M.LT. Laboratory for Computer Science Request for Comments No. 272
February §, 1985

Unified Stream Protocol

by David D. Clark

1. Introduction

1.1. Goals

This documents describes the Unified Stream Protocol (USP). USP is an end-to-end transport
layer protocol. In common with other transport protocols, it has the goal of providing a defined
semantics upon which applications may construct communication services. However, USP differs
rather markedly from most transport protocols. Most importantly, USP is designed to facilitate
interoperation between machines implementing different protocol families. That is, USP is

intended to facilitate protocol conversion.

To achieve this goal, USP is envisioned as a "veneer" which is implemented on top of whatever
"native mode" transport protocol is available to it. USP hides the specific details of the native
transport protocol, providing instead a single unified interface, which applications may use

independent of which protocol family is actually implemented on the machine.

[f USP is to achieve its goal of effective operation across a number of protocol families, it must
realize a number of subgoals. First, the functionality supplied by USP to its clients must be useful
to those clients. Second, the functionality supplied by USP must not require an inefficient use of
the underlying native transport protocol. Third, USP must be easy to implement. The details of

USP have bzen carefully chosen so as to meet these goals as much as possible.

WORKING PAPER — Please do not reproduce without the author’s permission and do not cite
in other publications.




The functionality supplied by USP to its clients is usually called a "virtual circuit” secmantics.
This is simply defined as reliable bi-directional byte stream. In other words, if one application asks
USP to transport a number of bytes to the other end of the point-to-point connection, those bytes
are delivered, in the order in which they were sent, without loss or duplication. If the bytes cannot
be delivered, because of disruption within the communication system, both ends of the connection

are notified that the connection is now broken.

Almost all protocol families contain a layer which provides approximately this function.
However, a detailed examination of various protocols reveal that there can be great variation in the

functions actually available to the client. It is this variation which the USP is intended to ccrrect.

1.2. Functionality

USP is a block structure protocol. A block is a ordered sequence of bytes, of unrestricted length.
Along with each block is transported a sixteen bit type field, the purpose of which is discussed
below. The blocks are delivered in the order in which they are sent and the bytes within each block

7

are delivered in the order in which they are sent.

Many protocol families implement a virtual circuit protocol with this sort of block structure. It
appears that this semantics is helpful in the construction of application packages. Howcver, the
block structure was chosen for USP for a much more important reason: the block structure is
critical for the operation of USP itself. As part of connection establishment and error recovery,
USP itself must exchange information between the two ends of the connection. Since this
information must be sent down the same data stream that is used for the transport of client
information, some block structure is required in order that USP distinguish these two sorts of data.
Also, there are certain data items which the client wishes to transport, in particular addresses of
USP end points, which must be transformed by USP as they are transported through the system.
(This problem is discussed in detail in the section on addressing below.) USP must be able to
distinguish these addresses in the data stream, in order to translate them. To distinguish between
blocks which contain USP information, blocks which contain client information, and client
information which USP must manipulate, the type field which is associated with each block is used.
There are a small number of type fields reserved for USP, a small number of type fields reserved for
special address information, and the remainder of the type fields are reserved for arbitrary use by
the client of USP.



For those blocks which USP transports on behalf of the client, there is no restriction on the
content of the bytes which composed the block. However, for those blocks which USP and the
client share, there must be standard representation of the data types, so that USP can manipulate
them reliably. Therefore, USP also includes a definition of the representation of standard data
types. And it is recommended that the client use these representations as well, in those cases where
this implies no undue hardship. The motivation for this is that USP can supply, as part of its
implementation, a standard set of library routines which translates the standard representation into
the native representation for the particular machine, Therefore, for common data types, such as
character strings, integers, and booleans, the effort required to implement a client module could be
substantially reduced if the standard USP data translation library was used. However, this is not a
requirement, except for those data records which USP interprets. Except for those records, USP can

be used to transport arbitrary byte strings, with no restrictions of any sort on the content of the

bytes.

1.3. Ease of Implementation

It is intended that USP can be implcmented on top of any protoco! family which provides a
transport protocol with the functionality generally described as virtual circuit. The various features
of USP are carefully selected to make it easy to implement on a variety of existing or proposed
virtual circuit protocols. In particular, certain features been have omitted from USP, such as out-of-

band signaling, because they substantially complicate the realization of USP.

In addition, certain decisions about USP have been made, taking into account the manner in
which most protocols are implemented in today’s operating systems. In particular, most protocol
families provide for a logical sharing of the physical network resource among a number of virtual
circuits. This demultiplexing of the incoming data into a number of virtual circuits is normally
done inside the supervisor of the operating system, or at least in a protected process which cannot
be easily modified by the applications programmer. USP has been carefully designed to avoid any
need for further demultiplexing of a single virtual circuit among a number of clients. This permits
USP to be implemented as a set of subroutines which run in the process of the application. Thus,
USP can be implemented without modifications to existing network code, and without inserting
additional fanctionality into protected portions of the existing operating system. For many existing
protocol im»lementations, it would not be possible to implement USP at all if system modifications

were required to support it.



Some of these points are discussed in more detail in the sections that follow.

1.4, Structure of This Document

The next section of this document defines in detail the functionality of the USP protocol. The
sections that follow discuss specific aspects of USP, including protocol conversion, the naming of
connection end points, reliability, etc. In addition to the actual specifics of USP, this document
attempts to capture some of the motivation for design decisions in USP. Some of this information is
discussed in later sections of the document, some is included within the body of the document at
the point at which design decisions are introduced. To distinguish this information from the actual
specification, it is printed with indented margins. After the document itself will be found a number

of appendices which give the specific realization of USP on top of a number of common transport

layer protocols.
2. Block Transport

2.1. Introduction
USP is defined as two layers. The bottom layer, described in this section, defines the reliable
transport of blocks from sender to recipient. The next layer, described in the section following,

specifies the representation of data transported in these blocks.

Level one USP provides a block transport service between two clients, Conceptually, the

functions available to these clients can be represented as four subroutine calls:

Open_connection [fore1gn_c11ent_name]
Close_connection []

Send_block [block_type, data_bytes]
Receive_block [block_type, data_type]

However, since blocks can be of unbounded length, it is unreasonable to demand that the client
transmit the entire block to USP in one subroutine call. Therefore, the send block function is

replaced with the following:
Send_subblock [block_type, end_of_block_flag, data_bytes]

The receive call is similarly replaced by
Receive_subblock [block_type, end_of_block_flag, data_byte]



Note that the length of the block is not explicitly transmitted, therefore the sender need not know
the length of the block, and the receiver may not know the length of the block until the last
subblock has been transmitted. While USP reliably maintains the boundary between blocks, the
boundaries between subblocks have no meaning, and USP will combine subblocks as appropriate to
make efficient use of the underlying protocol. Any internal structure of the block must be

represented either using level two USP, or using client specific structures.

An alternative implementation of USP would have transported the length of the
block explicitly as part of the block information, perhaps along with the block type.
Obviously, this would be helpful to certain applications. For example if a large file is
being transferred, it would be nice to know if there was room to receive the file before it
has bzen transmitted. However, requiring that the length of a file be known in advance
is, in many cases, an extreme inconvenience to the implementation, because the data
being transported is not a literal copy of the precise bytes stored in the memory of the
computer, but is instead a translation of these bytes into some canonical representation,
such as EBCDIC into ASCII or internal data representations into level two USP
representations. This transformation may cause the number of bytes to grow and shrink,
in a manner that cannot be predicted except by translating the information. Therefore, if
it is necessary to know the length of a file before transmitting any of i, it is necessary to
transform all of the file before transmitting any of it. But this eliminates a very
important parallelism which some implementations may wish to achieve, and in the
worst case may require translating the information twice, if there is not room to store the
translated version of the information along with the internal representation. In this case,
it would be necessary to translate it twice, once throwing away the result but counting the
bytes, and the second time actually taking the bytes as they are translated and sending
them over the net. For these reasons, it appears unreasonable to require that the length
of a block be known in advance. For those particular applications which wish to know
this fact, the length can be transmitted as one of the data items in a client block.

3. Establishing a Connection

USP uses the parameter foreign_client_name provided as part of the open call to identify the
other end of the connection to be established. The manner in which this name is translated is
discussed in the section on naming, below. USP then uses whichever native transport protocol is
available to establish a virtual circuit with that foreign' machine and client. Once the connection is
established, USP transmits one block from the initiator to the recipient of the connection. This
block, discussed below, is the connection_open block, which permits each end of the connection to
know the USP level name for the other end. The field is primarily important in those cases where
protocol translation is being provided by USP between two native mode transport protocols. Once

this block has been transmitted by USP, the client is permitted to exchange blocks as appropriate.




3.1. Data Type
Every block which is transferred from sender to receiver is tagged with a sixteen bit data type.

Data types zero through three hundred are reserved for USP; their specific purposes are
summarized in a table at the end of the document. Block types from 300 to 399 are reserved for
client data types which USP modifies in transit. In particular, these data types are used for a variety
of blocks which transport USP level client names. See the section on naming for details. Block
types 400 and above are available for arbitrary use by the clients; USP places no interpretation

upon them, and does not examine and modify the content of the blocks.

3.2. Closing a Connection

Once a client has called the USP entry point close_connection, no further data may be sent or
received by that client. For this reason, the clients at each end of the connection must ensure that
each has sent all the data it intends to the other, before calling close. The clients may perform this
function in any way they choose; however two block types have been reserved to facilitate this
function, in those cases where the clients have no special requirements. These block types zre called
"end" and "end_reply". The normal use of these block types is as follows. When oae client
determines that it has no further information to send, it transmits a block of type "end.” The other
end of the connection, on receiving this "end" block, sends any data that it requires in the other
direction, and then responds with a type of "end_reply". The client sending this first "end_reply"”
must then dally for some period of time, perhaps 10 seconds, which is long enough for the other
end of the connection to respond and terminate normally. The client first sending the "end" block
will receive eventually a matching "end_reply". At this point it should promptly send 4 second
"end_reply" in response to the first. After this, the sender of the original "end" can unilaterly
terminate its connection. The receipt of this second "end_reply" by the dallying client similarly

permits the other client to unilaterly close its connection.

It may occur that both clients simultaneously determine that they have nothing further to send, so
that each send an "end" to the other. In this case, each should send an "end_reply" to the other and

begin dallying.

The design of a procedure for closing a USP connection involves a number of trade-
offs. Closing a connection is one area in which different protocol families have
substantial differences in the functionality they provide their client. Some transport
protocols guarantee that before the connection is closed, each client has received all of
the data which the other wishes to send. Other protocols have functionality more

'



resembling that chosen for USP: when one closes a connection it ceases to receive any
data even if the other end continues to send.

The most efficient and reliable implementation of USP was, therefore, to assume
minimum function in the underlying transport protocol, and implement the reliable
close as part of the USP architecture. The choice then was whether USP should ensure
that the connection was closed reliably, or whether the client should ensure that the
connection was closed reliably. The design decision here was based on a desire to model
most closely those protocols which USP resembles, in particular the Xerox NS Courier
protocol. It is felt that by closely matching this protocol it will be easier to take
advantage of it. It also appears that many clients can be naturally built in such a way that
no special handshaking is required before they close the connection. That is, the natural
structure of interchange between clients will enable each to know when the other has no
further data to send. However, to make it easier for those clients who do not wish to
think about the problems of closing a connection, USP supplies a default procedure,
which could be implemented by a set of default subroutines which the USP client could
use. Use of these subroutines would mean that USP has effectively provided a reliable
close for the client, without any particular attention on the part of the client. This
compromise seems to achieve the best of both possible solutions.

The function of the dally operation is to increase the reliability of the reliable close in
the face of low level failures in the transport function. It can be shown tiiat there is no
way to guarantee in the face of low level failures that each end of the connection is
correctly informed of the state of the other. Dallying in this fashion is a generally
accepted strategy for recovering from delayed data while permitting the connection to
clean up if the path is permanently broken.

4, USP Data Types

4.1. Introduction

The lower level of USP defines a block stream, a series of typed blocks of arbitrary length. This
section describes the USP representation for data objects which may be sent in a block. There is
one object transmitted per block, with a variety of constructor objects defined to permit sending

aggregates of data items,

The data representations described in this section are explicitly modelled on the data types
defined by the Xerox NS Courier protocol, with minor exceptions. The intention of this definition
is to facilitate operation between these protocols. The reader is referred to the Xerox Courier

specification for motivation for the detailed representation decisions.



USP defines seven base data types:

1. boolean

2. cardinal

3. long cardinal
4., integer

5. long integer
6. string

7. unspecified

4.2, Boolean
Boolean represents the values true or false. The standard representation of a boolean is a single

bit preceded by fifteen 0 bits. The value true is encoded as 1, the value false as 0.

4.3. Cardinal
A cardinal represents an integer, N, with the range 0 <= N <= 65,535. The standard

representation of a cardinal is a single sixteen bit field (2 bytes) that encodes the integer as an
unsigned binary number. The most significant bits of the integer are transmitted in the first byte,

most significant bit first.

4.4. Long Cardinal

The long cardinal represents an integer N in the range 0 <= N <= 4294967295. The
representation of a long cardinal is a thirty two bit field (4 bytes) that encodes the integer as an
unsigned binary number. The most significant bits of the integer are transmitted in the first byte,

most significant bit first.

4.5. Integer
The integer represents a signed value N in the range -32768 <= N <= 32767. The integer is

represented as a single sixteen bit field (2 bytes) that encodes its value as a two’s complement binary

number. The most significant bits of the integer are transmitted in the first byte.

~/



4.6. Long Integer

The long integer represents the value N in the range -2147483648 <= N <= 2147483647. The
representation of a long integer is a 32 bit field (4 bytes) that encodes its value as a two's .
complement binary number. The most significant bits of the integer are transmitted in the first

byte.

4.7. String

A string represents an ordered collection of ASCII characters, whose number need not be
specified until run-time. The standard representation of a string is a sixteen bit field that encodes
the length of the string as a cardinal followed by the characters themselves, one character per byte.
If the number of bytes is odd, the block is padded with 8 bits of 0 to make the length of the string

an even number of 8 bit elements,

The use of a cardinal to transport the length of a string limits the string to a maximum
of 65535 characters. This makes the string unsuitable for transporting very long
sequences of characters, However, there is an alternative within USP, which is to
transport the sequence of characters as a separate USP block. Since blocks are
unbounded in length any string can be transported in this manner. Notice also that this
representation of the string object requires that the length be known before any of the
characters are transmitted, while, as discussed above, the block explicitly does not
require this knowledge. Therefore, in many cases, the transmission of a character string
as a separate block may be the more desirable representation for implementation
purposes.

The ASCII sequence used for the newline function shall be the two ACSII characters CR and LF

in that order.

4.8. Unspecified
An unspecified data object represents an arbitrary sixteen bit quantity whose interpretation is left

to the client.

4.9. Constructed Types

USP defiaes four constructed types. Constructed data types are used to aggregate objects to make
one larger object which can then be transported in a block. The different aggregation techniques
correspond to normal programming language strategies for data aggregation. The defined

constructor types are:




10

1. Array
2. Sequence
3. Record

4, Choice

4.10. Array

An array represents an ordered one-dimensional homogeneous collection of objects, whose type
and number are statically known by the clients. The elements of an array may be of any type,
including another array. The standard representation of an array is simply the standard

representation of its elements.

4.11. Sequence

A sequence represents an ordered one-dimensional homogeneous collection of data objects whose
type is known to the application, but whose extent is specified at run-time. The elements of a
sequence may be of any type. The standard representation of a sequence is a 16 bit field, ccded as a
cardinal, which represents the actual number of elements in the sequence, immediately followed by

the standard representation of the elements in order.

4.12. Record
A record represents an ordered, possibly heterogeneous collection of data objects, whose type and
size is known statically to the client. A record is composed of components, which may of any type.

The representation of a record is simply the representation of its components in order.

4.13. Choice
A choice represents a data object whose type is chosen at run-time from a set of candidzte types

selected by the client. The representation of a choice is a sixteen bit field coded as a cardinzl, which
carries a client specified type identifier for the field that follows. This selector is followed by the

expected object. Note that a choice may carry an object of any type, including another choice.

With the exception of choice, all of the USP data types are untagged. That is, it is
assumed that the client knows the sequence of data types that will be transmitted as part
of any object. An alternative representation of USP would have associated with each
data type an explicitly transmitted tag which would describe the form of the data. This
would permit a receiving program to reconstruct the content of the data stream without



11

any prior knowledge of the information to be transmitted. It was felt that in almost all
cases the clients did know the structure of the data being represented so the inclusion of
tag data would needlessly increase the bulk and complexity of the data representation,
However, USP provides two escapes from this in those cases where variant data is to be
transmitted. The first is the choice data type, which permits the client to include
arbitrary variants within a given data object. The second option for tagged data is the
lower level type field associated with each block.

5. Reserveid Block Types

5.1. Introduction
USP uses a number of reserved block types for its own operation. This section describes the
object which is transmitted in each of those types, as well as the function which the block type

performs for USP. The reserved block types are as follows:

BLOCK TYPE TYPE IDENTIFIER
connection open 10
connection error 20

end 254
end_reply 255
path_convert 300-399

5.2. Connection Open

Connection open block is the first block sent during connection establishment from the active end
to the passive end of a USP connection. Its purpose is to carry sufficient information about the
desired connection so that intermediate translation points as well as the final end point can correctly
establish the desired service. The connection open object is a record with three components. The
first component names the foreign host to which the connection is being established. The second
component names the host from which the request originates. The third component names the
particular service which is to be invoked on the foreign host. The first component, the foreign host,
is represented as a choice. If the choice selector has value 0 the representation of the foreign host is
a string which encodes the foreign name as a "global name". If the choice selector value is 1, the
representation of the foreign name is a string which represents the foreign host as a "path_name".
The second component, the local name, is also represented as a choice with the same two options as
the first component. The third component, the service name, is represented as a string. This
representation is summarized in Figure 1. The use of the global name and path name options are

discussed in the section below on naming.



12

Summary of connection_open object
block type: 10
representation:
record
choice (foreign host)
0: string (global name) 1: string (path name)

choice (local host)
0: string (global name) 1: string (path name)
string (service_name)

Figure 1: Connection_Open Block

5.3. Connection Error
The connection error block is delivered as appropriate to the end points of a USP conncction to

indicate that the connection has failed. Connection failure is the only possible error which USP can
report, and a simple client implementation can ignore the detailed information which the
connection error block reports. However, the information reported in the connection error block

will prove helpful in eliminating the cause of the error, in many cases.

There are two parts to the information delivered by the connection error block: the nature of the
error, and what module is recording the error. The contents of the connection error block is a
record with four components. The nature of the error is represented in the first two compcnents of
the record. The first component is a cardinal, which will have one of the defined error types
specified in Figure 3. The second component of the record is a string, which may contain further

information on the nature of the error, for human consumption.

The third and fourth components of the connection error record identify the location at which the
error was detected. The third component is a cardinal which contain a code defined below which
specify the type of node which discovered the error. The fourth component of the error object
describes the name of the module which reported the error. It is coded as a choice with the same

representation as a host name in connection open record. The format is summarized in Figure 2.



13

Summary of connection_error object
block type: 20
representation;
record
cardinal (what error)
string (more info)
cardinal (what reported it)
choice (name of module reporting it)
0: string (global name) 1: string (path name)
Type of nodes detecting error
foreign USP module 1
transport layer implementation 2
intermediate USP module
(protocol translation point) 3

Figure 2: Connection_Error Block

Errors associated with connection establishment

foreign name unknown _ 10
service identifier unknown 11
host down 12
service not supported on host 13
service not currently available 14
required protocol conversion not
available 15
Errors associated with established connection
transport failure (explicit) 20
transport failure (timeout) 21
foreign client failure 22
path transformation impossible 23
undcfined errors 1

Figure 3: Defined Error Codes



14

5.4. Connection Termination
Two types are reserved to assist clients in reliably closing an USP connection. The representation
of both of these is a block of 0 length. In other words, there is no object transported as part of this

block, merely the block type. The two defined block types are as follows:

end 264
end_reply 255
5.5. Conversion

As discussed in the following section on naming, the representation of the host name as a path
requires that the name be converted as it is transported from the sender to the receiver so that the
name has meaning in the context of the receiver. This conversion is performed as necessary in the
connection_open object and the connection_error object. Additionally, it is presumed that the
client will, from time to time, wish to transport path names in the implementation of client
functions. These names must be translated, as well as the ones used by USP. For this purpose,
USP reserves a range of block types from 300 to 399. These blocks may be used by the client, but
USP will examine them, and perform the appropriate conversion on path names contained within
them. In order for the conversion to be done it is necessary that enough of these objects be of a
known representation so that the USP module can find the path names to convert. It is essumed
that the representation of any path conversion object is a record of which the first componer:t object
will be a sequence. The sequence contains strings, each of which is assumed to be a path name.
After this sequence, the first component of the record, any number of additional components of any

type may occur. USP will not examine or modify them.

Summary of path conversion objects
block types: 300-399
representation:
record
- sequence
string (path_name)



15

6. Protocol Conversion

As has been discussed before, one of the major goals of USP is to permit conversion between
different protocol families. In general, protocol conversion is impossible. Protcol conversion at the
application layer sometimes works, if the two application make sufficiently similar assumptions
about the functions they provide. For example, it is sometimes possible to map the remote login
application in one protocol family into the remote login application in another protoéol family.
However, protocol translation at the transport level almost never works, There are two reasons for

this failure, functional differences and naming,

Although almost every protocol family implements some form of virtual circuit protocol as an
option for its transport layer, there is a wide range of functionality which can be described by this
term. There are many examples of features which may or may not be included within some
particular virtual circuit design: out of band signalling, synchronizing of stream after an error,
partitioning of the stream into blocks, associating type information with different bytes in the
stream, and assigning priorities to certain bytes. Converting between protocol families which do
and do not support these features can only be achieved if the application on whose behalf the
conversion is being performed does not use the feature which is not supported in certain families.
This is why conversion sometimes works at the application level where this sort of information is
available, but almost never works at the transport layer in general where one is performing the

conversion on behalf of an unknown set of applications.

The second problem with protocol conversion is naming. Almost every protocol has its own
distinct naming structure. This naming structure is in general sufficient to name all of the machines
which can be reached using this protocol family, but is usually not extensible to naming machines
which are available outside the bounds where this protocol is usable. Thus, almost all protocol
families provide insufficient naming structure to permit a protocol converter to establish the
required connections. Consider an example, in which a connection is being established from
protocol family A to protocol family B using a converter which implements both of those protocols.
A host in the domain served by protocol family A establishes a connection to the protocol converter
for the purpose of creating a follow-on connection to some host in environment B. The naming
structure available to that host was sufficient to name the protocol converter, since that machine is

accessible to protocol family A.



16

Therefore, a connection can be established from host A to the protocol converter. But now the
protocol converter must identify the host within protocol family B which is to be the ultimate
destination of this connection. There is no way, using the protocol family A, that the machine in
protocol family B can be named. Therefore the protocol converter cannot proceed. Again, this
problem can be solved at the application level, by designing an application protocol which is
sufficiently general so that, within the structure of the application, the names for machines outside
the protocol boundary can be transported. Thus, again it is true that while conversion at the
application level can sometimes be made to work, conversion at the transport layer, where this
escape hatch for naming is not available cannot be made to work. USP has been designed to
provide those features necessary so that protocol conversion can be performed at the t-ansport
layer. Using USP, one can construct a single protocol converter at the USP level, instead of
constructing one converter per application, as would otherwise be required. It achieves this goal by
directly attacking the two problems discussed above. USP avoids the problem of detailed
functional differences by supplying its own semantics, which it enforces uniformly by an acditional
set of programs superimposed on the transport protocol of each individual protocol family. The

naming problem is somewhat complex, and is discussed below.

USP achieves this conversion capability at substantial cost, which is that a whole new set of
application packages must be implemented to run on top of USP. The existing application
packages from any one protocol family are not suitable for this function, because they are not
designed to run on top of the functionality supplied by USP but rather by the functionality supplied
by their native transport, whatever that might be. However, this problem is not as severe as it might
seem, as there are a number of existing application protocols which could be easily redefined to
work on top of USP. For example, the internet mail delivery protocol, SMTP, was specifically
designed to work over a minimal virtual circuit. It would work with very little modification over

USP.

7. Naming

As the previous section suggests, one of the major problems in protocol conversior: is the
establishment of a naming strategy which permits, from inside one protocol region, the naming of
entities in another protocol region, Since most existing transport protocols do not solve this
problem, a solution has been integrated into USP. In fact, much of the structure of USP is related

to the management of names for hosts and services.



17

Names within USP are character strings which are assumed to describe hosts and services. The
problems associated with naming hosts and naming services are rather different; they will be

discussed in turn.,

7.1. Host Names

USP can be used in a variety of contexts, each of which has different naming requirements.
Perhaps the simplest use of USP is when there is only one underlying transport protocol, and that
transport protocol provides a standard naming strategy for hosts. In this case, USP need provide no
enhancement to the existing naming strategy. However, if USP is being used in a context where
there is more than one transport protocol in use, with protocol converters connecting these different
regions, then it is necessary in general for USP to define a new, higher level namespace within

which the hosts in each of these protocol environments can be named.

As part of USP connection set-up, this higher level name must be made available to each of the
protocol converters involved in the connection, so that the protocol converter can successfully make
the next lower level connection which will be used to carry the USP information. The "connection_

open" block, which is the first block sent on a USP connection, is used to transport this name,

To enable this naming mechanism to work properly, USP circuit connection proceeds in a
number of stages. Initially, the originating host obtains from its higher level application the name
of the foreign host to which the connection is to be made. It then translates that name within the
context of the protocol suite being used on that host into a lower level address. The name mapping
tables for that protocol suite must be arranged so that the address associated with that particular
host is either the name of the foreign machine itself, if it speaks the same protocol family, or the

name of an appropriate protocol converter, if protocol conversion is necessary to reach that host.

If a protocol converter is required the host must then open a lower level transport connection to
the converter and send the connection open block down the stream. Only then does the protocol
converter have the name of the host to which the connection is ultimately to be opened. The
protocol converter can then repeat the name look-up operation, this time using the name mapping
tables of th: new protocol suite. Eventually, proceeding through each protocol converter in turn,
the connection will finally be established to the ultimate host. At this point, the connection open

block can be delivered to that machine. This will permit it to know the name of the machine at the



18

other end of the connection, and also provide the name of the service to be invoked (the naming of

services is discussed in the section below).

The foregoing example illustrates why it is necessary to have a name structure at the USP level,
but it does not explain what sort of names USP should provide. In fact, USP tends to be very
general, and to permit almost any sort of name structure which is appropriate for the particular set

of protocols and converters in use.

In general, all naming schemes can divided into one of two sorts, global or relative. In a global
naming scheme, any particular host is assumed to be identified by the same character string name at
any point within the USP environment. A postal address is an example of a global narie. The
address on the outside of an envelope is the same, no matter where the letter is posted (actually, the
statement is not quite correct. When the source and destination of a letter is the same country, the

name of the country is customarilly omitted from the envelope.)

The alternative to global naming is relative naming. In relative naming, the destination is named
by giving a series of instructions based on the particular source. For example, "Go two blocks up
the street, turn left, and find the third house on the right." is an example of a relative naine. It is

unable only so long as the starting point remains unchanged.

Conceptually, global names are easier to understand. However, there are many cases ‘n which
relative names are the only ones that can be successfully employed. The drawback to global names
is that in order to create a global naming structure, it is necessary to identify a ceatralized
management strategy for the name space. Hierarchical structure can be used tc permit
decomposition of name space management into separately controllable subcomponents, hut even
with hierarchy it is necessary to agree on single manager for the root of the hierarchy. In many
cases, achieving this degree of centralized control is impossible. Thus, for example, in many of the
mail systems which are in use today, the names of recipients are expressed as relative names. While
this sometimes leads to great confusion in mail systems, it is also proved to be the only viable

strategy. For this reason, USP provides a mechanism, called pathnames, to permit relative naming.

A pathname is assumed to consist of a series of names, separated by a recognizable delimiter.

(The details of the delimiter are discussed below.)



19

The assumption is that the first name will be meaningful within the first protocol domain in
which the USP connection is being established, the second name will be usable by the first protocol
converter in entering into the next region, and so on. At each stage in the creation of the
connection, the relevant component of the name will be interpreted, and then removed from the
string, thus shifting to the front of the string the name which the next protocol converter is to use in
turn. Eventually, as the last name in the string is used up, the connection that is established should

reach the actual destination machine.

Thus, in the connection open block, the string which identifies the destination machine is used,
piece by picce, as the connection is created. At the same time, the string that identifies the source of
the connection must be built up, a piece at a time, by each protocol converter through which the

connection goes.

As the reader will recognize, pathnames are considerably more complex to deal with than global
names. Ideally, any particular users of USP will attempt to arrange a naming environment in which
global names can be used. However, practical experience with the tying together of different
protocol domains has suggested global naming structures can often not be achieved, for both
political and technical reasons. Thus, this strategy of path names will prove, as a practical matter, of

great importance.

It may be desirable for the user to pass names across the connection, whilé it is open. For
example, in mail, the body of the text not only contains the name of the sender and the name of the
recipient, but the names of all other people to whom, copies of this message were sent. One of the
most common failures which arises in mail systems occurs when these additional names are relative
names, rather than global names. Normally, these additional names are transported from source to
destination without being modified; since they are names relative to the source, they are thus
meaningless at the destination. This makes it very difficult to reply to a piece of mail, because the
user is required to translate the names manually into relative names which are meaningful at the
destination. To solve this problem, USP provides a mechanism by which it will translate pathnames
for the user as they are transported from the source to the destination. This is the purpose of the
path-convert block types (300-399). In general, the translation which is performed on these names
is similar to the translation which is done on names during connection set-up. However, as a name

traverses the system from one side to the other it may be subjected to either deletion or addition of



20

components, depending on whether the name is being transported toward or away from the host

which it names. The details of the rules for name transformation, both during connection set-up

and as part of the path convert block type, is discussed in the section titled Name Translation below.

7.2. Service Naming

As part of connection set-up the application is expected to supply a character string name of the
service which is desired on the foreign host. This name presumably maps, in the context of the
destination machine, into a lower-level representation of the particular service that is to be invoked.

A typical service might be called "Remote Login" or "Mail Delivery."

The simplest strategy for using these names would be to have the translation from character string
to lower-level representation performed by the destination host, after the connectior: to that
machine has been opened. However, for implementation reasons this is undersirable. If the
translation is performed by the destination machine, then it is necessary to have a special dispatcher
process on the destination machine to which the lower level connection is originally opened. When
the connection is opened and the name has been transferred down the connection, only then can
the correct destination for this connection be identified. At that point, it is necessary to har d off the
lower-level connection from the dispatcher process to the process which will actually perform the

service. In many systems, this is a complex operation, which may not be supported by the

underlying system.

Most transport protocols already provide a mechanism for demultiplexing of incoming
connection to the proper service, Some protocols use well known socket numbers, other protocols
use a character string-based rendezvous structure. Whatever the strategy, it is appropriaie to use
that service-dispatching strategy instead of a special one for USP, because it is the design goal of
USP to avoid building any demultiplexing mechanisms into this layer. To take advantage of the
low-level demultiplexing structure, it is necessary that the translation from service name to low-level
representation be done at the source of the connection, rather than the destination. Once the
translation is done at the source, the proper low-level service description can be used as part of
connection initiation, so that the low-level demultiplexing mechanism will work properly. This
means that it is necessary, as part of USP, to provide another form of name-mapping, which
translates from service names to low-level service representations, for each of the relevant protocol

suites. In this version of USP, the strategy for implementing this name-look-up is not arcaitected.



21

In simple implementations, it can be done by a fixed table within each of the hosts and protocol
converters. However, it is necessary that names for services be centrally managed, and it will
eventually be necessary to define, as part of USP, a mechanism for managing and translating these

names.

8. Name Translation
[This sect'on to bc; supplied later. Topics to be discussed here include the details of how names
are translated as they are passed through protocol converters, and the details of how names are

parsed, and delimiters for different name components are identified within a pathname string.]

9. Remote Procedure Call

Remote procedure call is currently used within many protocol suites as a mechanism for
invocation of services across a network. In remote procedure call, the client invokes the service by
sending a message across the net which contains a procedure to be invoked, along with the
parameters which are provided to that service. The client then waits until a reply to this message
arrives from the server. Thus, the pattern of interaction between the client and the server is similar
to that of sub-routine invocation, hence the name. USP, as defined, does not provide explicit
mechanisms for remote procedure call. In certain cases, it can be used to achieve this purpose.
Since there is a substantial overhead to the establishment of a USP connection, it would not be
appropriate to use USP in the case where only one request and reply will be transferred before the
connection is closed. However, in those cases where a sequence of requests and replies will be sent,
it is very easy and efficient to create a remote procedure call interaction using USP. For example,
the different services which might be invoked on the server machine can be associated with
different block types, and the block itself can be used to transport the parameters of the invocation,
Thus, for example, one might open a connection to a remote file server, and then make a number of
requests, to delete certain files, rename certain files, or list various directories. In certain cases, a
series of remote procedure calls are associated with each other, in that the client and the server
build up state information, within the context of which subsequent procedures are invoked. Thus,
for example, the user might set a working directory, and then make additional file system calls
relative to this established setting. Different protocols have different strategies for tying together
the various procedure calls which are part of the same sequence. In USP, the preferred strategy is

to use a distinct USP connection for each such sequence of remote procedure calls. An alternate,



22

such as including a transaction identifier in each procedure call, is to be avoided in general because
it implies the requirement of demultiplexing different procedure calls based on this transaction
identifier. Since demultiplexing is not to be done in the USP level, this strategy is inappropriate. In
special cases, where the application has been designed in such a way that several different request
streams are handled by the same process, then some sort of additional identifier can be provided, as
one of the parameters of the invocation. However, application designers using USP are encouraged
to avoid strategies which imply that some implementations may have to do demultiplexing at the

USP level.

This strategy for creating sequences of remote procedure calls, in which the lower-
level circuit abstraction is used to associate the different procedure calls, is in contrast to
the strategy used by the Xerox NS Courier Protocol. In Courier, there is an architected
transaction 1D which is a part of each remote procedure call. The Courier specificazion
explicitly states that one Courier connection can be used to transport procedures calls
from several different sequences, and that several different connections can be used to
transport procedure calls that are part of the same sequence. Thus, the Courier apprcach
requires a dispatching or demultiplexing function in the Courier level protocol. Because
we want to make USP realizable as a user-level process, so that it can be implemented on
top of existing protocol packages, we cannot use this strategy for making sequences of
remote procedure calls.

Many of the details of USP have been based on the data structures and strategies
proposed by the Courier specification. This deviation from the specification is a
regrettable but necessary result of our desire to insure the implementability of USP.
Note, however, that USP could be used to transport the precise records which are used to
achieve Courier remote procedure call. In other words, it would be possible to buiid a
process, which sat on top of USP, and provided direct inter-operability with Courier-
style remote procedures calls. The requirement would be that all Courier-level
demultiplexing be done inside that Courier package.

10. Acknowledgements
The ideas of USP have come from a number of other protocols. Most obviously, many
components of USP have been derived directly from Xerox NS Courier Protocols. Where possible,

specifications for such things as data types have been specified identically.

The strategy for the management and conversion of pathnames is based on the ideas in the
Network Independent Transport Service, otherwise described as the British Yellow Book Service.
The idea of transporting blocks as sequence of sub-blocks is based on ideas in the Network

Independent File Transport Service.



23

Appendix A

Implementation of USP Blocks on Defined Virtual Circuit Protocols

A. DOD TCP

The virtual circuit supplied by TCP is not block-structured, but is a simple stream of bytes.
Therefore, the sub-block boundries must be defined by inserting data items into the stream itself,
The representation of a block is two bytes which carry the block-type, followed by a number of
sub-blocks. A sub-block begins with two bytes, the first four bits of which are flags, and the last
twelve bits of which are the length of the sub-block, including the sub-block header. Thus, each
sub-block can be no more than 4096 bytes long. Packet boundries are completely ignored in
realizing the sub-block structure, since in TCP the packet boundries are not preserved, especially
during re-transmission. The flags which are transported as the first four bits of each sub-block are
coded as fellows. The first bit is "on" if this sub-block is the last sub-block of the block. If it is

"off," another sub-block follows. The next three flags are reserved for future use, and must be "0."
The block and sub-block headers are iijustrated in Figure Al.

The DOD Protocol Suite provides a mechanism for naming hosts using character strings. If USP
is being used entirely within the bounds of this protocol family, no extension to this name structure
is needed to provide USP names. That is, internet-style domain names can be used directly as USP

global names.

The strategy for naming services within TCP is based on "well-known ports." Well-known ports
are particular reserved TCP end points, identified by small integers. To use USP over TCP, it will
be necessary for the implementation to supply a table which translates between whatever USP
based services are available, and the equivalent TCP port number. Note that different USP services
should be associated with different TCP ports. That is, it is not appropriate to establish a Single
TCP port called "USP,” for this would imply additional demultiplexing at the USP level. USP
should simply be thought of as a particular strategy which a given service uses over a TCP

connection.



24

11.X.25 | L
X.25 is not, strictly speaking, a transport protocol. However, in ceruaiii wotiicxts it is used as such,

and therefore it is appropriate to offer a definition of USP implemented directly on X.25.

X 25 is a block-structured protocol. Thus, the block structure associated with USP can be directly
provided by X.25. In particular, a USP block is transported as an X.25 complete packet sequence.
Presumably, the sub-block structure can be use to correspond to packet boundries, but note that
USP does not require that the sub-block boundries be preserved. Therefore, it is quite reasonable
for X.25 to combine and break apart packets, as is required by the definition of a complete packet

sequence.

X.25 provides only a limited strategy for identifying a type field with a block, in particular the Q
bit. Thus, the 16 bits that give the type of each block must be transported as part of the data stream.

They are the first two bytes of every block. The Q bit is reserved for future expansion, and must be

"0."

X.25 uses a character string host-naming strategy. The most common definition of host names is

the protocol X.121, These names are suitable for USP, within the single protocol environment.

X.25 provides a rather limited mechanism for identification of service. The call user data field
(CUDF) which is transported as part of connection set-up, contains 4 bytes which can bz used to
select services. However, many implementations do not do an effective job of dispatching on these
bytes. However, this field is the preferred mechanism for service dispatching, and it is assumed that
when X.25 is used to support USP services, that a standard mapping will be supplied between those

services implemented and acceptable values of the CUDF.

12. Xerox NS Sequenced Packet Protocol

Xerox NS Sequenced Packet Protocol is a block-structured virtual circuit. Thus, the block
structured supplied by SPP can be directly used to transport USP blocks. Further, SPP provides a
16 bit typefield associated with each block (actually with each packet) which can be use to transport
the typefield. Thus, no information associated with USP block structure need be transported in the

data stream itself when implementing USP over SPP.



25

As part of the Xerox Protocol Structure there is a high level character string naming mechanism,
Clearinghouse, which provides for a translation between names and host identifiers. This naming

structure is suitable for USP in the single protocol context.

The Xerox architecture provides for service naming on the basis of well-known ports, reserved
integer identifiers for the connection point for different services. If USP is to be used on top of SPP,
it will be necessary to provide a table which translates between USP service names and these well-

known ports.

13. CHAGS Protocols

The CHAOS Protocols provide a packet oriented reliable connection. That is, the packet
boundries are significant in CHAOS transport, the packets are delivered reliably in order, A USP
sub-block corresponds to a CHAOS net packet. The packets are assumed to be of § bit data.
Packet type 200 is used for the last sub-block of a block; packet type 201 is used for all but the final
sub-block of a block. Thus, a block consists of 0 or more data packets of type 201, followed by
exactly one block of type 200. All other data types are reserved for future use, and must not be

used.

The CHAOS protocols provide no mechanism for associating a typefield with a block, other than
the data type which USP uses to define its sub-block structure. Thus, 16 bits that identify the
typefield must be transported as the first two bytes of each block.

Some standard mechanism, either a name server or a distributed table, must be used to translate

between character string names, as needed by USP, and internal CHAOS net addresses.

The CHAOS net protocols directly provide for service naming on character strings. Thus, USP

service names can be directly mapped into the contact name transported in a RFC Packet.

14. DECNKT
[This sect:on to be supplied.]



15. ISO/NBS Transport
[This section to be supplied.]

26



