M.LT. Laboratory for Computer Science Request for Comments No. 273
February 11, 1985

Trip Report: Europe, January 25 — February 1, 1985

by Larry W. Allen

My itinerary was: joint ACM/IBM Zurich Research Laboratory Workshop on Operating Systems
in Local Area Networks, 3 days; Cambridge University Computer Laboratory, 1 day.

1. Workshop on Operating Systems in Local Area Networks

There were roughly 50 attendees at the workshop, about half of whom were from the U.S. and
half from Europe. Liba Svobodova (who chaired the workshop) and the various members of the
program committee tried to keep the sessions oriented towards the issues in building distributed
systems; despite their best efforts, several of the sessions turned into simply summaries of

individual projects. Nevertheless, I learned a number of interesting things.

1.1. Remote File Access

There was a fair amount of discussion on providing remote file access to systems in a local area
network. The main distinction raised seemed to be between systems which provide true, block-at-a-
time (or byte-at-a-time) access to remote files across the network, and systems which use a local disk
as a cache of recently-accessed files and which transfer entire files across the network to the local
disk when necessary. Michael Schroeder of the DEC Systems Research Center discussed the Cedar
file server at Xerox PARC, which uses local disk caching; M. Satyanarayanan of CMU's
Information Technology Center (their equivalent of Project Athena) discussed a similar scheme to
be used there. Remote file-access schemes were discussed by Lindsay Marshall of Newcastle

University, among others.

WORKING PAPER — Please do not reproduce without the author’s permission and do not cite
in other publications.

[N

; £ -
A



The local-cache supporters claimed that most applications read an entire file sequentially from
beginning to end anyway; and that remote file access schemes will be slow because of server
overloading when serving many users. The remote-éccess supporters mainly argued that loca! disks
are undesirable due to the cost, noise, heat, and high maintenance requirements of disk drives.
Concern was also raised over the handling of large, database-like files (for example, the dictionary
on UNIX systems). Such files are often sparsely accessed. The consensus was that some sort of

special-casing was required for database files.

A clear consensus did not emerge from the workshop on this topic. The DEC SRC people will
soon be designing a file service for their new system; it will be interesting to see what design they

settle on.

1.2. Language Support for Communication

My impression here is that the general trend is strongly towards the use of Remote Procedure
Calls and towards lightweight concurrency. Although some message-passing Systems were
described, there seemed to be nearly universal support for RPC. The arguments in favor of RPC
boiled down to the fact that RPC seems to greatly simplify the task of building distributed
applications. Many things that have to be done explicitly in message-passing systems (specifying
message formats, encoding and decoding data objects for transmission, handling timeouts and

retransmission) are done for you in an RPC-based system.

Most people seemed to be extending existing languages (CLU, Modula-2). to support these
features. It's interesting to note that existing languages still apparently don’t have the kind of
communications support people want. This is emphatically true of Ada. There were two reports on
attempts to implement distributed systems in Ada; both found it necessary to add extensions to the
language. In particular, Ada’s tasking structure (which is quite heavyweight) and the rendezvous

mechanism were strongly criticized.

There was surprisingly little discussion of other programming environment features needed for
building distributed systems, such as debuggers or performance monitoring tools. It appears that
interest in this topic has died down somewhat, although I don’t believe any of the problems have

been satisfactorily solved.




1.3. Upcalls
I spoke in the session on "Operating System Support for Communications". My talk

concentrated on the multi-task module and upcall ideas as used in Swift. The talk generated a
modicum of interest. Later, 1 discussed upcalls with Roy Levin of DEC SRC, particularly
concentrating on how upcalls could be used in the system being built there. We reached a general
agreement that most client programs (and most client programmers) don’t want {0 have to think
about asynchrony, so in general upcalls shouldn’t propagate all the way up to the client level. Inside
a subsystem (for example, a window system), and between Jower-level subsystems, upcalls can bea

very useful programming technique.

1.4. Conclusion from the Workshop

The overall conclusion I reached from the workshop was that building a distributed system today
is basically an engineering problem, not a research topic. Most of the serious problems — security,
atomicity, recoverability — have fairly well-understood and accepted solutions. Many of the
participants are now designing or building their second major distributed system, and trying to "do

it right this time", but few seem to be breaking new ground in this area.

Several participants pointed out that there is something of a lack of good distributed applications.
I suspect this lack will be rectified in the next couple of years, as some of the new systems now being

built become operational.

2. Cambridge University Computer Laboratory

My host at Cambridge was Andrew Herbert, who spent last summer at MIT working with us on
Swift. 1 spent a good deal of time talking with Graham Hamilton and Dan Croft, who are
implementing the Mayflower operating system. Cambridge will soon acquire 12 microVAX
processors, to be used in a new processor bank, and some number of Xerox Dandelion (Star)
workstations, to be used as user interface machines. They are very interested in getting our Remote

Virtual Disk software for UNIX, as the microVAXes will run UNIX at least initially.

The Mayflower system is currently running; I was given a demonstration of the new version of
the Resource Manager (as described by Dan Croft at the last SOSP) running under Mayflower.
Current work is centering around the construction of a source-language debugger, and integration

of Mayflower and the Resource Manager system.



Current projects at Cambridge include Mayflower; a high-speed (100 Mbit/sec) version of the
slotted ring; and a project to use the high-speed ring for digital telephony. There is a great deal of
discussion about how to best use the new hardware which will soon be arriving; in particular, there

is some possibility that Mayflower may be ported over to the microVAX,

I'spoke on Swift to a group of about 25 people from the Computer Laboratory. There was quite a
bit of interest in our use of upcalls, and also in garbage collection issues. Several people shared my
interest in exploring the possibilty of using some sort of hardware-assisted reference-counting
scheme instead of a mark-sweep garbage collector; the advantages being that storage can be
reclaimed incrementally (a major factor in a large-address-space system), and the required amount
of hardware assistance is quite small. We discussed the differences in approach of Swift and

Mayflower; many of the differences arose from the desire to use Mayflower in the environment of a

processor bank,

Andrew Herbert will be leaving the Laboratory in June to take over a position as Chief Architect
of a distributed systems project, funded by Project Alvey (Britain's Fifth Generation computer
project). It’s not yet clear what effects his departure will have on the Mayflower or microVAX

projects.

!



