Monitoring Station is running reliably but it still has some
bugs in hardware and software that distort some of its statistics. Also a very
cisineniary analysis program exists on the VAX for long term analysis. ine proNET
ring presently carries about 850 thousand packets and 140 million bytes on a busy
day.

) 1
]

12. DIRSYS: AN ONLINE DIRECTORY ASSISTANCE SYSTEM

12.1. Overview

DIRSYS is an electronic telephone book. It was developed for users with widely
varying computer skills. Therefore, the self-teaching aids for the novice were
designed to not encumber the experienced user. It is based upon the familiar
concepts of a paper phone book and a full-screen display editor such as EMACS.
Entries from the directory database are displayed on the screen in a compact format, |
one line per entry, and DIRSYS indicates which is the current entry of interest by
emphasizing the entry’s line (capitalize all letters, filling in empty fields with periods,
displaying in reverse video, etc.) The user may direct the system to emphasize
another entry (i.e. move the system’s pointer) by issuing commands, similar to
EMACS’ cursor motion commands, or by searching for a name. The search
mechanism is incremental. That is, after each character typed by the user, DIRSYS
updates its pointer and the terminal screen, if necessary, such that the pointer rests
on the entry whose name string most closely matches what the user has typed so far.
A help facility, in the form of a menu, is provided to guide the novice user and remind



COMPUTER SYSTEMS GROUPS JOINT REPORT

the experienced user what commands are available. The help facility operates in the
same manner as the incremental interface, except the search mechanism has been
removed. The default screen allows approximately a full screen’s worth of entries to
be displayed, each entry occupying one line of the terminal screen. All information
concerning a particular entry cannot be seen using this compact format. The user
may request DIRSYS to display much fewer entries on the screen and show each
entry in detail. A command is available to switch between these two display formats.
All commands retain their semantics regardless of the display format.

12.2. Current State of the Project

A prototype has been implemented on a DECSYSTEM-20 and is being moved to a
VAX 11/750. The interface and database structure are to be evaluated and modified
based on the evaluations. A mechanism for updating the database is being
implemented.

References

1. Needham, R. and Schroeder, N., ""Using Encryption for Authentication In
I arne Networks of Computers,” Communications ACM 21,12 (DPecember
1978),993-999. ‘

2. Saltzer, J., Reed, D., and Clark, D., "Source Routing for Campus-Wide

Internet Transport," Local Networks for Computer Communications,
West, A. and Janson, P., Editors, North-Holland Publishing Company,
Amsterdam, 1980. 1-23.

VraY



b i, -

Academic Siaff

J.H. Saltzer, Group Leader
D.D. Clark
F.J. Corbato

Research Staff

L.W. Allen
S.T. Berlin
J.N. Chiappa

Graduate Students

R.W. Baldwin
G.H. Cooper
D.L. Estrin
J. Frankel

COMPUTER SYSTEMS AND COMMUNICATION

D.K. Gifford
M.V. Wilkes

M.B. Greenwald
E.A. Martin

K. Koile
C.Lamb
L. Zhang

Unde rgraduaté Students

D.A. Bridgham
D.C. Feldmeier
J.K.T. Genka
D.W. Gillies

C. Hornig

F.S. Hsu

F. Huettig
R.W. Hyre
E.R. Juncosa
D.J. Karlson
L.J. Kaufman
F.H. Klein

Support Staff

S.C. Comfort
D.J. Fagin

L.J. Konopelski
B.C. Kuszmaul
J.R. Lekashman
A. Madhaven
R.D. Osgood
M.A. Pinone
C.S. Rittenberg
J.L. Romkey

A. Rosenstein
J.M. Roth

H.J. Shinsato
S.D. Trieu

C.M. Zeitz

N. Lyall
M.F. Webber



COMPUTER SYSTEMS AND COMMUNICATION

The work of the Computer Systems and Communications group and
the Computer Systems Structure group this year was so closely related
that a single report best describes it. The single report will be found as a
separate section in this annual report.

42



COMPUTER SYSTEMS AND COMMUNICATION

References

Publications

1. Clark, D.D., "Internet Protocol Implementation Guidelines," Internet
Protocol Implementation Guide, Network Information Center, SRI
International, Menlo Park, CA, August, 1982. Comprised of:

» Window and Acknowledgement Strategy on TCP (RFC-813)
o Names, Addresses, Ports and Routes (RFC-814)

o IP Datagram Reassembly Algorithms (RFC-815)

« Fault Isolation and Recovery (RFC-816)

« Modularity and Efficiency in Protocol Implementation (RFC-817)

2. Corbato, F.J., "Time Sharing," Encyclopedia of Computer Science,
Anthony Ralston, Editor, Second Edition, van Nostrand Reinhold Co.,

new Yurk, 1983,

3. Corbato, F.J., "An M.LT. Campus Computer Network," Campus
Computer Network Group Memorandum Number 1, July, 1982.

4, Estrin, D.L., "Inter-organizational Networking: Stringing wires across
Administrative Boundaries," Eleventh Annual Telecommunications
Policy Research Conference Proceedings, (V. Mosco, Editor), Ablex
Publications, Norwood, N.J., 1984.

5. Saltzer, J.H., Pogran, K.T., and Clark, D.D., "Why A Ring?" Computer
Networks 7, (July, 1983). '

6. Saltzer, J.H., Reed, D.P., and Clark, D.D., "End-to-End Arguments in
System Design," to be published in Transactions on Computer Systems.

7. Sirbu, M., Estrin, D.L., "Cable Television Networks as an Alternative to
the Local Loop," Proc. |EEE International Conference on
Communications, June, 1983.



COMPUTER SYSTEMS AND COMMUNICATION

10.

Theses Completed

Cooper, G.H., "An Argument for Soft Layering of Protocols," S.M.
thesis, MIT, Department of Electrical Fngineering and Computer
Science, Cambridge, MA, May, 1983. ‘

Genka, J.K.T., "A Dial Up Packet Switcher for an Internet Gateway,"
S.B. thesis, MIT, Department of Electrical Engineering and Computer
Science, Cambridge, MA. May, 1983.

Hornig, C., "A Second Generation Network Interface for Multics," S.B.
thesis, MIT, Department of Electrical Engineering and Computer
Science, Cambridge, MA, May, 1983.

Hsu, F.S., "Design of a Human Interface for an Online Directory
Assistance System,” S.B. thesis, MIT, Department of Electrical
Engineering and Computer Science, Cambridge, MA, May, 1983.

Juncosa, E., "A Simple UNIX File System for the SWIFT Operating
System," S.B. thesis, Department of Electrical Engineering and
Computer Science, Cambridge, MA, May, 1983.

Klein, F.H., "Selective Dissemination Service for Users Within a
Computer Net," S.B. thesis, MIT, Department of Electrical Engineering
and Computer Science, Cambridge, MA, May, 1983.

Konopelski, L.J., "Implementing Internet Remote Login on a Personal
Computer," $.B. thesis, MIT, Department of Electrical Engineering and
Computer Science, Cambridge, MA, May, 1983.

Pinone, M.A., "A Selective Disseminatiorr Service for Users Within a
Computer Net," S.B. thesis, MIT, Department of Electrical Engineering
and Computer Science, Cambridge, MA, May, 1983.

Rao, R.B., "The Design and Implementation of a Mail System for
Interlisp-D," MIT, Department. of Electrical Engineering and Computer
Science, Cambridge, MA, August, 1982.

Rittenberg, C.S., "AutoMMS: A System for Automated DEC/MMS
Description File Construction,” S.B. thesis, MIT, Department of
Electrical Engineering and Computer Science, Cambridge, MA. May,
1983.



11.

12.

13.

i i

COMPUTER SYSTEMS AND COMMUNICATION

Roth, J.M., "Data Capture: Forms That Use Constraints," S.B. thesis,
MIT, Department of Electrical Engineering and Computer Science,
Cambridge, MA, May, 1983.

Roush, P., "Computerized Scheduling of Intramural Sports," S.B. thesis,
MIT, Department of Electical Engineering and Computer Science,
Cambridge, MA, July, 1982.

Trieu,” S.D., "A Transmit System, the Scheduler, for the Community
Information System,"” S.B. thesis, MIT, Department off Electrical
Engineering and Computer Science, Cambridge, MA, May, 1983.

Theses in Progress

. Feldmeier, D.C., "Performance of the Version Two LCS Ringnet Local

Area Network," S.B. thesis, MIT, Department of Electrical Engineering
and Computer Science, Cambridge, MA, expected date of completion,
January, 1984.

Koile, K., "The Design and Implementation of an Online Directory
Assistance Oystem,"” S.M. thesis, MIT, Department of Ciccuial
Engineering and Computer Science, Cambridge, MA, expected date of
completion, September, 1983.

Lamb, C.W., "A Screen Oriented Data Base Editor,". S.M. thesis, MIT,
Department of Electrical Engineering and Computer Science,
Cambridge, MA, expected date of completion, August, 1983. (Also S.B.
thesis).

Lekashman, J.R., "Performance Evaluation of a Packet Switching
Internetwork Gateway," S.B. thesis, MIT, Department of Electrical
Engineering and Computer Science, Cambridge, MA, expected date of
completion, September, 1983.

Osgood, R.D., "Implementation of File Transfer Protocol on UNIX and
IBM-PC," S.B. thesis, MIT, Department of Electrical Engineering and
Computer Science, Cambridge, MA, expected date of completion,
September, 1983.

Talks

Clark, D.D., "Internetting Local Area Networks," Conference on Local
Area Military Networks, G_riffi_s Air Force Base, New York, September,
1982. '



COMPUTER SYSTEMS AND COMMUNICATION

10.

11.

Clark, D.D., "Protocol Implementation and Design: Practical
Considerations," SIGCOMM 83, University of Texas, Austin, Texas,
March, 1983.

Saltzer, J.H., "Communications Requirements for Distributed Systems,"
Series of lectures, Nippon Electric Company, Tokyo, Japan, January,
1983.

Committees

Clark, D.D., MIT Network Working Group

Clark, D.D., DARPA/TCP Working Group (Chairman)
Chiappa, J.N., DARPA/TCP Working Group
Corbato, F.J., CS Net Policy Support Group

Corbato, F.J., Advisory Committee for Health Sciences Computing
Facility, Harvard School of Public Health. '

Corbéto, F.J.; National Research Council: NBS Panel for Scientific
Computing

Corbato, F.J., National Science Foundation: Review Panel for CS Net
Martin, E.A., DARPA/TCP Working Group
Saltzer, J.H., DoD/DDRE Security Working Group Member

Saltzer, J.H., Chairman, 9th ACM Symposium on Operating Systems
Principles

Saltzer, J.H., MIT Network Working Group

46



COMPUTER SYSTEMS STRUCTURES

Academ‘ic Staff
D.P. Reed, Group Leader
Research Staff
M. Greenwald
Graduate Students

W. Gramlich P.Ng
K. Sollins J. Stamos

Undergraduate Students

R. Allen N. Shafer
R. Harteneck E. Siegel
G. Hopkins S. Subramanian
A, Kukura : T. Tran
J. Leschner J. Woods
J. Mracek C. Zarmer
S. Routhier
Support Staff
S. Comfort
Visitors

©. Hvinden



COMPUTER SYSTEMS STRUCTURES

The work of the Computer Systems Structures group strongly
overlapped with that of the Computer Systems and Communications
group. Consequently, the work is reported in a joint section. See that
section for details.



COMPUTER SYSTEMS STRUCTURES

REFERENCES

Publications

. Reed, D.P., "Implementing Atomic Actions on Decentralized Data," ACM
Transactions on Computer Systems, Vol. |, No. 1 (February, 1983), pp.
3-23.

. Ng, P. and D. Daniels, "Query Compilation in R*," IEEE Database
Engineering, Vol. 5, No. 3 (September, 1982), pp. 15-18.

. Ng, P., L. Haas, P. Selinger, E. Bertino, D. Daniels, B. Lindsay,
'G. Lohman, Y. Masunaga, C. Mohan, P. Wilms and R. Yost, "R*: A
Research Project on Distributed Relational DBMS," IEEE Database
Engineering, Vol. 5, No. 4 (December 1982), pp. 28-32.

. Stamos, J.W., "Static Grouping of Small Objects to Enhance
Performance of a Paged Virtual Memory," ACM Transactions on
Computer Systems, conditionally accepted for publication, 1983.

Theses Completed

. Kaufman, L., "Implementing a Distributed Debugging System", S.B.
thesis, MIT, Department of Electrical Engineering and Computer
Science, Cambridge, MA., June 1983.

. Ketelboeter, V., "Forward Recovery in Distributed Systems", M.S. thesis,
MIT, Department of Electrical Engineering and Computer Science,
Cambridge, MA., January 1983.

. Margolin, B., "Extension of the Multics Library System", S.B., MIT,
Department of Electrical Engineering and Computer Science,
Cambridge, MA., expected date of completion: May 1883.

. Mracek, J., "Controlling Network Usage by Encryption-Based
Protocols”, S.B. thesis, MIT, S.M. thesis, MIT, Department of Electrical
Engineering and Computer Science, Cambridge, MA., June 1983.

. Ostar, H., "An Automated Database Manual", S.B., MIT, Department of
Electrical Engineering and Computer Science, Cambridge, MA,,
December 1982.

. Routhier, S., "An Improved Authentication Server", S.B. thesis, MIT,

49



COMPUTER SYSTEMS STRUCTURES

Department of Electrical Engineering and Computer Science,
Cambridge, MA., June 1983.

7. Topolcic, C., "Ensuring the Satisfaction.of Requests to Remote Servers
in Distributed Computer Systems", wi.S. thesis, MIT, Department of
Electrical Engineering and Computer Science, Cambridge, MA., January
1983.

8. Woods, J., "Integrating a Remote Bitmap Display in UNIX", S.B. thesis,
MIT, Department of Electrical Engineering and Computer Science,
Cambridge, MA., June 1983.

9. Zarmer, C., "Implementing a Swallow Broker", S.B. thesis, MIT,
Department of Electrical Engineering and Computer Science,
Cambridge, MA., June 1983.

Theses in Progress

1. Allen, R., "Validation of an Authentication Server Protocol", MIT,
Department of Electrical Engineering and Computer Science,
Cambridge, MA., expected date of coimpletion: August 1983.

2. Harteneck, R., "A Drawing System in CLU", S.B., MIT, Department of
Electrical Engineering and Computer Science, Cambridge, MA,,
expected date of completion: August 1983.

3. Gramlich, W., "Checkpoint Debugging", Ph.D., MIT, Department of
Electrical Engineering and Computer Science, Cambridge, MA,,
expected date of completion: May 1984.

4. Ng, P., "Library Management in the Swift Distributed System", Ph.D,,
MIT, Department of Electrical Engineering and Computer Science,
Cambridge, MA., expected date of completion: May 1985.

5. Shiroma, J., "Protocol in the Swift Operating System", S.B., MIT,
Department of Electrical Engineering and Computer Science,

; Cambridge, MA., expected date of completion: August 1983.

6. Sollins, K., "Name Management in a Distributed System", Ph.D., MIT,
Department of Electrical Engineering and Computer Science,
Cambridge, MA., expected date of completion: May 1984.

7. Stamos, J., "Multi-Language Access to Persistent, External Data",

850



COMPUTER SYSTEMS STRUCTURES

Ph.D., MIT, Department of Electrical Engineering and Computer
Science, Cambridge, MA., expected date of completion: May 1985.

Talks

. Reed, P., "Local Area Networks: A Research Perspective", Diebold
Research Conference on Office Systems and Decision Support Systems,
St. Paul, MN, July, 1982,

. Reed,' P., "The Swift Distributed System Testbed", MIT-IBM Mini
Conference on Advanced Personal Computers, Lenox, MA, January,

1983.

51





