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ABSTRACT

This dissertation presents a unified design of protection
mechanisms for a computer utility that (1) prevent accidental
unauthorized releases of information, (2) prevent tyranny by
dividing and limiting the power of the administrators of the
utility, (3) preserve the independence of independent users of
the utility, (4) accommodate to organizations having disparate
traditional superior-subordinate relations, and (5) support
proprietary services that allow users to build on the work of
others in a context that protects the interests of lessors and
lessees of services. The design includes specifications of
both hardware and software protection mechanisms, including
walls defined by domains and capabilities, and a hardware de-
vice, the Privacy Restriction Processor, that records the copy-
ing and combining of information in the computer by propagating
privacy restrictions among restriction sets associated with
segments and processes. The propagated restrictions prevent
accidental unauthorized releases of information. But when a
secret can be encoded into the timing or occurrence of system
actions to prevent output of secrets, the encoded secret can
escape. However, such escaping secrets can be detected and
the offending computation can be arrested by the operating
system.

The dissertation includes an analysis of the social con-
cepts, systems, and conventions to which a computer utility
is necessarily connected. The emergence of a 1984-like nega-
tive-utopia is shown to be a possible consequence of the on-
going development of techniques for penetrating and taking
over computer systems.

THESIS SUPERVISOR: Robert M. Fano
TITLE: Ford Professor of Electrical Engineering
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Chapter 1

Overview

"I think [the computer] is probably the
most powerful single tool by quite a bit
that man has ever invented. It gives us
enormous capabilities to augment our human
capacities, but therein, of course, lies
its danger, too. We have to watch it with
great care."

-- Jerome B. Wiesner [US71]

The quality of life might someday be improved by computers.

Early applications of computers to work that was already being

done before the computer arrived on the scene have not much in-

fluenced the quality of life, except for persons working in the

computer industry. But the computer makes possible new services

and new interconnections of organizations and individuals which

might have a profound impact on the quality of life in the future.

For example, centralized emergency medical records would improve

the quality of medical care received by accident victims.

Computer-aided medical diagnosis would help medical doctors

cope with the explosion of medical knowledge. As the computer

is taught to provide complex and useful knowledge-based services,

we might expect the quality of life to improve.

But the computer will also support systems that severely

degrade the quality of life. For example, many modern weapons

systems include computers. More to the point of this research,

the computer could easily provide the basis of a centralized
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dossier system, imprisoning citizens in institutional evaluations

based on records held by unforgivingly long-memoried computers.

The development of computer and communications technology makes

the dehumanized negative-utopia of 1984 [Or49] ("Big Brother is

Watching You") a clear option for the future.

The broad goal of this thesis is to contribute to the

development of computer technology that will lead to an im-

provement in the quality of life. We recognize that computers

are increasingly important components of social systems, and

therefore we expect that the design of computers will have

subtle, and possibly profound, effects on social systems. We

hope that computerized central dossier systems will never

emerge, but we do not expect the institutional trend towards

placing personal information in computers to be completely

reversed. (*) Therefore we feel it is necessary to build

computers that can keep secrets, so that storage of personal

information in computers will not reduce individual privacy.

(When we say that a computer keeps secrets, we mean that the

computer prevents unauthorized releases of information.) A

strong technological optimism underlies this felt necessity:

we hope that negative social effects can be prevented with

sophisticated technological fixes. A simpler and sounder

approach might be to outlaw dangerous applications of tech-

11

(*) This trend must be watched and might require regulation
by government.



nology, but that approach has not been the focus of this

thesis.

Institutions decide whether, when, and how to release

information to individuals or other institutions in society,

and thus individual privacy is most affected by the institutions

that hold personal information. We expect that at least some

institutions will act to protect individual privacy, and these

institutions would be poorly served by computers that couldn't

keep secrets. Thus this work is directed towards opening

technological options for humane institutions.

We have succeeded in finding a new mechanism for preventing

unauthorized releases of information from computers. This

mechanism acts to associate authorizations with information

itself, rather than information containers, and thereby pre-

vents accidental unauthorized releases of information. It

does not appear to be possible to prevent all unauthorized

releases of information from a computer, because it is

extremely difficult to prevent a cleverly written program

from signalling information to a human who interacts with the

computer. But our mechanism detects such signalling as it

occurs, whereupon the operating system can arrest the offending

computation. These two achievements of our mechanism provide

a new capability for information protection.

Our original goal was to design a mechanism which would

absolutely prevent all unauthorized releases of information.
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This is evidently not possible, roughly because computer

systems are not closed systems. People embed computers in

social systems, and computer systems radiate. Cathode-ray

tube terminals radiate photons, central processors radiate

at radio frequencies, and printers inundate social systems

with information on paper. When considering that one can

snap a picture of a CRT terminal with a camera, or the ubi-

quitous use of office copying machines, it is clear that mak-

ing computers keep secrets will never be more than a part of

any information-security envelope.

The problem of providing protection for information and

information systems is toughest in the context of a computer

utility. A data bank of sensitive information maintained in

a computer utility might become the target of organized at-

tacks aimed to steal, modify, or destroy information. Since

the services of computer utilities will be available to every-

one who agrees to pay for them, the attackers can use the

facilities of the utility to mount their attack. Our infor-

mation protection mechanisms must be able to defeat attacks

raised up inside the computer utility itself by malicious

users.

Protection of information and information systems has not

been a priority requirement in the development of commercial

computer systems. Studies carried out by James Anderson and

Daniel Edwards [Bra73, An72] have uncovered several design

and implementation weaknesses in security provided by

13



commercial computer systems. They found that protection

mechanisms which are "added on" to existing operating systems

can be penetrated by seven different classes of attacks. For

a computer system to be secure, it must be designed with se-

curity as a primary objective. This thesis contains such a

design: we present a "paper computer" which can be secured

against penetration attacks, and which can keep secrets.

Computers that keep secrets must store authorizations

that specify how and to whom information is to be released.

In addition to authorizations concerning release of information,

computers will store authorizations that relate to all the

available rights of control over computing objects. These

rights of control are the handles used by people to control

computers. As computers become more and more energetic actors

in social arenas, they approach the status of supporting the

entire nervous system of society. As this occurs, people with

power over computers will have more power over society, and

therefore the design principles by which power is licensed

and limited in society must be applied to computers. The

paramount design principle is the prevention of tyranny. This

principle arises naturally in democratic societies, and its

implication for a computer utility is the necessity of dividing

and limiting the power of people and organizations over the

utility. Organizations that use the computer utility will

require independent rights of control over computing objects,

and the administrators of the computer utility must not have

1P



the power to abridge the independence of users. Furthermore,

the power of the computer utility's administrators must be

divided and limited to provide a system of checks and balances

in the administration of the computer utility.

A computer's authorization system is an interface between

the computer and established organizational authority. In

every organization that uses a computer, the question of who

controls the stored authorizations must be asked and the an-

swer must be expressed in terms of the computer's authoriza-

tion system. An inflexible computer authorization system

would probably be burdensome to an organization whose struc-

ture and style were not congruent to the organizational model

used by the computer's designers. A computer utility must be

sufficiently flexible that user organizations can distribute

rights of control over computing objects in ways that are

natural to the organizations. In other words, a computer

utility's authorization mechanism must adapt to varying styles

and modes of organizational decision-making processes.

We have designed an authorization mechanism for our

"paper computer" which satisfies the criteria enunciated in

the previous paragraphs. Our mechanism preserves the indepen-

dence of authority of the independent organizations that use

the computer utility. To allow organizations to distribute

organizational power in ways that do not excessively disturb

their traditional superior-subordinate social relations, our

mechanism includes a system of protocols, defined by the
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organizations, whose purpose is to embody in the computer the

social rules which were formally or informally followed in the

pre-computer era. By using appropriately defined protocols,

organizations can prevent adverse effects on the quality of

organizational life due to the introduction of advanced com-

puterized information systems.

In addition to secrecy systems and authorization systems,

we have studied security problems associated with computer-

based services. Such services will probably improve the qual-

ity of life, but several factors retard their growth. First,

current computer technology is unable to protect the invest-

ment in programs and data that provide services. Under the

capitalist system, the reward expected by developers of ser-

vices is a monetary return for rental of programs or data or

for services rendered. This reward can be assured by means of

contracts between the lessor and lessees of services, but it

can be more securely protected by computer technology that

keeps the programs, data, and methods of providing services

secret. Second, current computer technology is unable to pro-

tect from theft the data which the user of a service feeds to

that service to be processed, unless the user controls the

computer that provides the service. A service implemented in

a computer utility might easily steal data, or sabotage its

users. Users of services will require protection from these

harms. The third factor is the awkwardness encountered in

using current computer technology to build on the work of

16



others in the form of programs and data. Having to "reinvent

the wheel" increases the cost of developing computer-based

services.

In our "paper computer", users can develop and lease

proprietary services in an environment that provides protec-

tion from most of the harms suggested above. Building on

the work of others is encouraged and facilitated by the

mechanisms presented.

In summary, we have designed a computer utility with hard-

ware and software mechanisms for protecting the privacy of in-

formation, mechanisms for storing authorizations and inter-

facing to a bureaucracy or other organizational form, and

mechanisms to support proprietary services in a computer

utility in a context that protects the interests of lessors

and lessees of services. The central technological contri-

bution of the thesis is the privacy restriction mechanism

described in chapters 6 and 7. The sociological contribution

of the thesis is most concentrated in the social view in

chapter 2 and the investigation of authority hierarchies in

chapter 8.

Finally, we present a plan of the thesis. Chapter 2,

"Society and Information," describes and analyses the social

environment impacted by information technology. From our

analysis of the complex social scene, we develop a set of re-

quirements which must be satisfied by a computer utility.

Chapter 2 is not crucial to the technological development that

17



follows.

Chapter 3, "Elementary Protection Mechanism," describes

early work in the realm of computer protection mechanisms and

generalizes from the examples presented to arrive at the

concept of the domain. This chapter serves as a technological

and philosophical introduction, but it is not essential;

readers who know roughly what a domain is will find the devel-

opment beginning in chapter 4 to be reasonably self-contained,

except for occasional references to "goring the ox," which is

explained in section 3.5.

Chapter 4, "Additional Protection Mechanisms," describes

how processes call and return between domains, passing argu-

ments and results between domains in a sectioned stack and in

shared segments. This chapter also describes the operating

system which supports the environment of domains, processes,

and a naming hierarchy for computing objects.

Chapter 5, "Proprietary Services," describes nine pro-

tection problems associated with the use of services encap-

sulated in domains, such as services which steal information

or sabotage their lessees, and lessees who conspire to steal

secrets from lessors. Technological solutions are presented

for some of these problems.

Chapter 6, "Privacy Restrictions," describes a mechanism

which can protect information owners from would-be copiers of

their information. The mechanism acts by propagating restric-

tions among restriction sets associated with segments and

1I



processes and by striking down output to users and input to

domains. But because the operation of the mechanism itself

can be used as a signal, the mechanism is not leakproof:

clever programs will successfully signal. A system of alarms

is developed to deter such cleverness.

Chapter 7, "Privacy Restriction Processor," describes the

hardware and software of a multiprocessing computer system which

implements privacy restrictions.

Chapter 8, "Authority Hierarchies," describes the authori-

zation mechanism of our design. Authority hierarchies are

the computing objects which represent independent users of the

computer utility. An authority hierarchy is a tree of "offices,"

each of which represents some collection of rights of control

over computing objects. Domains, especially "home domains" of

officials of organizations, are the "agents" of offices. Pro-

tocols associated with each authority hierarchy mediate some

attempts by agents of offices to exercise rights of control

over computing objects. Mechanisms for sharing authority,

delegating authority, and sharing delegated authority are

presented. Locksmithing, and the authorization system's most

powerful lock and key, are introduced.

Chapter 9, "Conclusions," summarizes the nature of pro-

tection systems, surveys the sources of complexity of compu-

ter protection systems, and speculates on robotic watchers.
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Chapter 2

Society and Information

2.1. Introduction

Institutions hold information. Governments, universities,

manufacturers, hospitals, insurance companies, credit bureaus

and the corner drug store all require, for their daily operation

and continued existence, a large amount of information. Some

of it is specialized, as when it is directly related to the

function of the institution, and only similar institutions

hold such information. Patients' histories held by hospitals

and transcripts held by universities are examples of this.

Also, institutions have some general information needs, i.e.,

information needs which are common to all (or almost all) in-

stitutions. For example, most institutions hold information

concerning inventory, accounts receivable, accounts payable,

payroll, and personnel.

Statistical information, generated from specialized or

general information, is another of the general information

needs of most institutions: managers of institutions use

statistical analyses to help them understand what their

institution is doing. For example, insurance companies do

statistical and actuarial studies to set their rates, and

the U.S. Government publishes the economic indicators that

help fill the general statistical information needs of the

business community.

20



Governments maintain numerous information services,

including libraries and clearinghouses that publish tech-

nical information, market information, maps, etc. The U.S.

Government conducts a census every ten years, making statis-

tical information about the population generally available.

Also, governments maintain many large data banks and

dossier systems holding information about individuals.

We will discuss data banks and dossiers at length in section 2.4.

Individuals hold information, although neither to the

extent nor in the manner (with some exceptions) of a large

institution. Almost all persons hold financial records

and personal correspondence, and many people build libraries,

both for professional purposes and for leisure.

Society is a vast, intricate, information-dependent

system; and the purpose of this chapter is to explore some

aspects of society relating to information and to that

superfast scary information machine, the computer. We are

interested in questions of the form, "What is the social

relevance of a transfer of such-and-such a type of infor-

mation?" The first important variable is the value of the

information transferred; this is discussed in the next

section. Then we turn to defining the concepts privacy,

disclosure, and surveillance; and we review U.S. law re-

lating to privacy.

21



In section 2.4, we discuss data banks and dossier

systems, and their computerization; and we review some

safeguards for the proposed National Data Center. Section

2.5 identifies the responsible actors in the process of

institutional information transfer. Section 2.6 describes

how surveillance spurs responsible action. When infor-

mation transfer is computerized, surveillance can be pro-

grammed into the computer.

Finally, section 2.7 explores criminal activity, police

surveillance, and computer penetration techniques; and

section 2.8 summarizes requirements on computer systems

which can be inferred from the considerations of this

chapter.

2.2 The Value of Information

Some information has great value to individuals and

to society. The value of information to decision-makers is a

clear example: wise decisions are not likely without know-

ledge of options and knowledge of expected outcomes. Know-

ledge can be regarded as the possession of information.

The remaining paragraphs in this section detail the value

of certain specific types of information.

Information about the exercise of power and the for-

mation of public policy is invaluable to the life of a

democracy. It is well known that the wisdom of a policy

22



is improved by public debate of its merits. For instance,

no public debate was held in 1964 and 1965 when the U.S.

Government escalated the covert war against North Vietnam

through the commitment of U.S. ground forces authorized

to take offensive action [DoD71]; and our escalation is

considered a mistake by most Americans today (in 1971).

Secret voting by representatives hampers the democratic

process. But when constituents know how their represen-

tatives are voting, legislators will be more responsive

to the public will. Thus we expect the elimination of

secret voting in the U.S. House of Representatives to

improve the quality of democracy here. [Hu70a,Hu70b]

Freedom of the press is essential to the operation of

representative democracy, because the press is the trans-

mission channel for information about public policy and

the exercise of power. The response of organized groups

in society to such information provides feedback to

government.

Information about the physical universe, including the

branches of knowledge we call science, engineering, medi-

cine and nutrition; is of great value in improving the

quality of life (when applied wisely), and has some power

to form world views. Of course, science and engineering,

together with ignorance and greed, created today's pollution

crisis. But the solution must include still more science
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and engineering; ecology and pollution preventment technology.

The operation of markets requires a flow of information

to traders. The New York Stock Exchange ticker is the

mechanism of one such flow. It is an exceptional source

of market information in that it is inexpensive and available

to all. Markets are generally dominated by clubs ("The

Establishment") whose power comes from mutual support and

access to inside information. For example, some information

might have prompted nine major stockholders of the Penn

Central Company to unload their holdings just before the

subsidiary Penn Central Transportation Company filed for

bankruptcy on June 21, 1970 [Bed71]. The wealth of

dominant clubs comes from the exploitation of non-members,

such as the buyers of the soon-to-be-devalued Penn Central

stock in the example just given. These clubs require

privacy to operate, and they have privacy.

Information about law and legal rights becomes impor-

tant to individuals in times of conflict. Such informa-

tion has always been available to the wealthy, while

recent social movements have begun to make legal rights

such as civil rights and welfare rights available to poor

people.

Credit bureaus collect, hold, and disseminate credit

and "other" information about individulas. This is an

essential service for the people who want and get credit,

and for the institutions that provide it.

Ordinary operating information, such as accounts re-
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ceivable files, can be essential to the survival of an institu-

tion. It is not widely enough recognized that the loss or

destruction of certain essential files can force a company

into bankruptcy. [Bri71]

Sources of information considered reputable by the public

can publish false reports, forged by intelligence agents,

purposely designed to create political unrest or scandal. This

is called "disinformation." For example, there was "the fab-

rication -- by a White House aide -- of a letter to the editor

alleging that Sen. Edmund S. Muskie (D-Maine) condoned a racial

slur on Americans of French-American descent as

'Canucks.'" [Ber72] The letter was published in the Manchester

Union Leader less than two weeks before the 1972 New Hampshire

primary.

These examples of the uses of information, gathered from

the worlds of politics, academia, the economy, and the cloak-

and-dagger community; give an idea of the scope of life touched

upon by the exchange of information in our society. In all of

our examples, the value of information is related to the values

of expected outcomes of decisions made by persons or institu-

tions which have access to the information. Our description

of this relationship has been qualitative, but recent studies

by Hirschhorn [Hi71] have applied economic tools to quantify-

ing the value of information applied to the production de-

cision.

25



2.3. Privacy, Disclosure, and Surveillance

"It is necessary at the outset to
sharpen the intuitive concept of
privacy. As a first approximation,
privacy seems to be related to secrecy,
to limiting the knowledge of others about
oneself. This notion must be refined. It
is not true, for instance, that the less
that is known about us the more privacy we
have. Privacy is not simply an absence of
information about us in the minds of others;
rather it is the control we have over infor-
mation about ourselves."

-- Charles Fried [Fr68]

This idea of privacy, i.e., control over information

about ourselves, is a large part of the concept. In addition,

privacy means the right to be let alone [Wa90], the right to

act anonymously, and the right to act without undue confusion,

paranoia, or fear of the chilling effect of government. Con-

fusion, paranoia, and fear can arise when government conducts

surveillance of political activities, as in these United

States.

"I know that many, many students are
afraid to participate in political activ-
ities of various kinds which might attract
them, because of their concern about the
consequences of having a record of such
activities appear in a central file. ...
I don't know to what extent these student
fears have any justification, but I can
tell you that they are real fears and that
they frequently have caused students to
back away from activities which attracted
them. I might add here that I am not re-
ferring to confrontations or planned violence,
but participation in seminars, political
study groups, etc., that were seriously
questioning governmental and social arrange-
ments or policies.

-- Jerome B. Wiesner [US71]
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Privacy is part of the bundle of rights retained by

autonomous humans after they have given up to society those

other rights which society requires to provide for the sur-

vival of the community. If this bundle of rights is too slim,

as when a society's survival seems to require extensive

surveillance, the dignity of the citizen and his "inviolate

personality" [Wa90] are abridged.

In giving information voluntarily, an individual is

exercising his right to privacy by deciding what to give. In

many circumstances, however, there is an element of coercion

in the disclosure of information. For example, an individual

accepts some degradation of his privacy in exchange for credit.

That is, he must provide some information about his financial

condition, and expect to have the facts he gives verified and

his personal affairs investigated if his application for credit

is to be approved.

Surveillance is the coercive negation of privacy. In

other words, surveillance is the willful invasion of an in-

dividual's privacy for the purpose of gathering information

about actions, associations, conversations, thoughts, motives,

etc.

"Surveillance is obviously a fundamen-
tal means of social control. Parents watch
their children, teachers watch students,
supervisors watch employees, religious
leaders watch the acts of their congregants,
policemen watch the streets and other public
places, and government agencies watch the
citizen's performance of various legal obli-
gations and prohibitions. Records are kept
by authorities to organize the task of in-
direct surveillance and to identify trends
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that may call for direct surveillance.
Without such surveillance, society could
not enforce its norms or protect its
citizens, and an era of ever increasing
speed of communication, mobility of per-
sons, and coordination of conspiracies
requires that the means of protecting
society keep pace with the technology of
crime."

-- Alan Westin [Wes67]

An invasion of privacy sometimes produces embarrassing

information for the invader, as in the case of marital infidel-

ity or a criminal record. Such information can be used by

one individual to gain power over another, or if made public,

can lead to a crippling loss of face on the part of the

exposed individual. It is for this reason that public dis-

closure of a very personal nature is sometimes considered

tortious.

The emerging computerized personal data banks represent

a threat to individual privacy. The availability of data

banks of personal information to public and private office-

holders in America reduces the level of privacy that can be

enjoyed by the people about whom information is stored. The

individual is in a very poor position to protect his privacy

by himself, because so much information about him is held by

institutions. The quality of privacy in our society, there-

fore, is controlled by the institutions that hold personal

information.

Every society finds some balance between privacy and

surveillance, which is a balance between the individual's



right to be secure in his person and the community's right to

know some things about the individual. In analysing public

policy that affects this balance, it is essential to realize

the value of privacy.

"...privacy is not just one possible
means among others to insure some other
value, but...it is necessarily related
to ends and relations of the most funda-
mental sort: respect, love, friendship
and trust. Privacy is not merely a good
technique for furthering these fundamental
relations; rather without privacy they are
simply inconceivable. They require a con-
text of privacy or the possibility of
privacy for their existence...To respect,
love, trust, feel affection for others
and to regard ourselves as the objects of
love, trust and affection is at the heart
of our notion of ourselves as persons
among persons, and privacy is the neces-
sary atmosphere for these attitudes and
actions, as oxygen is for combustion."

-- Charles Fried [Fr68]

"...one of the central elements of the
history of liberty in Western societies
since the days of the Greek city-state has
been the struggle to install limits on the
power of economic, political, and religious
authorities to place individuals and private
groups under surveillance against their will."

-- Alan Westin [Wes67]

2.3.1. Privacy and U. S. Law

The rights of individuals to protection from invasions

of privacy has been acknowledged many times in the history of

U. S. law. However, these protections are scattered throughout

the law, and each protection is limited and narrow. As a result,

the law does not define any unified and comprehensive concept

of privacy. In this section, we will describe some Constitu-

tional protections of privacy, some statutory protections of



privacy, and the impact of developing technology on privacy

and the response of the legal system to this impact.

The Bill of Rights provided the first protections of

privacy, in the First, Fourth, and Fifth Amendments. The

First Amendment guarantees the right of assembly (among other

things). This right of peaceful assembly includes the right

to form associations freely, for any purposes, no matter how

unpopular (although this right does not protect purposeful

complicity in advocating violent overthrow of the government).

The protection of freedom of association also protects privacy

of association, and guarantees freedom to participate in

political life without unjustified governmental interference.

The Fourth Amendment guarantees protection of "persons,

houses, papers, and effects, against unreasonable searches

and seizures." The basic purpose of the amendment is to safe-

guard privacy and security of individuals against arbitrary

invasions by government officials. The word "unreasonable" is

crucial, and questions of reasonableness are examined by courts

in deciding whether to grant search and seizure warrants.

Warrants are issued on the basis of probable cause, supported

by oath or affirmation; and they must describe specifically

the place to be searched and the persons or things to be seized.

The Fifth Amendment guarantees that no person may be

forced to bear witness against himself. The guarantee reflects

the concern of society for the right of each individual to be

let alone. The purpose of the guarantee is to enable the
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citizen to create a zone of privacy which the government may

not force him to surrender to his detriment. Also, the amend-

ment forbids torture of witnesses and defendants, which was

just going out of style in Europe at the time the Constitution

was written.

The Ninth Amendment states that the enumeration of rights

in the Constitution shall not be construed to deny or reduce

other rights retained by the people. In Griswold v.

Connecticut, the Supreme Court held that "specific guarantees

in the Bill of Rights have penumbras, formed by emanations

from those guarantees that help give them life and substance."

Particularly mentioning the First, Third, Fourth, Fifth, and

Ninth Amendments, the Court held unconstitutional a

Connecticut law forbidding the use and dissemination of birth

control information and devices. The Court spoke of the

"intimate relation of husband and wife" as "a right of privacy

older than the Bill of Rights." This landmark decision in

effect created a new constitutional right to marital privacy,

establishing in the law the idea that there are personal zones

of individual experience which must be inviolate.

Various statutes enacted by Congress provide for some

protection of individual privacy. We will describe a few of

these protections, provided by laws governing the Census and

fair credit reporting.

The Census Bureau collects and disseminates information

on population, housing, commerce, agriculture, governments,
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and many other things. The Census statutes prohibit the

Secretary of Commerce and all officers and employees of the

Department of Commerce (which includes the Census Bureau) from

using census information for any purpose other than the statis-

tical purposes for which that information was supplied. The

officers and employees are prohibited from making any publica-

tion of census information whereby the data furnished by any

particular establishment or individual can be identified, and

they are prohibited from permitting anyone, other than sworn

officers and employees of the Commerce Department, access to

the individual reports. The Secretary of Commerce may furnish

certified copies of certain returns to Governors, courts, or

individuals, for proper purposes, but information so furnished

may never be used to the detriment of the persons to whom the

information relates. Also, any sworn officer or employee who

publishes or communicates census information without proper

authorization can be fined up to $1000.00 or imprisoned up to

two years or both. These statutory prohibitions and require-

ments have proven to be effective protection of confidentiality

and privacy for institutions and individuals that provide in-

formation to the Census Bureau.

Congress passed the Fair Credit Reporting Act to protect

consumers against inaccurate, outdated, and out-of-context in-

formation in consumer reports. Such reports tell how the

subject pays bills, and whether the subject has been sued,



arrested, or filed for bankruptcy, etc. Some consumer re-

ports give neighbors' and friends' views of character, general

reputation, and manner of living.

"The Fair Credit Reporting Act requires
credit bureaus to:

(1) Follow reasonable procedures to assure
maximum possible accuracy of information;
(2) Disclose to the consumer, upon request,
the "nature, substance" and sources of in-
formation in the file, and recipients of
the report within the preceding six months;
(3) Provide an opportunity for a subject to
challenge the completeness or accuracy of
any item in his file, to record the dispute
if it is not resolved, and to correct any
error;
(4) Limit access to credit reports to those
with a court order, the consumer's consent,
or "a legitimate business need for the in-
formation;"
(5) Delete adverse information which is
7-14 years old;
(6) Notify the subject when detrimental
public information is included in a report
to be used for employment purposes,or to
make sure that the information is current."

-- Note, Yale Law Journal [YLJ71]

The note [YLJ71] goes on to cite weaknesses and problems

in the Act in four major areas:

"...the subject'sright to (1) be notified
of the existence of the report and inspect
it; (2) correct or explain detrimental entries;
(3) control access to the report; and (4) be
protected by the Act while still pursuing
common law remedies."

For example, with respect to the subject's right to in-

spect and correct private detrimental information, the Act is

not very effective.
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"While under the Act the credit bureau
must disclose the nature, substance and
sources of information contained in the
files on demand, it apparently need not
let the subject read the report. Further,
the sources of information about the sub-
ject's "character, general reputation,
personal characteristics and mode of liv-
ing" need not be revealed. The identity
of the source is essential to any attempt
to rebut the statements, which may be based
on bad motive, lack of opportunity to
observe, or similar grounds.

"There seems to be no reason why only
sensitive public information in employment
reports need be current or reported to the
subject. But the most critical limitation
is that the subject need never be notified
when a report containing detrimental private
information is being sent to a user, and
there is no requirement to keep it current
either. ... These problems drastically re-
duce the effectiveness of the statute."

-- Note, Yale Law Journal [YLJ71]

The note, after concluding that the Fair Credit Reporting

Act is "a first, if short, step toward solution, but may cause

more problems than it solves," suggests further legislation

required for the protection of consumers.

While the Constitution and statutes of Congress served

reasonably well to protect individual privacy in the context

of eighteenth century technology, new technological develop-

ments have seriously threatened the environment of privacy

created by the framers of the Constitution. The telegraph

(1850's) and telephone (1880's), and wiretapping, were developed.

Microphones (1870's) and audio recording inventions (1890's)

appeared, and microphone eavesdropping came into active use
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"Instantaneous photography" (1880's)

allowed candid snapshots of persons and events without the

subjects' prior consent. Radio technology and miniaturization

extended the flexibility of microphone eavesdropping. The

computer (1940's) can support dossier systems that carry out

data surveillance of massive populations.

In the 1890's and early 1900's, mass-circulation news-

papers published exposes of the private lives of public

figures, based on the newly available candid snapshot tech-

nology. In a famous article, Samuel Warren and Louis Brandeis

argued that such commercialized gossip was an unreasonable

intrusion against the "right to be let alone."

"...The intense intellectual and emo-
tional life, and the heightening of sen-
sations which came with the advance of
civilization, made it clear to men that
only a part of the pain, pleasure, and
profit of life lay in physical things.
Thoughts, emotions, and sensations de-
manded legal recognition, and the beauti-
ful capacity for growth which character-
izes the common law enabled the judges to
afford the requisite protection, without
the interposition of the legislature."

"...The intensity and complexity of life,
attendant upon advancing civilization, have
rendered necessary some retreat from the
world, and man, under the refining influence
of culture, has become more sensitive to
publicity, so that solitude and privacy have
become more essential to the individual; but
modern enterprise and invention have, through
invasions upon his privacy, subjected him to
mental pain and distress, far greater than
could be inflicted by mere bodily injury."
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"The general object in view is to pro-
tect the privacy of private life, and to
whatever degree and in whatever connection
a man's life has ceased to be private, be-
fore the publication under consideration
has been made, to that extent the protec-
tion is to be withdrawn. Since, then, the
propriety of publishing the very same facts
may depend wholly upon the person concern-
ing whom they are published, no fixed for-
mular can be used to prohibit obnoxious
publications."

-- Samuel Warren and Louis Brandeis [Wa90]

A majority of the states have adopted the principles

proposed by Warren and Brandeis, but this common-law right to

privacy has not been applied to surveillance by agencies of

government.

The use of wiretaps by police agencies without the prior

approval of a competent court was tolerated for more than a

century by U.S. law. In the Olmstead case of 1928, the Supreme

Court held (in a 5-to-4 decision) that a federal wiretap of a

bootlegger's telephone was not a search and seizure covered by

the Fourth Amendment. They chose not to demand that telephone

taps satisfy the Fourth Amendment's rule of reasonableness,

because no physical intrusion had occurred and because the

conversation overheard "was not tangible" and was therefore

exempt from Fourth Amendment protection. It is noteworthy

that other eavesdropping technology can be used without physical

intrusion, e.g., highly directional microphones and microphones

that can listen through walls.

In the 1960's, the Supreme Court moved away from the

property oncepts enunciated in Olmstead, and Congress has
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furthered this movement with the Crime Control Act of 1968

(Pub.L. 90-351). Title III of this Act makes it a crime to

intercept wire or oral communication, or to use any device for

intercepting oral communication in many cases, or to disclose

an intercepted communication or to use information from an

intercepted communication while knowing that it was inter-

cepted. The statute prohibits the manufacture, distribution,

possession,and advertising of wire or oral communication inter-

cepting devices; provides for confiscation of the prohibited

devices; prohibits the use of intercepted wire or oral commun-

ications as evidence; and establishes a civil cause of action

against persons who illegally intercept oral or wire communi-

cation. Perhaps most important, the statute authorizes the

interception of wire or oral communication by federal and state

agents when approved by a judge of competent jurisdiction, and

such legally intercepted communications can be used as evidence

in court. The statute specifies procedures for authorized

interceptions, and it provides for reports to Congress on the

level of bugging. Also, the statute establishes a National

Commission for the Review of Federal and State Laws Relating

to Wiretapping and Electronic Surveillance which will be

appointed in 1974 and make its final report in 1975.

The Crime Control Act's requirement for a warrant to

authorize interception of wire or oral communication does not

apply to interceptions undertaken in the interests of national

security, because the Executive branch has traditionally used
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wiretapping as part of espionage and counter-espionage activ-

ities directed against foreign powers, and because Congress

did not want to expand, contract, or define Presidential

authority to intercept wire or oral communications in matters

affecting national security. However, the claimed "Mitchell

doctrine" of an unlimited right to use wiretapping for domestic

security surveillance without court approval was not upheld by

the Supreme Court (in U.S. v. U.S. District Court for the

Eastern District of Michigan).

While Congress has acted to redefine the protection pro-

vided by law against wiretapping and electronic surveillance,

Congress has not acted to protect individual privacy against

data surveillance, except in a limited way in the context of

consumer credit reporting as described above.

"Although the United States is the most
advanced nation in the world in the field
of computer science, we must look elsewhere
to find comprehensive legislative proposals
for solving the computer-privacy problem--
in particular in Canada, Great Britain, and
Germany. Under bills before the Ontario
legislature and the British Parliament,
(1) all data banks would be registered,
(2) every person on whom a data bank main-
tains a file would receive a printout con-
taining the file's original contents and
have the right to demand printouts at later
points in time, and (3) each printout would
be accompanied by a statement of the file's
use since the previous printout was supplied
and a list of those who had received data
from it. In addition, the individual could
object to any item in the dossier and secure
an expungement order from the Registrar of
Data Banks, if he could show that the entry
was incorrect or unfair. Civil liability and
penalties also would be available if the bank
supplied erroneous information or violated the
act's provisions. b9



"By and large these are remarkable pro-
posals. I say this even though neither bill
expressly deals with file security or snooping,
prescribes the proper scope of data acquisition
and input, contains limitations on dissemina-
tion, applies to all data banks that might con-
tain information of a potentially damaging
nature, imposes a duty of care on data bank
operators except in the ex post facto sense of
relying on individuals to seek correction, or
requires the use of hardware or software con-
trols to meet privacy-protecting standards.
Many of these objectives would be achieved in-
directly, however, because the possibility of
liability under the proposed statute will en-
courage data banks to upgrade their practices."

-- Arthur R. Miller [Mi7l]

2.4. Data Banks

The U.S. Government maintains a score or so large data

banks about individuals in the Internal Revenue Service, the

Social Security Administration, the Veterans Administration,

the Federal Bureau of Investigation, etc. These data banks

exist to serve the operating needs of the agencies that main-

tain them. Of course, data banks are found at all levels of

government. At the state level, motor vehicle registrations

and operator licensing are accomplished with the help of data

banks. At the county level (e.g., in California), welfare

data banks are found. Cities and counties maintain data banks

to administer property taxes, sewer taxes, and so forth.

Governments are not alone in maintaining data banks. The

credit bureaus maintain credit and "other" information in their

private dossiers on more than 100 million Americans [US68b],

and life insurance companies maintain a shared data bank of

medical information on policyholders.

37



In addition to these data banks of operating information

for government and private agencies, governments at all levels

maintain data banks of dossiers about political extremists and

activists, and criminals. For example, the Federal Bureau of

Investigation maintains the Security Index of 10,000 persons

to be detained "in the event of a national emergency," and

their National Crime Information Center holds information

about wanted persons, stolen cars and other property. Also,

the U.S. Government maintains data banks of dossiers about

persons investigated for security clearances. Such investi-

gations are conducted by the Civil Service Commission, the FBI,

and the Armed Services Intelligence agencies.

Computers can hold data banks efficiently. The ongoing

development of low-cost random access mass storage devices

and data communication services allows us to envision a not-

too-distant future when all these data banks will be on-line

to computers linked in networks in such a way that anyone any-

where with a terminal to the network could access any data

bank and find out anything recorded about anyone.(*) This is

a nightmare.

(*)The FBI's National Crime Information Center (NCIC) is an
example of what this technology can do. If a policeman sees a
suspicious car, he can report the license plate number to his
dispatcher, who will key it in at a console attached to a com-
puter at their state police headquarters, which will relay the
number to NCIC in Washington, D.C. If the car is stolen, NCIC
gets a "hit" in its files and reports back to the state com-
puter, which informs the dispatcher, who informs the officers
who requested the information.
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Because the technology is available, many people are afraid

that the computerization of data banks will lead to computer

networks that give every police officer, government official,

and bank vice-president access to all the computerized infor-

mation about everyone; which would be the end of personal

privacy as we have known it. This fear has a potent force,

which was felt when a National Data Center [US68a] was pro-

posed as a step toward a unified Federal statistical data

base. The danger that such a data base can be used as a

dossier system prompted the hearings conducted by Senator

Edward V. Long and Congressman Cornelius E. Gallagher which

have served to delay the proposal while safeguards to protect

personal privacy are incorporated.

People would be more comfortable about data banks if their

rights to know of their files' existence, and to see their own

files and to challenge errors, were clearly established. Such

rights now exist with respect to credit bureaus and investiga-

tive reports [Hanl7la, YLJ71], but not with respect to files

held by agencies of government [Hanl7lb]. The right to see one's

file will be difficult to obtain in some cases because of con-

flicts of privacy. A conflict of privacy exists when disclosure

of the file contents to the file subject would violate the

privacy of some person who contributed to the file.

Congress, and perhaps all the state legislatures, must act

to establish the civil rights of seeing and challenging one's

file in most data banks. In addition, a person should be noti-

fied as to when his file has been accessed, by whom, to what
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extent, for what reason, and toward what end the information

has been obtained. Furthermore, procedures must be devised to

resolve problems with files in the context of conflicts of

privacy.

2.4.1. Safeguards for a National Data Center

A statistical data bank is a much milder establishment of

surveillance than the computer network suggested above. And

certainly our expectation of rational government is that it

should use the best possible statistical information in formu-

lating its policies. Therefore we expect a National Data

Center [US68a], with some safeguards, might be implemented.

Any system intended to protect personal privacy will

naturally replace identifying data, in each record of the

National Data Center's data bank, with a code number. Such

usual identifying data as names, addresses, and Social Security

numbers will be related in a one-to-one fashion to code numbers

by a separate file. Agencies which contribute data to the

bank do not need access to the (code number, personal identity)

file, since their contributions have identifying information

which can be translated into code numbers after the data are

received by the National Data Center. The users of the data

bank, who might be statisticians, have no need for the (code

number, personal identity) file, except for such applications

as detailed studies of "interesting" subsets of the popula-

tion. In such studies the researcher will have devised a

questionnaire, and selected a group of code numbers representing
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individuals whose responses to the questionnaire are to be

solicited. Such studies should have to be approved by a board

of review whose charter includes the goal of protecting

personal privacy to a reasonable extent, balancing that against

the value of the information being sought to the well-being of

the community. If the study is approved, the questionnaires

can then be sent to the population selected, and the results

made available to the researchers, with the personal identi-

ties remaining unknown (to the researchers).

The agency that grants access to the (code number,

personal identity) file holds the power to allow use of the

data base as a surveillance mechanism; that is, to invade

privacy. The control of such power is a problem that will

have to be solved by Congress.

"...common-law notions of privacy are
aimed too acutely at protection of undue
publicity and emotional distress to meet
the problems of privacy in a centralized
information system. Nor are suits at law
a particularly effective means of afford-
ing relief to those whose privacy is in-
vaded by the system...

Legislation specifically relevant to
the organization of the proposed informa-
tion center would appear to be a more
appropriate legal solution. With so many
forms of interrelated access possible,
careful legislation would be needed to
explicate precisely who is entitled to
have access to what. Criminal sanctions
for misbehavior would provide a much
stronger deterrence than would the vague
fear of a possible lawsuit."

-- Jeffrey A. Meldman [Me69]

User's having access to a data bank through a statistical

information retrieval program can use a well-known
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technique [Ho70] to violate the privacy of individuals. The

technique involves requesting of the information retrieval

program the number of individuals satisfying given criteria.

The criteria are chosen from known information which describes

the individual under investigation. The investigator can keep

adding criteria to the list presented to the information

retrieval program until the program reports that there is only

one person satisfying the criteria; the investigator then

knows that he has "pinned down" his man. Through subsequent

use of the retrieval program, the investigator can determine

everything in the data bank concerning that individual by add-

ing the additional property he is interested in to the list

of criteria and querying the program. If the program reports

that one individual satisfies the criteria, the investigator

knows that his man satisfies the additional property; if the

program reports that no individuals satisfy the criteria, the

investigator knows that his man does not satisfy the additional

property.

The statistical snooping technique just described can

be prevented by modifying retrieval programs so that they will

not disclose the number of individuals satisfying given

criteria when that number is below a certain threshold. In

addition, users who make suspicious requests can be reported

to some higher authority by the retrieval program. These

prevention techniques reduce, but do not eliminate, the

possibility of using statistical data systems to violate
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individual privacy. It is not yet clear whether it will be

possible to implement a National Data Center with reasonable

safeguards to protect the privacy of individuals and groups.

2.5. Transfers of Information

Information flows in our society are staggering; our

environment is information-rich, and we are attention-poor.

The media provide us with all manner of news, opinion, specu-

lation, some educational material, and heavy doses of enter-

tainment, escape, and advertising; in short, a glut of inputs.

Similarly, the processes of learning and teaching engender a

cornucopia of information.

The flows of information that are of primary concern in

this thesis are those flows that begin and end in the files

of institutions. For example, applications for credit and

reports of credit ratings, applications for admission to

schools and transcript reports, applications for employment

and letters of reference and recommendation, and applications

for insurance. In addition, every financial transaction

carries with it a packet of explanatory information, which

sometimes involves persons.

Because the flow of information can have good as well as

harmful effects, it is natural to ask, for any particular

packet in the information flow, "Who is responsible for that?"

Actually this question isn't precise because the process of

information transfer has many components to be responsible for.



Figure 2-1 shows a model of institutional information

release that allows us to isolate some components of infor-

mation transfer. Shown is one office of an institution,

called office O, which releases data into a data channel

which could be the mails, a courier, or a network of computers.

The person in charge of office O is Q. The triangle surround-

ing him connotes his authority over O. Also shown is the

chain of command over Q, up to the president of the institu-

tion, P. The legal environment of the institution is shown

as a force acting from above.

When the office 0 releases a packet of information, the

office becomes responsible for releasing the information in

the first place, for designating the recipient of the infor-

mation, and for choosing a data channel that offers a level

of security commensurate with the value of the information.

Since Q is in charge of O, he is responsible for all this.

To a lesser extent (usually), so are the officials in the

chain of command above him; and the institution is legally

responsible for releasing the information if there is an

appropriate law.

Since Q probably doesn't do all the work of office O

himself, we must examine the operation of O more closely.

One way to view 0 is as a collection of workers. Another

view is as a collection of procedures; that is, O's work is

defined by the procedures used by the workers who work there.

Since the workers ought to know the procedures, Q must be
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responsible for seeing that they do. Also, Q should be re-

sponsible for seeing that the procedures are reasonable. For

example, if 0 were a university registrar's office, and the

data were transcripts, a reasonable prerequisite for the

release of a transcript would be a signed request from the

subject of the transcript.

It sometimes happens that information is released through

the improper action of a worker. For example, policemen in

New York City sold printouts from the FBI's NCIC to private

investigators [Com71]. If the worker isn't caught, he can't

be held responsible for what he did. Of course, if the im-

proper release goes undetected, no one will worry about hold-

ing anybody responsible for it. But if it is detected, the

office becomes responsible for having allowed it. That re-

sponsibility might then be pinned on some worker whose

negligence or lack of vigilance made the improper release

possible.

Much more important than the procedures of office 0 are

the policies from which those procedures are derived. For

example, is it the policy of the institution to release in-

formation about individuals without their consent? The in-

formation release policies of institutions are crucially



important features of the social environment, and such policies

must be reasonable(*) and responsible.

Figure 2-2 shows a model of the data channel from figure

2-1, expanded to take into account the institution that im-

plements it. The path that a packet of data follows through

the data channel is shown as a sequence of "offices" 01,

02'... 'On In this context the word "office" is not always

meant literally. Rather, the Oi can represent stations (which

includes mailboxes and the storage components of store-and-

forward message switching systems) and vehicles (such as mail

(*) "Reasonable" is the well-known lawyer's word that is in-
tended to encapsule the judgement of a group of "reasonable
men." As times change, so does the definition of "reasonable."
For example, Ralph Nader would not have been considered a
reasonable man in 1960, whereas he is today (in 1971). The
men who wrote and passed Connecticut's law against the sale
and distribution of birth control information and devices were
reasonable men in their time. But in our time the Supreme
Court struck down their law as unconstitutional. To this
author the Connecticut legislators appear self-righteous and
definitely not reasonable.
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trains and electronic digital data transmission systems(*)) as

well as offices where data packets are sorted and scheduled

for delivery to other offices or to the addressee.

The overall responsibility of the data channel is to

deliver the data packet to its addressee within a reasonable

time, and to hold the data packet securely during the time it

is in the data channel, which means to protect the packet

from malicious or accidental damage or loss, and also to

prevent the data in the packet from being released to anyone

except the addressee. The responsibility of the data channel

to hold information securely falls on all the offices 01,

02'. '0n; while the responsibility to deliver the information

(*) When the data transmission vehicles of the data channel
are electronic transmission lines, the data channel is sus-
ceptible to wiretapping. This problem has received consid-
erable attention in the context of military communications
systems. In [Ba64] a solution is proposed which involves
point-to-point and end-to-end encryption of the information.
That is, the message is encrypted at the sending station and
decrypted at the addressee's station, which is end-to-end
encryption; and in addition the (encrypted) message is
encrypted and decrypted every time it passes through a trans-
mission line between stations. This latter encryption of the
already once-encrypted message is point-to-point encryption.
The end-to-end encrypted message contains the address of the
message in its original (clear, unencrypted) form so that the
intermediate stations can forward it; but when point-to-point
encryption is used, that address is encrypted when the message
is sent between stations. Thus point-to-point encryption pre-
vents wiretappers from determining the addressees to whom
traffic is directed, and also can raise the work factor of the
entire system. (The work factor is the measure of the resources
the wiretapper must expend to cryptanalyse and decrypt the
message. A sometimes useful rule for choosing encryptions is
to choose one whose work factor is so high that the cost of
breaking the crypt is greater than the value of the informa-
tion obtained thereby.)



with reasonable dispatch falls on those offices that do

sorting, and the vehicles that move the packet. Of course,

these responsibilities fall on a given office Oi, with re-

spect to a given packet of information, only after the given

packet has entered that office. In other words, the re-

sponsibilities of the data channel with respect to the packet

are bound to the trail the packet takes through the channel.

Figure 2-3 shows a model of an institution absorbing

information from a data channel. The office 0, where the

information is delivered, becomes responsible for accepting

the information, for estimating the probability that the

identification of the source of the message is a forgery,

and for the further distribution of the information inside

the institution. For example, figure 2-3 shows a packet of

information from the files of office 0 being transferred to

office R. The office 0 is responsible for releasing the

packet to R.

Any office that uses information received by office O

is responsible for its own usage. Thus, when R uses the

information it got from 0, R is responsible for its usage.

Similarly, if R releases information that it holds, either

inside or outside the institution, then it is responsible

for that.

An important general responsibility of all the offices

in figures 2-1, 2-2, and 2-3, is to hold information with

precautions taken to insure its security. As before,
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"security" means the prevention of accidental or malicious

damage or loss, as well as the prevention of unauthorized

release.

2.6. Surveillance and Responsibility

Officials of institutions and managers of offices are

faced with the problem of encouraging their workers to be

responsible. To make workers responsible, institutions often

hire inspectors to carry on inspection and surveillance of

work and workers. Our government has organized inspection

and auditing of certain institutions to protect the public

interest by keeping these institutions responsible. For

example, the Securities and Exchange Commission (S.E.C.)

requires disclosures of information by corporations before

they may sell stock to the public, the Federal Aviation

Agency inspects aircraft and issues airworthiness certifi-

cations to declare which aircraft are permitted to carry

passengers, and the Post Office has a corps of Postal Inspec-

tors who try to prevent mail theft.

Inspection, auditing, and surveillance must be carried

out by independent, impartial agencies. In the case of air-

craft certification, this means that the inspector who

examines and certifies the aircraft must have no interest in

(i.e., not stand to profit by) seeing the aircraft carry

paying passengers. In the case of the disclosures required

by the S.E.C., this means that the auditors who certify the

disclosure must not stand to profit by sales of the audited
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corporation's stock. In both these cases, the aircraft in-

spector and the auditor are supposed to protect the public

interest. By their actions they restrict, discipline, and

make responsible the actions of others.

Some work must be inspected, especially when the work

(or lack of it) can hurt people or cause other undesirable

effects. Sometimes inspection of work is not adequate pro-

tection, and surveillance must be used. Whenever surveil-

lance is a condition of employment, such surveillance should

stop at boundaries which are known to the employee and re-

spected by his employer.

2.6.1. Surveillance of Information Transfers

Surveillance can be used to improve the security with

which an institution holds information. For example, in-

stitutions which work with classified information use guards

and closed-circuit TV to construct a security envelope. Of

course, no such precautions are 100 percent effective --

witness the work of Dr. Daniel Ellsberg. [DoD71]

Surveillance can be used to insure that releases of in-

formation by offices are authorized. If, when an office re-

leases information, a record is made of which worker released

what information, then that worker can be held responsible.

Since the worker will know that such work is being watched,

he will endeavor to "cover himself" by determining that the

release is properly authorized.

Similarly, surveillance can be used to hold offices and

the workers in them responsible for information they receive.
E'S



A typical method is to require the execution of a receipt to

be returned to the office or person who released the infor-

mation.

2.6.2. Programmed Surveillance

When the work of offices to be watched is carried out by

a computer, the surveillance can be programmed into the com-

puter. Figure 2-4 shows a clerk using a computer to manipulate

a data base. Also shown is a surveillance file, maintained

by the computer, which records all the clerk's actions and

all other actions that affect the data base.

If the surveillance log is to include all actions that

affect the data base, it must be impossible to access the

data base except through authorized programs which collect

surveillance information. This is a crucial requirement:

it must be possible to bind a data base to some caretaker

programs and insure that no other programs can access the

data base. Furthermore, the caretaker program which writes

the surveillance log must be correct, and protected from

modification. We are confident that such protection can be

provided by an authorization system that permits only certain

programmers and administrators to modify the caretaker pro-

grams, and surveillance over those authorized programmers

and administrators. This surveillance over programmers and

administrators can also be provided by a program. Figure 2-5

shows a programmer modifying the program of figure 2-4. He
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would modify the source program, compile it, test it, and

finally install it. His installation triggers the writing

of a record in the surveillance log of figure 2-5, so he is

held responsible for a change. This surveillance log can be

designed to record exactly what the change was, by including

a copy of the program before the change was made, and another

copy with the change incorporated, in the log.

The reader will no doubt want to know how changes to the

surveillance program of figure 2-5 are watched. Of course,

this cascading of surveillance could go on forever; but we

postulate that the surveillance program of figure 2-5 is

relatively fixed and unchanging, and that its correctness is

guaranteed by human certifiers. Whenever a change must be

made to it, the program is re-certified.

2.7. The Computer as a Social Arena

The computer is a powerful tool for processing informa-

tion, and information has a powerful force in society. One

way for society to protect itself from this potentially

dangerous tool is to hold those persons who use it, especially

programmers, responsible for their actions. But just as im-

portant is the problem of understanding what goes on inside

the computer, and determining who should be responsible for

the events that occur there. For example, such an event

would be the passage of information, inside the computer,

into the possession of a blackmailer.
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In general, it is important to be able to say who is

responsible for events, in the computer, that have potentially

harmful effects. There are three major categories of events

which are likely to have some harmful effects. These are:

(1) unauthorized release of information, which might violate

the privacy of some individual or group, (2) unauthorized

modification of information, which might leave inaccurate

information in the computer, and (3) reduced availability of

the computer system. The reader should note that the concept

of harm expressed here is as perceived by the authority which

controls the information in the computer, and this will

coincide with the reader's concept of harm only to the extent

that the reader shares the value system of that authority.

But apart from such differences in values, the three classes

of harmful events above serve to outline a precise definition

of computer security, which consists of secrecy (no unauthor-

ized release of information), integrity (no unauthorized modi-

fication of information), and availability (no system failures

which reduce the level of service).

In the following chapters, we develop a design for a

secure computer system, and within the context of that design

it is possible to say what programs are responsible for.

Appendix 5 contains our enumeration of the responsibilities

of programs.
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2.7.1. Criminal Activity

It is likely that some criminal activity will go on with-

in multi-access computers. A criminal could use a computer

for his everyday data processing, or to spy in some way on

another user. As a counterforce to criminal activity, multi-

access computers might include spying mechanisms to be

monopolized by government; e.g., to be used by police agencies

with the approval of a competent court. When police have

obtained a search warrant to seize information held in a

computer, the warrant will say exactly what is being searched

for, since "general warrants" are unconstitutional. The spy-

ing mechanisms used by police can be programmed to refer to

the warrant and thereby prevent the police from conducting

"fishing expeditions" -- i.e., sifting through files apart

from the ones which they told the court they were looking for

when they asked for the warrant. Also, the spying mechanisms

can conduct surveillance over the spying, to make the officers

who direct the spying responsible to the higher authority to

whom the surveillance records will be released.

2.7.2. Computer Penetration Technology

Some considerable money and effort is being spent on the

problem of building secure computer systems, and a part of

that money and effort is going into the study of ways to

break into, penetrate, and take over computer systems. For

example, the RISOS project (Research In Secured Operating

Systems) at Lawrence Livermore Laboratory is studying ways
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and means of penetrating A.E.C. and military computer systems.

After they develop the penetration technology, they will

write guidelines for designers of future, more secure systems.

It is likely that two standards for secure computers

will come into existence: a commercial standard and a mili-

tary standard. A computer meeting the military standard would

be more secure than computers meeting the commercial standard,

because whenever a penetration technique is found which can

be used to take over a computer, a protection mechanism to

defeat the penetration technique will be added to the mili-

tary standard. The military officers responsible for secure

computing would have to take this step because penetration

of a computer-based military command and control system would

allow sabotage. When a penetration technique is very expen-

sive, e.g., costing more than the value of the information

or services provided by the average commercial computer, the

protection mechanism to defeat the penetration technique is

not likely to be included in the commercial standard. There-

fore computers that are secure by commercial standards will

probably be penetrable by techniques developed by the military.

The crucial question is: who will control this dangerous

penetration technology?

It is clear that the agency which can penetrate com-

mercial computers will have the power to invade individual

privacy, carry out blackmail, etc. As things are developing

now (in 1972), this power will be held by the military, the
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C.I.A., and generally, the Executive branch of government.

The old problem of controlling illegal use of Executive

power will become more serious as new computer penetration

techniques are developed. Twelve years to 1984, and the

awesome, ugly power to create a 1984-like negative-utopia

[Or49] is coalescing.

2.8. Requirements on Computers

From the considerations of this chapter, and related

technological considerations, we can infer a number of prop-

erties of computers which will be socially beneficial.

First, computers should keep secrets. That is, com-

puters should release information into society only when the

release is authorized. Computers must contain authorization

mechanisms which inform the computer whether and how to re-

lease information; and modifications to stored information

must be similarly controlled.

Second, no individual should have absolute power, or

even a large amount of power, over any computer which serves

substantially important social functions. Power over com-

puter utilities will probably be divided in patterns that

reflect the interests in the social arena affected by com-

puters, but the principle of preventing tyranny should

prevail.

Third, computers should be auditable. If a computer is

supposed to keep secrets, only an audit of its hardware and

software can build trust among the computer's users that it
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is keeping secrets. Computers with important and sensitive

social functions,such as electronic libraries which should

not keep lists of who reads what, ought to be open to audits

by any citizen. That is, every citizen should have the right

to obtain the data necessary to carry out an audit and

evaluate the propriety of such a computer's actions. If such

an audit might violate someone's privacy, the conflict between

the right to audit and the right to privacy can be resolved

by using a professional auditor who would be bound by a pro-

fessional code of auditing ethics and procedures. The pro-

fessional auditor would report on the propriety of the

audited computer's actions,while avoiding unreasonable

infringements on privacy.

Fourth, it should be easy to bind a data base in the

computer to a caretaker program in such a way that references

to the data base can be made only through calls to the care-

taker program. A data base and caretaker program are said

to be encapsulated when bound together in this way. Encap-

sulation protects the data base from the actions of all pro-

grams other than the caretaker program. The caretaker pro-

gram can control what use is made of the information in the

data base (e.g., release only statistical summaries), and it

can collect surveillance concerning releases of information

and modifications to stored information. Other important

surveillance information can be collected only by the operat-

ing system, or with its secret assistance [Ro71].
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In the remainder of this thesis, we present a design for

a secure computer system which meets the above four require-

ments.
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Chapter 3

Elementary Protection Mechanims

3.1. Introduction

The purpose of this chapter is to review the means by

which the goals of protecting the secrecy and integrity of

information were achieved in multi-access computer systems

that were conceived as prototype computer utilities. As

before, "secrecy" is achieved when the computer prevents

unauthorized releases of information, and "integrity" is

achieved when the computer prevents unauthorized modifi-

cation of stored information.

We will proceed by exploring means by which computations

in multi-access computer systems are protected from accidental

and/or malicious interferences. We will describe two different

methods of protecting the memory of processes in multi-access

computer systems. From these examples (many others are avail-

able and could be used equally effectively [De66, Bu61, Fa68])

we will extract the concept of the domain. Then, to explain

why the domain is the most useful concept upon which to build

computer protection mechanisms, we will abstractly examine

the concept of protection, and offer a metaphorical model of

protection in general, whereupon the domain will be seen as a

special case.

In the following examples, we will consider two multi-

access computer systems, and regard them as collections of
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processes. Each user of the system has his own process,

which will execute programs as commanded by the user. We

agree with Thomas Th7l that a process is best defined to

be the activity of an active part, called a processor, which

interprets and changes a passive part, called a process state.

The process state is a collection of information that includes

working registers, a program counter, a program, data, etc;

while the action of a processor is defined by a state transi-

tion rule which specifies how the processor is to modify the

process state. Since multi-access computer systems are time-

shared, the processors are multiplexed among the processes.

When a process does not have a processor, it is considered to

be not running, and the operating system maintains its process

state until such time as a processor is again available to run

the process.

Our symbol for the processor is 8, and our symbol for a
process state is 9. Our symbol for a running process is .

We use these symbols because they emphasize the combining of

Yin and Yang in a process.

-3.2. CTSS

The Compatible Time-Sharing System (CTSS) [Cr65] was im-

plemented using a specially modified IBM 7094 computer. The

process state of a CTSS process was the tuple = (pc,
registers, base, bound, M). The first component of the tuple,

pc, is an integer which serves as the program counter of the
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process. The second component, registers, represents the

central processor registers of the processor that is the active

part of this process. In CTSS, implemented on an IBM 7094,

the registers are the AC, the MQ, the index registers, sense

indicators, instruction register, etc. The third and fourth

components, base and bound, are integers which control the

memory protection tests in the state transition rule. These

components represent registers which were added on to the

7094 to make memory protection possible. The fifth component,

M, represents the user memory bank of CTSS. We will proceed

by assuming that M = {(word#, bitstring)}, a set of ordered

pairs. Each of these ordered pairs represents one word of the

memory; word# is an integer which is the address of the repre-

sented word, and bitstring is a string of bits which represents

the contents of the word. To insure that word addresses are

well-defined, we require that the set {(word#, bitstring)} not

contain two or more ordered pairs with the same first component

word#. (Another way of expressing this restriction is to say

that the set {(word#, bitstring)} is a function in the set-

theoretic sense.)

The state transition rule of the CTSS processor is shown

in figure 3-1. Notice that all references to the memory M by

the process must be to words whose addresses are < bound, and

all addresses which pass this test are added to base and the

resultant sum is used as the address in M. So the process'
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memory references are confined to a contiguous portion of M,

as shown in figure 32. The supervisor of CTSS arranges to

have the process' "core image" in that contiguous portion of

M whenever the processor is assigned to the process, and the

supervisor places the correct values of base and bound in the

process state to prevent the process from reading or writing

information anywhere except its "core image". When processes

are not being run, their "core images" are swapped out to the

drum and their pc and registers are tucked away in the super-

visor's memory bank.

It is useful to consider a different view of the CTSS

process. In the model just presented, all the processes share

the same memory bank M, restricted by the base and bound regis-

ters. This is how things actually were, from the system

designer's point of view. But from each process' point of

view (or, from the user's point of view), each process had its

own isolated contiguous memory space. (People who were there

or heard the stories know that this wasn't completely true in

the beginning!)

We now present the CTSS process seen as having its own

isolated contiguous memory space. The process state is the

tuple9=(pc, registers, {(word#, bitstring) ). The first

two components, pc and registers, are just as they were pre-

viously. The third component is the memory space, which is

a function in the set-theoretic sense, and that function has
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as its domain an interval [0, bound] of the integers. The

state transition rule is given in figure 33. In the figure,

M = {(word#, bitstring)} denotes the third component of the

process state. Since M, in the state transition rule, always

means the memory of the process being executed; each process

is confined to referencing only its own memory.

This model of CTSS is more elegant that the first one be-

cause it is easier to see that processes are isolated; no ar-

guments about swapping and base/bound registers are required.

The critical reader will argue that this elegance is purchased

at the price of hiding the actual protection mechanism; and

while this is correct, nevertheless this elegant point of view

is necessary to support the generalization which follows later

in this chapter.

CTSS provided a good measure of protection of secrecy and

integrity by keeping the memory spaces of processes isolated.

Certainly, no process in CTSS was permitted to read or write in

any other process' memory space. CTSS provided long-term

storage for information in files, and a permission mechanism

was available which allowed information owners to say which

processes were allowed to read and write their files. But when

a process read a file, it obtained in its memory space a copy

of the information in the file, rather than having direct

access to a single copy shared directly with other processes.

This situation was improved in the Multics system with the
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introduction of the segmented address space.

3.3. Segmented Address Space

The Multiplexed Information and Computing Service

AMultics) [Cor72] was implemented using a Honeywell 645

computer, which was specially designed by General Electric

in 1965. The Multics process possesses an address space

composed of many independent segments. A segment is a con-

tiguous linear array of words of memory. Segments hold pro-

grams and data. Processes refer to the segments they refer-

ence using two-dimensional addresses of the form (seg#, word#).

The first component of this address selects a segment from

the array of segments which is the address space of the process,

and the second component selects a word from that segment.

We can model the process state of a Multics process with

the tuple9 = (pc, registers, {(seg#, (mode, length, page_

table addr))}). The first component of the state, pc, is an

address having the form (seg#, word#); as before pc is the

program counter of the process. The registers are arithmetic,

base, and index registers. (Note that the base registers also

hold addresses of the form (seg#,word#).) The third component

represents the descriptor segment of the Multics address space.

This third component must be a function in the set-theoretic

sense, so it defines a mapping from the set of segment numbers

to the set of triplets {(mode, length, page_table_addr)}.



When the processor sees that the process is making a reference

to a particular segment, it applies this mapping to obtain a

triplet Cmode, length, page table addr) for the segment.

(Actually, the mapping is simply a reference to the array in

the descriptor segment, using the seg# as the index.) From

the components mode and length, the processor determines if

the reference is permissible; and if it is, the processor

uses the page tabl'_addr, an absolute address, to find the

segment's page table. From this point to the referencing of

the referenced word, standard virtual memory techniques are

applied: a page table word is selected from the page table,

yielding the absolute address of the page, and the desired

word is selected from the page. The critical reader will

have noticed we haven't mentioned the segment fault and page

fault events which permit multiplexing the system memory; he

should remember that memory multiplexing is not the subject

we are addressing.

Figure 3-4 shows the state transition rule of the Multics

processor. The rule applies three different tests to the

mode component of the triplet (mode, length, addr). These

tests are notated e(mode), r(mode), and w(mode), and they

test for execute permission (e(mode) = 1), read permission

Cr(mode) = 1), and write permission (w(mode) = 1) respectively.

Thus the mode component can be represented by a 3-bit string.

Furthermore, the state transition rule refers to segments with
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the notation "Seg(page_table addr)". This simply means the

segment whose page table address is given. For the purposes

of this model, segments are assumed to be sets of ordered pairs

{ word#, bitstring)} which are functions in the set-theoretic

sense, and these functions are assumed to have domains- (in the

set-theoretic sense again) which are intervals [0, length(Seg)]

of integers. This definition of segment is more precise than

the verbal definition given above ("A segment is a contiguous

linear array of words of memory"), and it makes notating the

state transition rule of figure 3-4 easy.

One of the more curious parts of figure 3-4 is the test

in cases of read intent, "is t = seg#(pc)?". The purpose of

this test is to allow executable segments to direct processes

to read constants out of themselves without having the r(mode)

bit on, and it makes a good example of a point which will be

brought up later in this chapter.

Multics protects the secrecy and integrity of information

by including the r(mode) and w(mode) bits in the triplets that

make up AS, the address space. It is the information owner

who has the authority to say what these mode bits shall be,

for any triplet (mode, length, addr) for which Seg(addr)

belongs to him (the information owner). The information owner

authorizes processes to access his information by making

entries on an access- control list associated with the segment.

An access control list entry names a process or processes



(using a name space which is not important to us in this

context) and specifies the permissible access with a 3bit

string. Once the information owner does this, a process which

is named by the access control list can obtain a triplet in

its address space and reference the information owner's segment.

3,4. Domains

At this point it is appropriate to draw from the pre-

ceding examples that important feature which they have in

common: the domain. First consider the CTSS process whose

process state was the tuple = (pc, registers, {(word#,

bitstring)}). The things which the process can get at (in

terms of reading or writing) are the bitstrings in the set

{Cword#, bitstring)}, and in addition its own program counter

and registers. And these very things cannot be gotten at by

any other process, and so they are protected from any harmful

process that might be lurking about. Of course, what the bit-

strings are protected from is unauthorized reading and writing

by the harmful process.

Now consider the process of Multics, whose process state

is the tuple = (pc, registers, AS), where AS = {(seg#,

(mode, length, pagetable addr))}. Aside from its own pro-

gram counter and registers, the process can get at the bit-

strings in the segments Seg(pt_addr) where pt_addr is the

third component of a triplet (m,l,pt_addr) which appears in

the address space AS of the process. These bitstrings cannot
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be gotten at by any other process, provided no other process

has a triplet in its address space whose third component is

ptaddr. Whether or not such an additional triplet exists,

the bitstrings in Seg(pt addr) are protected from unauthorized

reading and writing because all the triplets (m,l,pt_addr) are

authorized by the owner of Seg(pt addr).

The following definition springs from these examples: a

domain is a dynamic set of abilities to use computing objects.

By "dynamic," we mean varying as a function of time. Two

domains can be equivalent for periods of time, just when the

sets of abilities are equal, but this is not likely to occur

often in practice. The abilities which constitute the domain

are used by processes in the context of rules which bind pro-

cesses to domains. These rules are called the Postulates of

Domains.

Postulate 1: Every process is bound to one domain at

Postulate 2:

Postulate 3:

Postulate 4:

a time.

Only processes bound to a domain can use

the domain's abilities.

All information entering a process state

is authorized to enter by an ability in the

domain the process is bound to.

All information leaving a process state

is authorized to leave by an ability in

the domain the process is bound to.



In the examples just given, th.e domains have been part

of the process state. In the CTSS process, the domain is the

set {(word#, bitstringi}, all of whose computing objects are

bit strings which the process uses for program and data stor-

age. In the Multics process, the set AS is a domain, in

whinch the computing objects are segments, and the degree of

freedom of use of segments is specified by modes. So the

binding of processes to domains, as required by Postulate 1,

was easily accomplished: the binding is implicit in the

definition of the process state.

The state transition rules force each process to use only

the abilities of the domain the process is bound to, thus en-

forcing Postulate 2. This depends crucially on the correct

interpretation of the symbols "M" and "AS" in the state

transition rules of CTSS and Multics, respectively. These

symbols must be interpreted to mean the domains to which the

processes of CTSS and Multics are bound.

The state transition rules provide no way for information

to enter or leave the process state except through references

to the memory M in CTSS, and references to segments in the

address space of Multics, thereby enforcing Postulates 3 and 4.

The Postulates imply immediately that all the activity

of computation carried on.by processes is authorized, partic-

ularly including using instructions, reading data, and

modifying data. Controls placed on the bindings of processes



to domains by mechanisms yet to be introduced allow information

owners to be protected from the actions of both blundering and

hostile processes.

We will need from time to time to speak of the abilities

to use computing objects that a domain is made up of; we

shall call thesescapabilities. In the Multics process, the

triplet (mode, length, page table addr) is a capability which

gives the ability to reads execute, or write Seg(page_table_

addr), depending on the bits of mode. Rather than regarding

a domain strictly as a set of capabilities, we will for rea-

sons of easy implementation take a domain to be an array of

capabilities indexed by a capability number; and this is called

capability list, or C-list [De66].

Many workers have recognized that the domain is a funda-

mental concept in computer protection systems [De66,La71,Sc72a,

Gr68]. To see why this is so, it is necessary to delve into

the nature of protection.

3.5. Abstract Protection

The purpose of this section is to say what protection is,

in general. The Random House Dictionary of the English langu-

age says that protection is "act of protecting; state of being

protected; preservation from injury or harm." We find the

center of the idea to be "preservation from harm."

Abstractly, a protection problem consists of an object,

or a state of an object (the thing being protected) which we



call the ox; a harmful agent which seeks to .gore the oxF and

a concerned community whose interests will be harmed if the ox

is gored. The reader is urged not to take these mundane words,

"gore" and "ox", too literally. They are simply metaphors

which allow us to deal with the question of protection on an

abstract level. The essential quality of the ox is that it

serves the purposes of the concerned community, and the es-

sential quality of goring the ox is that it disserves those

purposes. The reader is further urged not to attach excess

significance to the word !'community"; all that is meant is a

set of people who are concerned about the ox.

When a protection problem exists, the concerned commun-

ity will go out and hire a protection engineer; and he will

design and construct a protection mechanism, which is simply

a wall placed between the ox and the harmful agent, preventing

the action of the latter. The choice of materials for build-

ing this wall, for example between bricks and transistors,

obviously depends on the nature of the harmful agent.

The protection engineer deals with threats, wall-building

technologies, costs, and work factors. A threat is a method

of goring the ox. Information about threats is available

from the protection engineer's own imagination, from history

(e.g. the Trojan Horse), and from the remains of previously

gored oxes. Wall-building technologies can be studied in the

architecture of banks and police stations, or in an accredited



Institute of Technology. Usually the protection engineer

can apply more than one technology to the problem, and thus

generate several different wall designs for the concerned

community to choose from. Their choice will be based on the

costs of the proposed walls, and their work factors. The

costs will include the sums of the design costs (which might

include research and development), the implementation costs,

and the maintenance costs for the finished walls. In addition,

there may be a cost in time, as for example the time to com-

plete research and development. And there may be a cost due

to reduced functionality of the ox, if it should happen that

the protection mechanism interferes somehow with the purpose

of the ox. The work factors of the walls are the measures of

how much time, energy, or other resources must be expended to

gore the ox. A higher work factor provides more protection,

but usually at a higher cost.

The concerned community will choose to build a wall based

on the expected value (the work factor) and the available re-

sources. Leonardo DaVinci designed many fortifications, but

none of his designs were implemented. Perhaps he was too in-

terested in running up the work factors, mindless of the avail-

able resources. In fact, it is in that direction that the

problem is most interesting.

Now, how does this abstract model of protection help to

explain the domain as defined in section 3.4? First we must



say what are the oxes, and what harmful agents seek to gore

them. To do this, we need only return to the goals of this

chapter: protecting the secrecy and integrity of information

stored in the computer. The secrecy of information is an ox.

An agent can gore this ox by making an unauthorized copy of

the information. Similarly, the integrity of information is

an ox which can be gored by modifying or erasing the infor-

mation without authority. The concerned community consists

of the information owners, who wish to prevent such unauthor-

ized reading and writing.

The domain is a wall which cannot be penetrated by the

activity of processes not bound to the domain. This property

is established by Postulate 2. The concern behind this pos-

tulate is that processes not bound to the domain might be

harmful agents. Since some of these processes are under the

control of unknown users who might be malicious, this is a

reasonable concern. The purpose of Postulate 2 is to keep

the activities of every process confined to the limits es-

tablished by some domain. Together, the postulates erect

walls (defined in detail by C-lists) which limit the scope of

the activities of processes. Therefore, the domain is a

protection mechanism.

But the domain is not a complete protection mechanism.

First, it says nothing about harmful activities that don't

come from processes. Second, it provides little protection



against a Trojan Horse program that gains control of an in-

nocent process and turns that process to some harmful task.

Generally, a Trojan Horse program is one which, in addition

to doing whatever it is advertised to do, does something that

the program's users don't know about and wouldn't want done.

This fact, that a process can be innocent sometimes and

not so innocent at other times, is the reason for the curious

test, "is t = seg#(pc)" in figure 3-4. When the process is

executing the segment in question, the state transition rule

allows the process to read words from the segment. The

process is presumed to be harmless because it is obeying

the will of the segment in question. As soon as the process

is executing some other segment, it might be trying to copy

and steal the first segment. The owner of the segment can

make it available as a program which cannot be stolen by

authorizing e(mode) = 1, r(mode) = 0, and of course w(mode) = 0

to prevent any modification.

When a process is executing a program whose innocence

cannot be assumed, it might suffice to place that program

off in its own domain. This idea is expanded in the next

chapter, and the resulting system is adequate to deal with

suspected Trojan Horses. The'only other approach to a Trojan

Horse is to look inside it; i.e. audit the suspicious program.

Certainly auditing of some kernel of supervisor programs of

multi-access computer systems will be necessary to insure



security, but in our research we have tried to eliminate the

necessity for auditing as much as possible because the cost

of auditing will rise with'the cost of living, while the cost

of computer hardware continues to fall. When auditing is

necessary and important, the program can be audited by several

auditors independently, operating under a code of ethics which

says they mustn't discuss with one another what they're auditing.

Now we must return to the problem of harmful activities

that don't come from processes. For example, a malicious

maintenance engineer using the computer's maintenance panel.

And we suggest simply locking up the maintenance panel. In

this research, we have assumed that all the activity comes

from processes. From this assumption the reader can see the

scope of this research: we have focused on processes. Cer-

tainly processes are the most interesting, active elements

of multi-access computer systems; they amply deserve all this

attention.



Chapter 4

Additional Protection Mechanisms

4.1. Introduction

The first purpose of this chapter is to present new

protection mechanisms which will support proprietary services

in a computer utility, and will reduce the cost of operating

system development. These two goals are elaborated in sec-

tion 4.2. The first notable protection mechanism presented

here is the sectioned stack, which will be described in

section 4.4. The second notable protection mechanism is a

hardware processor design which will support an operating

system partitioned into compartments separated by secure

barriers. The detailed specification of this processor is

given in Appendix 1.

The second purpose of this chapter is to present a naming

and authorizing system which will provide a suitable context

for the support of proprietary services. This naming and

authorizing system, similar to the file hierarchy of Multics,

is described in section 4.7. The third notable protection

mechanism presented here is the system of certifications and

warrants, described in section 4.7, which allows users to

place trust in and depend on audits of programs performed

by others.

The remainder of this introduction will be devoted to

reviewing and defining the three types of computing objects;



i.e., processes, domains, and segments; upon which we will

build our new protection mechanisms. In addition, we pre-

sent a useful notation for these concepts.

As before, a domain is defined to be a set of abilities

to use computing objects; and these abilities are called

capabilities. These capabilities are organized into a linear

array, called a capability list, or C-list. We call the

index of a capability in a C-list its capability number. The

Postulates of Domains stated in chapter 3 are our first

design principles. For completeness, they are restated below.

Postulate 1: Every process is bound to one
domain at a time.

Postulate 2: Only processes bound to a domain
can use the domain's capabilities.

Postulate 3: All information entering a process
state is authorized to enter by a
capability in the domain the process
is bound to.

Postulate 4: All information leaving a process
state is authorized to leave by a
capability in the domain the
process is bound to.

A process is the activity of a processor, defined by a

state transition rule, accessing and modifying a process

state, which is a collection of information.

A segment is a contiguous linear array of words of memory,

numbered from zero to some adjustable upper bound. A segment

capability allows a process bound to the domain containing the

capability to reference the segment designated by the capability



with a two-dimensional address of the form (seg#,word#). The

component seg# is the capability number of the segment cap-

ability, and the component word# selects a word from the

segment designated by the capability. Segment capabilities

include 3-bit modes to control read access, write access,

and execute access.

Figure 4-1 illustrates our notation for processes,

domains, segments, and capabilities. The domain is shown as

a large circle with the capabilities, represented by small

triangles, drawn inside. The large circle serves to evoke

the walling-off function of the domain. A single running

process is shown bound to the domain. The domain contains

capabilities for the two segments P and D. The capability

for P has mode "e", so the process can obey an instruction

stream that comes from P. In other words, P is executable

as a program in this domain. The capability for D has mode

"rw", so the process can read data from and write data into

the words of D.

When we speak of the actions which the program P directs

the process to do, we often use a shorthand expression of the

form, "The domain does such-and-such." In this expression

the program and process being spoken of must be determined

from context, but this will not be difficult. Another short-

hand expression is "The program in the domain does such-and-

such," in which the process being spoken of must be identi-

fied from context.

co
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Figure 4-2 shows how this notation is used to represent

more than one process sharing a domain, and also more than

one domain sharing a segment. Part (a) of the figure shows

two processes bound to one domain. Postulate 2 implies that

these processes have equal access rights to the segments

designated by capabilities in the domain. Part (b) of the

figure shows a segment for which capabilities exist in two

domains. Such a segment is called shared because a cap-

ability for it exists in more than one domain. Note that

the different domains in figure 4-2(b) have different

access rights to the shared segment, because the two cap-

abilities declare different modes.

4.2. Goals

One of the long-standing goals of architects of multi-

access computer systems is to allow users of computers to

build on the work of others, especially in the form of

programs and data. At university computer centers, users

can make their subroutines available to one another through

a common library. These programs are available for free,

whereas in the software marketplace, programs are available

for sale or lease. The first goal of this chapter is to

allow users to build on the work of others in the form of

programs and data, while simultaneously protecting the

secrecy, integrity, and availability of the information being

processed. The domain mechanism is useful in providing this

cz
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protection, provided that the domains established to protect

the users' computations are small enough.

To see why small domains are necessary, consider figure

4-3. The figure shows four segments for which capabilities

exist in some domain D: the segments A and B are programs,

while the segments X and Y are data. A process bound to D

can read and write X and Y, while executing either A or B.

Now suppose that A normally uses only data segment X, and B

normally uses data segment Y. There is a problem with the

arrangement in figure 4-3 because A might direct a process

to access Y and B might direct a process to access X. If

this happened, A might spy on, modify, or destroy B's data,

and vice versa. This would not be a problem if the authors

of A and B trusted each other. But the necessary trust may

not exist in many cases, as when B is a proprietary program

obtained on a lease. Roughly speaking, the problem can be

solved by using two domains.

The second goal of this chapter is to design secure

barriers between the modular components of the operating

system. This is expected to make the operating system faster

and less expensive to debug because the impact of a single

operating system failure can directly affect the data bases

of only one small part of the operating system. The barriers

that will be used are those of domains; the new element is

the hardware processor design to support domains in which
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the operating system can be placed.

4.3. Building on the Work of Others

In the previous section, we introduced the problems which

can arise when two programs share a domain. These problems;

namely, reduction of secrecy, integrity, and availability of

the information being processed; can be avoided if the two

programs are in different domains. But a new problem

immediately presents itself: the communication of arguments

and results between the two programs. The purpose of in-

troducing two domains was to isolate the two programs, but

this isolation must not be complete if the usefulness of the

called program to the caller is to be retained.

Lampson's message system [La71] is one way of allowing

the two programs to communicate. Each domain has an

associated process, as illustrated in figure 4-4. The pro-

gram A requests B's service by sending B a message, using an

operating system primitive. The operating system copies A's

message into B's input buffer. In Lampson's message system,

the sharing of segments by domains is not allowed: all com-

munication between the isolated subsystems is via messages.

The operating system prefixes the identity of A's domain to

A's message, so that B will be able to detect messages from

non-customers. B returns its results in a second message.

The greatest advantage of the message system is its elegance

and simplicity. The PRIME system at Berkeley is an example of

a message system.
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We find that the message system has some diseconomies

built into it, however. First of all, it requires two processes

to do what one process could easily do. Furthermore, it does

not behave well during periods of peak load. Messages pile

up in B's input queue and service deteriorates (in terms of

turnaround time). If B detects this condition and requests

more processes to run in its domain to handle the load, then

the system is creating processes when it should be processing

messages. Furthermore, we feel it is inelegant to have one

group of processes responding to messages while another group

of processes waits. The system's users must pay the overhead

costs for all of these processes.

To avoid the inelegant proliferation of processes and

the diseconomy of excess process overhead, we have chosen to

define our process in such a way that when it requires a

service, it binds itself to the domain that provides the

service. This happens when a process executes a call-domain

instruction which specifies a domain entry capability. Figure

4-5 shows a domain entry capability, represented by a forked

arrow emanating from the triangle symbol. The forked arrow

points to the domain which can be called using the capability,

and the program which the calling process is to execute. The

domain entry capability also contains the word# address

(within the program segment) where the calling process is to

begin execution, although our notation does not represent this
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important detail. Figure 4-5(a) shows a process before it

executes the call-domain instruction, and figure 4-5(b) shows

the process bound to the called domain, just after execution

of the call-domain instruction. The return address in the

calling domain, to which the process will jump when the called

domain issues a return-domain instruction, is saved in a push-

down stack which is a part of the process state. The proces-

sor state transition rule tells how to manipulate this push-

down stack in response to call-domain and return-domain

instructions.

When the process is bound to A's domain, it has no access

to B or Y, but A can direct the process to call B because the

process can use the domain entry capability. After the

process is bound to B's domain, it can access B and Y and

nothing more; and it is under the control of B. But there

remains the problem of passing arguments and results between

calling and called domains.

4.4. Argument Passing and Reclaiming

One simple way to allow the two domains of figure 4-5 to

communicate arguments and results is to have these domains

share a segment. (We are passing over the even simpler case

when the arguments and results will fit into the registers of

the process state.) Such a segment, called an argument

segment, is shown in figure 4-6. The program A creates the

segment and obtains a capability for it with mode "r'. Then

A calls the pass-segment operating system entry point to give

lo0
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B's domain a capability for the segment. Figure 4-6 depicts

this point in time. The segment will probably have different

segment numbers in the two domains, so the pass-segment

primitive will return to A the segment number which B should

use to reference the segment. A then places its arguments in

the argument segment, loads the segment number for B to use

into a register agreed upon by convention, and directs the

process to call B by issuing a call-domain instruction.

When the process arrives in B's domain, B validates the

segment number of the argument segment by calling the operat-

ing system primitive is-arg-seg. This primitive's purpose is

to assure B that the given segment number is in fact the seg-

ment number of an argument segment that was passed, by the

pass-segment primitive, from the domain which directed the

executing process to call B. Upon being reassured, B reads

its arguments from the argument segment, does its work, places

its results in the argument segment, and directs the process

to return.

When A regains control of the process, it can call the

supervisor primitive reclaim-segment to remove the capability

for the argument segment from B's domain. The purpose of

this precaution is to prevent any further accessing of the

argument segment by any processes bound to B's domain.

It is worth noting that the primitives allow A and B to

work together even though neither of them trusts the other.

B need not trust that A sends across the correct segment

1io



number, and A need not trust that B will leave the argument

segment alone after the process returns. This lack of trust

is good to the extent that it helps A and B to catch errors

that might occur. But extreme lack of trust would deter A's

author from using B at all; as might happen if A's author

knew that B would copy and steal the arguments passed by A.

Such problems are treated at length in the next chapter.

The argument segment mechanism has the disadvantage of

being a moderately expensive method of passing arguments and

results, since it requires the creation of a segment and in-

voking up to three operating system primitives. When the

arguments and results are only a dozen or so words of memory,

as is often the case when the side effect of the call is the

important thing, the large information capacity of an entire

segment is not required and so the expense becomes a burden.

To meet the need for a less expensive argument passing

mechanism, we introduce the sectioned stack. This new

mechanism supplements, but does not replace, the argument

segment mechanism. (Argument segments are economical for

large arguments.)

The sectioned stack is a segment which is part of the process

state, together with two registers called Min and Max which de-

fine an accessible portion of the stack. Figure 4-7 shows a

sectioned stack and its accessible portion. In figure 4-7, the

notation 2Xmeans that the process state 9 contains x as a
component. The components of 9 shown in figure 4-7 are the

registers Min and Max, and a page table address (notated l )
103
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for the sectioned stack segment. The state transition rule

of the processor prevents the process from accessing words

of the sectioned stack with addresses less than or equal to

Min or greater than Max.

The sectioned stack is designed to be used both for

passing arguments and results between domains and for storing

procedure activation records. We feel it is elegant to

associate a stack segment with each process, because the use

of such a stack segment protects the secrecy and integrity

of arguments, results, and procedure activation records in

a way that absolutely prevents access by other processes.

Roughly speaking, the stack-per-process concept keeps the

processes out of each other's hair. This protection arises

from the fact that the sectioned stack is part of the process

state, rather than being accessible via a capability in a

domain, which can be used by any process bound to the domain.

Figure 4-8 shows five snapshots of the sectioned stack,

illustrating both argument passing and the storage of proce-

dure activation records (which include storage of temporaries,

e.g., automatic variables declared in programs written in

PL/I). In the first snapshot, the accessible portion of the

stack contains just the procedure activation record for A.

In the second snapshot, A has prepared for a call to B by

increasing Max sufficiently to make space in the accessible

portion for the arguments and results; and A has loaded its

arguments for B into the stack. A now calls B, and the third
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snapshot shows the stack just after the call. Note that Max

has remained unchanged, while Min has been increased to pro-

tect A's temporaries from the action of B. The portion of

the stack which holds the arguments and results is called the

argument window of the sectioned stack, because it is the

region which both A and B can access. Behind the scenes, in

a history stack in the process state, the old values of Min

and Max (just before the call) are saved. Now B increases

Max to make room for its temporaries, as shown in snapshot

four. B runs, does its work, and loads its results into the

argument window. Then B returns to A, and snapshot five

shows the stack just after the return. The saved values of

Min and Max have been restored, so A can once again access

its temporaries which were protected from B. B's temporaries,

on the other hand, are erased automatically, so A can't access

them later. Erasing is controlled by the reduction in the

value of Max.

The sectioned stack allows caller and callee to share

one segment for storage of temporaries, arguments, and re-

sults; even though caller and callee do not trust one another.

The secrecy and integrity of A's variables are protected by

the "wall" erected around Min: Min may be reduced only by

the return-domain instruction. This is accomplished by the

processor state transition rule. The secrecy of B's variables

is protected from the action of A by erasing B's variables
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just before control is returned to A. The integrity of B's

variables is protected simply because control is not given

to A while B's variables are yet to be used again.

Erasing the stack as Max is reduced is specified in the

state transition rule. In fact this activity can be overlapped

with other activity of the process, as for example by zeroing

words in the machine's cache. The cache is primarily the

topmost element of the memory device hierarchy, but it has

the bandwidth and could be wired to zero stack words for the

processor.

If B should call a third domain containing a program C,

the sectioned stack will serve to protect B's variables from

the action of C and vice versa; and it also protects A's

variables from the action of C and vice versa.

4.5. The Binding of Processes to Domains

We first introduced the idea that processes are bound to

domains in chapter 3, where the binding served to help define

the set of computing objects that the process is permitted to

extract information from, to manipulate, or to otherwise use;

according to the Postulates of Domains. In section 4.3, we

introduced the idea that this binding may be time-varying.

This permits a process to obtain a service from a program

encapsulated in a domain D by calling domain D using a domain

entry capability and the processor's call-domain instruction;

and while the service is being performed, the process is

bound to domain D. When the service encapsulated in D has

10



finished its work, it issues a return-domain instruction and

then the process becomes bound again to the domain that

called D.

The first purpose of this section is to note the depend-

ence of overall system security on the non-forgeability of

the binding of processes to domains. If a process could

forge its domain binding, it could call any service encapsulated

in any domain in the computer system, whether it was authorized

to use that service (by means of a domain entry capability)

or not. The non-forgeability of the binding of processes to

domains is a property of the computer system which is a

logical consequence of the processor state transition rule,

which tells how and when this binding is to be changed. The

state transition rule specifies that the binding of processes

to domains is to be changed only by the call-domain instruc-

tion, the return-domain instruction, and system faults. The

complete state transition rule is given in Appendix 1.

Because system security depends on the correctness of

the binding of processes to domains, the processor hardware

which implements this binding, including but not limited to

the process state components dom_id, vb, and dom_pt_addr;

should be constructed from failure-detecting, failure-correct-

ing circuitry. (These process state components are defined

in Appendix 1.) The engineer who designs a hardware realization

of the state transition rule of Appendix 1 should compute bounds
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on the probability of the binding being incorrect and this

failure going undetected; and an explication of this computa-

tion should be demanded by would-be users of the hardware.

The second purpose of this section is to explain a design

choice relating to address spaces. In our model, address

spaces are associated with domains, and therefore the binding

of a process to a domain serves to select an address space for

the process. In other words, the meaning of a segment number

is defined in the context of a domain, and every process

bound to a given domain referring to a given segment uses the

same segment number. This feature of our model should already

be clear to the reader from our discussion in section 4.4 of

validating the segment numbers of argument segments. Address

spaces are associated with domains also in a new computer with

advanced protection mechanisms being constructed at the

University of Cambridge. [Ne72]

It is possible to associate address spaces with processes

instead of with domains, in which case the domains must be

part of the process state. Figure 4-9 shows two such processes,

each of which contains a domain that encapsulates the proce-

dure and data segments P and D. The capabilities in the first

process (notated i ) for P and D are assigned segment numbers

5 and 6, respectively; whereas the capabilities in the second

process (notated Q2 ) for P and D are assigned segment numbers

6 and 7, respectively. We assume that there is no co-ordination
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in the assignment of segment numbers between processes; so

in general, P and D will have different segment numbers in

the different processes. This method is used by Schroeder

[Sc72b] in his model of mutually suspicious subsystems. The

problem with this method is that when the program P must main-

tain a data base in a linked list format, which is quite

common when P is a generalized data base manager (e.g., the

File Manager in Multics [MIT72,p.4-55]), the pointers must be

stored in process-independent form. In the example of figure

4-9, this problem is manifest whenever it is necessary to store

a pointer that points into D. The process-dependent form of

pointers, (seg#,word#), cannot be used because D has different

seg#'s in the different processes. Process-independent pointers

must be used instead, and each process must translate these

pointers into the (seg#,word#) form required by the hardware

for effective addressing. This translation is not necessary

when address spaces are associated with domains. Thus this

translation step appears to be a waste of time, and is likely

to deter the growth of parallel computation methods when

address spaces are associated with processes, because of the

added burden placed on parallel computations.

The third purpose of this section is to explain two inter-

related design choices relating to the name space of domains

from which a selection is made by the binding of a process to

a domain. Stated simply, the questions are whether this name
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space should be large or small, and whether it should be im-

plemented once per-process or once per-system.

It might appear economical to design a small name space

for the domain binding if the designer expected each process

to use only a few domains. That is, if the process is ex-

pected to bind itself to only a small number of domains in

its lifetime (e.g., 8), then the domain binding component of

the process state might be implemented as a small register

in the processor hardware (e.g., 3 bits). But this seemingly

economical choice has a diseconomy built into it, because the

community that is using this computer system with a small

name space for the domain binding will be using it to build

services that use services built by other. Eventually, which

could be quite soon if the per-process name space were very

small, somebody would build a service that used up all the

available domain names. But then noone could build a service

that used this service, and planned obsolescence would strike

again. The conclusion of this argument is that the name space

for the domain binding should be a large name space.

The second question relating to the name space of domains

is whether it should be implemented once per-process or once

per-system. We feel that a per-system name space is more

elegant, and this choice insures that the name space will be

large. Also, some economies of scale might be realized from

maintaining one central, per-system name space as opposed to

maintaining many per-process name spaces.
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In our design, the domain binding name space is a collec-

tion of unique identifiers, called domain identifiers. These

domain identifiers are found, for example, in domain entry

capabilities, where they serve to identify the domain to be

called. The operating system maintains a mapping from domain

identifiers to page table addresses of the C-lists(*) of

domains, so that the processors can effectively examine the

capabilities of a domain, given the domain's unique identi-

fier. This mapping, which is an associative memory for the

domain binding name space,is called the Active Domain Table

(ADT). The ADT is introduced in Appendix 1 and described in

Appendix 2; but we suggest that the following section be read

before Appendix 2.

4.6. The Operating System

The purpose of this section is to introduce our design of

an operating system which will multiplex the resources of a

hardware computer whose processors are defined by the state

transition rule in Appendix 1. Our design provides for multi-

plexing the memory and processor resources of the hardware

computer, for supporting the protection mechanisms described

in this chapter, and for protecting the operating system

itself.

(*) Recall that C-list means capability list. The C-list of a
domain is a linear array of capabilities that defines the
domain. 1lf



In our design, we have assumed that the memory resources

of the computer are made available in the form of segments.

In fact, this assumption of a segmented virtual memory is

supported by the technique of paging, which requires the

operating system to maintain page tables for all segments.

We will describe how the limited memory space which is avail-

able for page tables is multiplexed among all the segments

which require page tables.

The processor resources of the hardware computer are

multiplexed among all the processes being evolved by the com-

puter, using the technique of time-sharing. We will describe

the traffic controller, a part of the operating system, which

accomplishes this sharing.

The operating system supports the protection mechanisms

defined in this chapter in several ways. The operating system

maintains the C-lists which define the domains of the system,

and it protects the domains by requiring that all changes to

C-lists be properly authorized. The operating system sup-

ports processes calling and returning between domains by

maintaining the Active Domain Table,which holds information

needed by such processes. It also maintains a collection of

sectioned stacks, one for each process; and it insures that

each process can access its own, and only its own, sectioned

stack. Finally, the operating system implements the three

primitives which allow entire segments to be used to hold

arguments and results of an inter-domain call.
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In addition to the protection mechanisms for users just

described, the operating system is programmed to protect it-

self. This protection, like the protection for users, comes

from the walls defined by domains; and also from complete

validation of arguments passed to the operating system by

calling processes; and also from authorization mechanisms,

described in section 4.7, which limit what the operating

system will do for processes calling it.

Figure 4-10 shows six domains of the operating system.

After we describe the functions of these six domains, we will

explain our reasons for partitioning the operating system

into domains with these particular functions. The arrows

between domains in figure 4-10 represent domain entry cap-

abilities which allow the operating system domains to call

one another. The arrows with floating tails notated

"<type> fault" also represent the movement of processes

between domains, but these are processes coming from any

domain in the system, in response to a fault.

We now turn to describing the individual domains of the

operating system. The ADT domain maintains the Active Domain

Table, which provides a mapping from domain identifiers to

page table addresses of the C-lists of domains. When a process

calls or returns between domains, the domain that the process

is becoming bound to will be called the target domain. When-

ever a process calls or returns between domains, the processor

must change a component of the process state to point to the
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page table of the C-list of the target domain. If the needed

information is in the ADT, the movement of processes between

domains is very quick. When the needed information is not in

the ADT, a domain fault occurs and the ADT domain makes the

target domain active. Appendix 2 details the structure of

the ADT, the algorithm that responds to domain faults, and

the process synchronization strategies which are required

because every process in the system is using the ADT.

Page table addresses for C-lists of domains of the

operating system will always be in the ADT. Thus calls

between operating system domains are quick, and a cascade of

domain faults is not possible.

The AST domain maintains the Active Segment Table, which

is the place where page tables of segments are stored. The

memory space for page tables is multiplexed because the

processes refer to time-varying collections of segments and

the page tables for these segments occupy expensive high-speed

memory. But the ADT contains page table addresses, and so

the maintenance of the AST and the ADT must be co-ordinated.

The traffic controller domain multiplexes the processor

resources of the hardware computer. Recall that each process

has a sectioned stack. Because each process being evolved by

a processor is bound to its sectioned stack by means of a

page table address, the traffic controller co-ordinates its

work with the AST domain in order to guarantee that the sec-

tioned stack segments of running processes are active.
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One domain of the operating system, the firewall domain,

is responsible for manipulating and protecting C-lists. Every

C-list segment in the computer system is accessible in the

firewall domain, including the C-list of the firewall domain

itself. The firewall domain protects itself and its C-lists

by not allowing any C-lists, including its own C-list,to be

accessible from any other domain.

We must note that the protection which the firewall

domain enjoys depends upon the correctness of the page tables

which define access paths to C-list segments. So the pro-

tecting power of the firewall domain could be violated by

accident or maliciousness in the AST domain.

While the firewall domain has the power to manipulate

C-lists, it does not have the responsibility for deciding

what manipulations are to be performed. This is done by the

AST domain and the ToC domain, and these two domains are the

only domains which have domain entry capabilities which allow

calling the firewall domain.

The Table of Contents (ToC) domain maintains the segments

which serve to explain and associate information with C-list

entries, similar to the KST in Multics [Ben72]. For every

C-list segment in the firewall domain, there is a correspond-

ing table of contents segment in the ToC domain. The ToC

domain responds to segment fault events, which in effect are

requests that inactive segments be made active. It does this

I i



by determining the identity of the inactive segment from the

appropriate table of contents segment and by calling the

AST domain and the firewall domain to make that segment active

and accessible (to the extent specified by mode information

stored in the table of contents segment).

Appendix 3 details the strategies of the ToC domain, the

AST domain, and the traffic controller in multiplexing the

page table memory space.

Finally, the stacks domain allows the operating system

to have unrestricted access to the sectioned stacks of

processes. Such access is required to implement the argument

segment primitives introduced in section 4.4. Appendix 4

details these argument segment primitives.

The boundaries between the domains of the operating

system, as just outlined, were chosen with two design principles

in mind. The first principle is functional modularity, accord-

ing to which the domains are defined by the maintenance require-

ments of particular data bases, e.g., the AST, or the ADT; and

the domains are limited to the functions of maintaining those

data bases because we want to minimize the number of program

modules which can access the crucial operating system data

bases. This desire to minimize the number of programs in

each operating system domain springs from the fact that pro-

grams are the sources of bugs, and bugs are the source of high

costs in developing operating systems. It will be easier to

debug an operating system which is partitioned into domains,
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because the direct damage to operating system data bases

caused by each bug will be localized and minimized.

The second design principle which guides our partition

of the operating system is simplicity in allocating segment

numbers in the domains of the operating system. For example,

the ToC domain and the firewall domain have a congruent alloca-

tion structure in their address spaces. Each C-list segment

is allocated a segment number in the address space of the

firewall domain, and similarly for the table of contents

segments in the ToC domain. Every C-list has an associated

table of contents segment, which is why we call the allocation

structures of the two address spaces congruent. In fact, each

C-list and its associated table of contents segment could have

the same segment number, since segment numbers have meaning

in the contexts defined by domains. The ToC domain and the

firewall domain could be combined into a single domain which

would contain capabilities for both C-list segments and table

of contents segments. But this would complicate slightly the

allocation structure of the address space of the combined

domain. Also, because any implementation of this design will

place some limit on the number of capabilities in a domain,

combining the ToC domain with the firewall domain would reduce

by a factor of two the total number of domains supported by

the operating system.
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4.7. Naming and Authorization

The purpose of this section is to describe the structure

and control of a name space, implemented by the operating

system, which users of the computer will use to catalogue

segments and domains. This name space takes the form of a

hierarchy of directories and their entries, and is called the

naming hierarchy. The naming hierarchy is similar to the file

hierarchy of Multics [MIT72].

Names of computing objects which are catalogued by the

naming hierarchy are defined in terms of directories. A

directory is a node in the tree of the naming hierarchy, con-

sisting of entries which point to other directories, or to

computing objects like segments and domains. Each entry has

an associated name, which uniquely selects the entry from the

directory. A unique directory, the Root, is not pointed to by

any entry in another directory. The tree name of a computing

object catalogued in the naming hierarchy is the sequence of

entry names which defines a path from the Root directory to

the computing object. Figure 4-11 shows a naming hierarchy

containing four directories, a segment, and a domain. The

tree name of the segment is (a,x,x); the tree name of the

domain is (a,x,y). The entries in directories are repre-

sented by lines drawn from the directories to the object

pointed to by the entry, and entry names are written next to

this line.

Control over the naming hierarchy is established by giving

control over particular directories to particular domains.
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This control is implemented with an access control packet

(acp) associated with each entry of each directory. The con-

tents of acps are different for each type of object that can

be represented by an entry in a directory. We will describe

what an acp must contain to control access to directories,

segments, and domains.

The acp of a directory consists of a list of terms, and

each term consists of the tree name of a domain and a mode of

access to the associated directory. The meaning of each term

is that the named domain may access the directory using operat-

ing system primitives which are permitted by the given mode

of access. Directory-accessing primitives are available which

obtain a list of the entries in a directory, and which display

the status of single entry, including its acp. These operations

are permitted if the call to the primitive comes from a domain

with "read" access to the directory. This is the first mode.

A second mode, "modify", allows the authorized domains to

successfully invoke primitives which create and destroy entries

in directories, rename entries in directories, and modify access

control packets associated with entries in directories.

Figure 4-12 shows how one directory of the naming hierarchy

is placed under the control of a particular domain. The

directory (users,Proj,Pers), a typical user's directory, is

under the control of the domain (users,Proj,Pers,home), which

is the domain named by the single term in the acp of (users,

Proj,Pers). The characters after the colon in our denotation
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of the acp term, "rm", declare that the named domain has

read ("r") and modify ("m") access to the directory with

which the acp is associated. Our example assumes that users

(persons) are organized into projects, so (users,Proj) will

have directory entries for other persons belonging to the

project Proj; and (users) will have directory entries for

other projects. This pattern of user and project directories

is conventional in Multics.

The acp of a segment consists of a list of terms, and

each term consists of the tree name of a domain and a mode of

access to the associated segment. The meaning of each term

is that the named domain may obtain a segment capability,

giving those modes of access specified by the term, for the

segment. The modes of access to segments defined by the

processor state transition rule are the modes which can be

specified by the terms of a segment's acp: read ("r"),

execute ("e"), and write ("w").

In addition to the domain tree name and mode, each term

of a segment acp contains a one-bit copy flag, the purpose of

which is to authorize (prohibit) the named domain to pass

(from passing) segment capabilities for the segment to other

domains, using the pass-segment primitive. But note that

this copy flag does not prevent any domain that has read

access to a segment from making a copy of the information in

a new segment and passing a capability for that new segment.
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Suppose a user is commanding a process bound to a domain

that has modify access to a directory which contains an entry

for a segment. Such a user has the power to modify the acp

of the segment. If the user commands his process to call the

operating system to remove a term from that acp, the effect

is to revoke the access of the domain named by the term to

the segment whose acp was modified. It is not difficult to

design an operating system which implements access revoking

by immediately removing segment capabilities from the affected

domains. For example, under some conditions Multics provides

immediate access revoking.

Figure 4-13 shows how access to one segment is authorized

for one domain. The segment (users,Proj,Pers,memo) is read-

able and writable in the domain (users,Proj,Pers,home).

The acp of a domain is a much more complicated object

than the acps for segments and directories. This complexity

arises from the fact that domains have several different types

of uses. In the following paragraphs we will describe five

different modes of usage for domains, and extract from each

description the need for a separate component of the access

control packet of a domain.

The previous two figures in this section both showed a

user's home domain, located (in terms of its name) in a user's

directory (users,Proj,Pers). Figure 4-12 showed that the

home domain typically has control of the user's directory.

The purpose of the home domain is to provide a protected
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environment for the user's process to be bound to while the

process is obeying the user's commands to examine and manipu-

late his user's directory, or its entries (or their entries,

if some of the entries of the user's directory are directories,

and so on). For example, the user could command his process,

running bound to his home domain, to edit the segment (users,

Proj,Pers,memo) shown in figure 4-13; also, the user could

command his process to modify the acp of (users,Proj,Pers,

memo) so as to share the segment with another user. This

process would relay this request to the operating system by

invoking the appropriate primitive, and the request would be

honored because the home domain, from which the primitive is

invoked, has modify access to the directory (users,Proj,Pers).

Now suppose a foreign program were introduced into this

user's home domain, and suppose that program gained control

of a process bound to the domain. The foreign program could

perfectly easily invoke the operating system primitive to

modify the acp of (users,Proj,Pers,memo), giving access to

the segment to a spy. For this reason, it is necessary for

the owner of a domain to have control over the collection of

segments for which his domain contains a segment capability.

Protection from foreign programs is the first use for such

a control mechanism. In addition, this control can be used

by a project administrator to define limited service sub-

systems in home domains of project members, when the home

domains are under the control of the project administrator.
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To provide control over the collection of segments for

which a domain contains capabilities, the access control

packet for a domain contains a component called seg-limit.

This component consists of two lists: a list of terms which

represent individual segments, and a list of acceptable

certifications. Each term which represents an individual

segment consists of the tree name of the segment, and a mode

which is some combination of read ("r"), execute ("e"), and

write ("w"). The interpretation of each term is that the

domain with which the acp is associated may obtain a segment

capability for the segment named by the term, with a mode of

access not greater than the mode specified by the term. The

owner of the domain will place terms representing individual

segments in the seg-limit component of his domain's acp when

he has certified for himself that his domain should have a

capability for the segment.

The second list in the seg-limit component of the acp of

a domain allows the domain owner to depend on certifications

performed by others. For example, the command interpreter

and the directory-listing and manipulating command programs

which run in home domains will be certified by some central

authority, and the list of acceptable certifications in the

seg-limit component of the acp of a domain allows the domain

owner to express his trust and acceptance of such certifica-

tions. Certifications are designated by ordered pairs con-

sisting of the tree name of a domain and a character string
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called a warrant. Any domain can originate a certification

by invoking an operating system primitive; warrants serve to

distinguish between different certifications that originate

in the same domain. The operating system primitive that

originates certifications will attach a certification to the

segment specified by the domain invoking the primitive, and

that certification will consist of the tree name of the in-

voking domain together with a warrant specified by the invok-

ing domain. The certification originating primitive will also

associate a mode of access, specified by the invoking domain,

with the certification attached to the segment being certified.

The meaning, then, of a certification specifier in the second

list of the seg-limit component of the acp of a domain, is

that the domain is allowed to obtain segment capabilities for

segments to which the specified certification is attached, and

the mode of the domain's segment capability must not be

greater than the mode associated with the certification

attached to the segment.

Now that we have described the mechanism which establishes

the domain owner's authority over the collection of segments

for which his domain contains a capability, it is appropriate

to say that the domain owner is responsible for the composition

of that collection of segments. In particular, the domain

owner is responsible for bringing together the collection of

capabilities for program segments in his domain, and there-

fore the domain owner is responsible, together with the authors
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of the program segments, for what those program segments

make processes do. This responsibility of the domain owner

is shared, to some extent, when the domain owner depends on

certifications performed by others. But in simple cases

(i.e., when no certification specifiers appear in the seg-

limit component of the acp of the domain, and the domain

owner wrote or certified all the programs for which the domain

contains a capability), a single social entity, the domain

owner, is completely responsible for what the programs in a

domain make processes do.

Another instructive mode of usage of a domain is for

isolating a borrowed program. Working on the theory that the

borrowed program might be a Trojan Horse(*), the borrower

decides not to put a segment capability for the program in his

home domain, and instead he creates a new domain to encapsulate

the borrowed program. The borrower might be afraid that the

borrowed program will spy on him by making calls and thereby

passing information to some domain belonging to the program's

author (or one of the author's friends). To give the borrower

some control over this sort of behavior, the acp of a domain

contains a component called call-out. The call-out component

(*) A Trojan Horse program is one which, in addition to doing
whatever it is advertised to do, does something that its users
don't know about and wouldn't want done.



is simply a list of tree names of domains that may be called

by the domain with which the acp is associated. The call-out

component of the acp of a domain is consulted by the operating

system whenever it is about to add a domain entry capability

to the domain, to insure that the domain which could be called

through the domain entry capability being added is a domain

to which calls are allowed.

The third interesting mode of usage of a domain is for

sharing a data base and controlling access to it with a

caretaker program. The programs that use the data base will

all reside in domains that have domain entry capabilities for

calling the domain that encapsulates the data base and its

caretaker. The owner of the data base will be the owner of

the domain that encapsulates it, and he will want to control

access to his data base, not only through writing (or borrow-

ing an appropriate) caretaker program, but also through being

able to say which domains can call his domain. To meet this

need, the acp of a domain contains a component called call-in.

The call-in component is simply a list of tree names of

domains that may call the domain with which the acp is

associated. The call-in component of the acp of a domain D

is consulted by the operating system whenever it is about to

add to any domain a domain entry capability which allows

calls to D, to insure that the domain obtaining the domain

entry capability is allowed to call D.
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The fourth important mode of usage of a domain is for

debugging a newly written program. The author of the pro-

gram might use a certified debugger in his home domain to

create and control a domain encapsulating the newly written

program. Debuggers require some unusual features to operate,

such as the ability to interrupt processes executing the

program being debugged, the ability to insert breakpoints in

the program being debugged, etc. The design of a debugging

protection environment is outside the scope of this thesis,

but we can hypothesize that the acp of a domain will require

a component called debug to authorize the operation of the

debugger.

The fifth important mode of usage of a domain is for

encapsulating a proprietary service. There are many important

protection problems associated with providing proprietary

services to users of a computer utility, and these are covered

in the next chapter. We will need to refer to the user domain

of a proprietary service; this domain is the domain for which

the service is working. The user domain of a proprietary

service has one or more domain entry capabilities which it

uses to call the proprietary service. The owner of the user

domain of a proprietary service needs to have some powers of

control over the service his domain is using, and the control

information is placed in a component of the access control

packet of the user domain called the proprietary call-out

component. This component is replicated in the access control
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packet once for each proprietary service which the user domain

is a user of, and its structure and meaning is described in

detail in the next chapter.

4.8. Summary

We began this chapter with the three simple concepts--

segment, process, and domain--which emerged from our review

of elementary protection mechanisms in chapter 3. We defined

our process to have a binding to a domain, rather than to

contain domains, because we observed that processes and domains

are logically distinct and roughly of equal importance. We

noted that small domains (in terms of the number of program

segments' authors) are required for adequate protection. To

allow users of a computer utility to build on the work of

others, we introduced the domain entry capability and two

methods of passing arguments and results between domains:

shared argument segments and the argument window of the sec-

tioned stack. We presented the design of an operating system

for our computer utility that protects itself with a collection

of domains, supports the protection mechanisms defined pre-

viously, and multiplexes the memory and processor resources

of the hardware computer. The details of this hardware and

software design may be found in Appendices 1 through 4. Finally,

we defined a naming hierarchy with an authorization mechanism,

the system of access control packets, for controlling computing

objects.
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Chapter 5

Proprietary Services

5.1. Summary of Problems

Users of computers want to build on the work of others

in the form of programs and data. Thus there is a demand

for useful programs and data. A software industry has emerged

and considerable effort is being expended to develop propri-

etary programs which can be rented out. The purpose of this

chapter is to explore in detail the privacy and protection

problems which must be solved in order to offer the services

of proprietary programs and data to users of a computer utility.

This problem was investigated in an abstract setting by

Vanderbilt [Va69]. This chapter extends his results in the

practical setting provided by the domain-supporting mechanisms

of chapter 4.

We have investigated nine important problems which must

be solved in any practical computer utility in order to offer

proprietary services in a context that protects the interests

of all the users, especially the lessor and lessee of the

proprietary service. We have already shown the basic stra-

tegy for solving the problem: proprietary services are en-

capsulated in domains.

The mechanisms of chapter four are an adequate solution

to the first three of the important problems we will present

in this chapter. The first problem is to protect the

integrity of a proprietary service encapsulated in a domain
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by restricting access to the entry points of the domain. The

entry points are the addresses in the program segments where

processes calling into the domain are expected to begin

executing instructions. The operation of the programs in

the domain will not be reliable if calling processes can begin

execution of programs at arbitrary points. The domain entry

capability solves this problem by specifying the entry point

address at which the calling process begins execution in the

called domain. The operating system primitives which create

domain entry capabilities will not allow any domain entry

capabilities to specify an entry point address not authorized

by the authority(ies) that control the called domain. Further-

more, access to the entry points which are valid entry points

is restricted to domains having an appropriate domain entry

capability.

When a process returns from a called domain to the calling

domain, the same protection problem presents itself. The re-

turn point, i.e. the address in a program segment where the

returning process should resume execution in the calling domain,

must be protected from any modification after being established

by the calling domain, at the time of the call. Our sectioned

stack solves this problem by making available an inaccessible

region of the stack segment in which to store the return

address. The return-domain instruction can access this other-

wise inaccessible region to retrieve the stored return address
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and effect the return.

The second important protection problem is to pass argu-

ments and results between the calling and called domains.

Our solution to this problem is the sectioned stack for

small arguments, and argument segments for large arguments.

These mechanisms allow calling and called domains to pass

arguments and results without compromising the secrecy or the

integrity of any other information. Other mechanisms for

solving these protection problems have been developed by

Schroeder [Sc72b] for a process in which the domains are part

of the process state and every segment in the address space

of the process has the same segment number in every domain

of the process. Schroeder's solution is to introduce hard-

ware processor features to dynamically create capabilites

for argument and result subsegments at every cross-domain

call, and to dynamically destroy the capabilites created by

such a call when the corresponding cross-domain return occurs.

The third important protection problem is to protect

proprietary programs and methods from being stolen. The

thief could either steal the program, or steal copies of its

intermediate results and deduce therefrom its method of op-

eration. The domain mechanism itself, and the information-

erasing activity of the sectioned stack, provide a solution

to this problem. The program segment is protected from

being stolen by the lessees of the service the program imple-
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ments because the program segment cannot be accessed directly

by any lessee: a lessee's domain does not have a segment

capability for the program; instead it has a domain entry

capability to call another domain which does have such a

segment capability. This level of protection for a program

segment can also be achieved by the "e" mode of access de-

fined in Appendix 1. If a domain has a capability for a

program segment and the mode of the capability is just "e",

other programs in that domain cannot steal the given pro-

gram, because they cannot read its words as data. This

protection is available even though the program is per-

mitted to read constants out of itself.

But to protect a program's methods from being stolen,

the program's intermediate results must be unavailable to

the would-be thief. By placing its intermediate results

only in the sectioned stack and in data segments which can

be accessed only in the domain that encapsulates the pro-

prietary service, the program protects itself from this

threat. Intermediate results in the sectioned stack will

be erased when the process returns to the calling domain,

while the intermediate data segments can be accessed only
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by the proprietary program and other programs in its

domain (*).

The fourth important protection problem is to protect

the secrecy of argument information passed to a proprietary

program. That is, the user of a proprietary program might

be concerned that the data he supplies to the program could

be stolen. For example, suppose the proprietary program

was written by company R and did circuit analyses; and sup-

pose that the would-be user is an engineer working for

company G. He wants to use the program to analyse a circuit

but he won't use it if he thinks that his competitor, R,

will learn his circuit design as a result. In other words,

the problem is to allow the proprietary program to "know"

the circuit, which is necessary for the program to do its job,

but to prevent the program's owner from knowing the circuit.

(*) The program, or its data, might yet be stolen by means of
the compiler-caller two-pronged attack. This attack
method requires a conspiracy between, or identity of; a
caller (user) of the proprietary service, and the author
of the compiler which was used to compile the proprietary
program. The compiler inserts extra instructions in the
proprietary program, and the caller passes particular ar-
gument values which trigger the execution of the extra
instructions. The extra instructions can provide the
caller with copies of the proprietary program and any of
its intermediate results. This method of attack can be
prevented by auditing the compiler, or by examining its
output with another program, a compiler output verifier,
which will detect the insertion of unwanted instructions.
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It would be possible to audit a proprietary program to

insure that it does not contain spying code that reports to

someone what it worked on. Since 'auditing is a human function,

this is a very expensive solution. A more attractive pos-

sibility is to design an environment for the proprietary

service that prevents it from doing such spying. Such an

environment can be made available in a computer under the

control of a third party (i.e., neither the lessor nor the

lessee of the proprietary service). Then the integrity of

the system's protected, constrained environments would be

the responsibility of that third party; and the use of pro-

prietary services would involve agreements with him. The

logical choice to serve as this third party is the adminis-

tration of the computer utility where the services are offered.

The environment which prevents argument spying is composed of

benign domains, and is described in section 5.2.

The fifth important protection problem is the possibility

that a proprietary service will spy on its caller by hiding a

few bits in its results. These few bits would be derived

from the arguments passed by the caller, so the reader should

regard this problem to be a special case of the argument spy-

ing problem just presented. Unfortunately, the benign domain

mechanism does not solve this problem. Since we are forced

to treat it separately, we give it a name: the hidden data

flow problem.
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Hidden data can replace the low-order bits of floating-

point numerical results, or fill the space unused by a

varying string result, without requiring any variation in

the storage formats expected by the caller of the proprietary

service. If those formats include areas in which blocks

can be allocated and freed, the hidden data can occupy a

hidden block. The proprietary service and its brother

spy might need to use an error-detecting encoding to deal

effectively with the hit-or-miss mechanics of getting the

hidden data to the brother spy.

More obscure methods of hiding data can surely be

found (*). Our treatment of the problem in this chapter

is at the level of a game, with teams of spies and counter-

spies, similar to the communities of users and breakers of

crypts. The problem cannot be adequately solved without the

privacy restriction mechanism introduced in chapter 6.

(*) Sometimes hidden data can be encoded in a major distor-
tion of the results returned by the proprietary program,
provided the brother spy has access to a mechanism that de-
tects the distortion. For example, a list of stockholders
of a certain corporation could be obtained by spies who
program a proprietary service for preparing tax returns.
The program would produce incorrect returns for all users
who were stockholders of the given corporation. The IRS
publishes lists of taxpayers who file incorrect returns;
this .is the detection mechanism followed by a broadcast.
The spies obtain a partial list of stockholders by inter-
secting the lists published by IRS with a list of the
users of their proprietary service.
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The sixth important protection problem is the possibility

that a proprietary service will spy on its caller by sending

information through the information channel whose purpose

is to allow the preparation of detailed invoices for services

rendered. The problem is to establish the communication

necessary for billing without allowing communication for spying.

Like the hidden data problem, this problem can be regarded as

a special case of the argument spying problem. One solution

that eliminates spying is to eliminate billing and charge a

fixed monthly rental. Other methods, which throttle the rate

at which spied information is communicated through the billing

mechanism, are described in section 5.4.

The seventh important protection problem is a conflict

that develops between the owner (maintainer) of a proprietary

service, and its users. The owner wants to fix bugs that

are found in the service, and perhaps also upgrade the level

of service, which sometimes involves substantial modification.

The users, on the other hand, don't like to see the service

change at all, unless it is in response to a problem they're

having with it. So for any given change, many users are

against it.

A,typical owner response to this problem is to make new

releases of his service available to his users, and to refuse

to maintain any but the most recently released version. Thus,

the owner conserves the resources expended for maintenance,



while the. users are forced to. update to the latest release

when they encounter problems with'older versions.

Now suppose the service is offered through a computer

system under the control of a third party. The users of an

old version of the service might want that version to remain

unchanged. Other users will switch'to the latest version as

soon as it is available, because they are willing to adapt

to the change (they have the resources to expend to do it).

But if the owner of the service were to remove the old ver-

sion, he might arouse the ire of his old-version users.

Thus the users need an agreement with the owner, enforced by

the computer system, that no proprietary service in use may

be modified. (This would not prevent a new version of the

service from being offered.) The enforcement would create

the needed trust between user and owner, because the user

would know that the proprietary service could not be

modified. An operating system mechanism to record and en-

force such agreements is described in section 5.5.

The eighth important-protection problem is the possibility

that a proprietary service will stop working, or begin to

give out bad answers, at a time chosen by some clever enemy

of the user of the service. For example, a failure could be

timed to coincide with a demonstration to some would-be client

of the user. As with the argument spying problem, two methods
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of solution seem feasible; audit the proprietary program, or

place it in an environment that prevents it from exhibiting

the threatening behavior described above. Such an environment

would have to deny the proprietary service knowledge of who it

is working for, and the time of day; in fact, the proprietary

service would have to be denied all sources of input that

might be influenced by the enemy, because such inputs could

contain encoded signals to the service. We will call a service

in such an environment a blind service. Blind services are

defined and discussed in section 5.9.

Finally, the ninth important protection problem is the

desire of the competitive owner of a proprietary service to

withhold the use of his service from his competitors.

Competition is a way of life in America, and because the

development of software is best accomplished by small groups

of workers, the software marketplace might be served reason-

ably well by a large number of small, independent, competitive

suppliers.

The problem of denying one's service to one's competition

is compounded when one service is part of another. To be

precise, suppose owner A builds a service S, and suppose

another owner, B, builds a service T that uses (calls) S. If

A does not want his competitor A' to use S, he must make an

agreement with B in which B promises A not to sell the ser-

vices of T to any user that A doesn't approve of. Now A



must expend time and energy approving of applicants who want

to use T, in addition to screening applicants who want to

use S. Competition has its inefficiencies'. The privacy

restriction mechanism of chapter 6 can eliminate some of these

inefficiencies. We return to this problem in section 6.11.

5.2. Argument Spying, and Benign Domains

The purpose of this section is to present the definition

of a constrained environment in which a proprietary service

will find it extremely difficult to do argument spying. This

constrained environment begins with a domain containing a

proprietary service which can be called from its user's domain.

Whenever a user's process calls into the domain of the

proprietary service, the program which implements the service

has an opportunity to copy information, to compute, to call

other domains (including the operating system); in short,

to struggle by these means to communicate the arguments, or

information derived from them, to a spy hiding someplace

in the computer utility.

The proprietary service could write the arguments into

a segment shared with a domain containing a spy process, for

example. Therefore the constrained environment may not con-

tain any shared writable segments, nor any writable segments

which are ever readable by any other domains. The constrained

environment must have some writable segments to allow it to

remember things for its caller, but these segments must not
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be useful for spying. Thus, all the segments. which are

writable from domains of the constrained environment must be

under the control of an authority dedicated to the prevention

of spying. This authority will allow each writable segment

to be accessible in one, and only one, of the domains of the

constrained environment. Having made the above strong state-

ment, it is necessary immediately to moderate it in two

important cases: first, if the segment serves as an argument

segment for two or more domains of the constrained environ-

ment, and second, if all the parties having bona fide rights

of control over information in the segment agree to its

release. The authority which enforces these rules will be

called the Proprietary Services Administration (PSA), and

the writable segments of the constrained environment will be

called closeted segments.

Another method by which the proprietary service might

try to communicate the arguments is by calling into a domain

that works for the spy. To prevent the would-be spies from

gaining any advantage from this ploy, we require domains

which are called from domains of the constrained environment

to be themselves members of the constrained environment.

Domains of the constrained environment may also call

operating system domains, but not at every entry point. For

example, the primitive which writes entry names into the

naming hierarchy will not be accessible by domains in the
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constrained environment. The operating system will carry the

responsibility of keeping a domain in its constrained environ-

ment once it has been placed there, and the responsibility of

preventing any domain of the constrained environment from

writing information anywhere other than in closeted segments.

Domains of the constrained environment will not be allowed to

do input or output.

Another method by which the proprietary service could

communicate information to a spy is through a process that

calls into the domain of the proprietary service from some

domain that works for the spy. The author of the proprietary

service could make a special entry point for this purpose,

unknown to the user of the service. To prevent this method

of spying, we require that every domain of the constrained

environment be callable only from other domains of the

constrained environment, and from the domain of the user of

the proprietary service.

This completes the definition of the constrained environ-

ment. To see this, reflect on the fact that there are only a

few ways for information to get in and out of domains (*):

(*) Information is in a domain if it can be read as data by
a process bound to the domain. nformation gets out of a
domain by getting into some other domain, or by leaving the
computer system through an output device.



through segments, through processes calling and returning

(calls to the operating system being a special case), and

through input/output.

To summarize, a constrained environment that works for a

user domain D is a set C of domains such that (1) all the

writable segments of domains in C are closeted segments,

C2) domains in C can be called only from other domains in C,

and from domain D, (3) domains in C can invoke only limited

services of the operating system, as described above, and

(4) domains in C can call only other domains in C, and the

operating system. If we assume for the moment that there is

no flow of billing information out of the domains of C, and

if we postulate also that the operating system refuses to

allow any information to be written in user-accessible places

by domains of C, it follows that all the information that

leaves domains of C must enter domains of C, or domain D.

The information that enters domain D is the result of the

computation of the proprietary service in the constrained

environment, plus any hidden data placed in the results by

the proprietary service.

We will call the domains of the constrained environment

benign domains, because they do not have the power to do ar-

gument spying. We can prove rigorously that they do not have

such power by considering the path through the benign domains

taken by a process calling from the user domain. An example



will clarify the construction on which the proof depends.

Figure 5-1 shows a constrained environment and the path of a

process through the benign domains, represented as a tree of

domain invocations. Each domain invocation is the process

entering a domain. The arcs between the domain invocations

represent calls and sebsequent returns by the process. When

a domain invocation calls more than one domain before returning

to its caller, more than one arc will emanate from that

domain invocation in the tree. Each domain invocation in the

tree of figure 5-1 is labelled with the name of the domain

invoked, and a number i which means that the invocation is

the ith invocation of the named domain by the process.

Our proof proceeds by induction on the tree of domain

invocations. For the basis step, let x be a domain invocation

CX,i) at the bottom of the tree. The only ways for information

to leave the domain X at invocation x are through a segment,

through a call to the operating system, and through a return

to the caller of X. (Since (X,i) is at the bottom of the

tree of domain invocations, the process will not call any

domains other than the operating system.) We have already

postulated that calls to the operating system will not

result in releases of information when.the calls originate

in benign domains. Furthermore, information cannot leave

domain X through a segment because 'all the writable segments

of X are closeted. So we need be concerned only about infor-
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mation leaving..d'omain X through the process returning. The

process will return to .the user domain of the constrained

environment, or to one of the domains of the 'constrained en-

vironment. If the return is to the user domain of the con-

strained environment, we need not be concerned about argument

spying because the user domain had access to the arguments in

the first place. If the return is to some domain of the con-

strained environment, the argument information which we are

concerned about remains in the constrained environment.

For the induction step, let x be a domain invocation

(X,i) not at the bottom of the tree. The only ways for in-

formation to leave the domain X at invocation x are through

a segment, through a call to the operating system, through

a call to another domain of the constrained environment, and

through a return to the caller of X. By induction hypothesis,

calls to other domains of the constrained environment will

not allow information to leave the constrained environment.

Since X is a benign domain, calls to the operating system

will not result in releases of information, and all the

writable segments of X are closeted. So once again, we need

be concerned only about information leaving domain X through

the process returning. If the return is to the user domain

of the constrained environment, argument spying is not pos-

sible because the user domain has access to the arguments

already. If the return is to a domain of the constrained

environment, no information leaves the constrained
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environment.

So, by the principle of mathematical induction, the only

information that can leave a constrained environment must

flow into the user domain of the constrained environment.

It is important to note that this result depends

crucially on the postulated properties of the operating

system. Those parts of the operating system which act to

constrain the operation of benign domains and sequester

closeted segments must be audited.

5.3. The Proprietary Services Administration

The Proprietary Services Administration (PSA) is a part

of the operating system of the computer which creates and

controls domains encapsulating proprietary services, in

response to requests coming from domains, or owners of domains,

that want to use the services. PSA is responsible for es-

tablishing constrained environments, benign domains, and

closeted segments. When a service is implemented by using

other, previously established services, PSA will create

domains for each of the component services.

The domains created by PSA are given names chosen by PSA,

in apart of the naming hierarchy which is under the control

of PSA. The names chosen by PSA are not predictable because

of races for slots of PSA's name space between concurrent

users of PSA, and this creates a problem for the owner of a

domain who wants to authorize his domain to call a domain
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which will be created by PSA. He :cannot know the name of,.the

called domain in advance," but he does' know the name 'of the

service which PSA will install in that domain once it is

created. For this reason, the owner of the domain which will

use Ccall) a proprietary service cannot employ the 'call-out

component of the acp of his domain to specify the domain to be

called. Instead, he will use the proprietary call-out com-

ponent, in which he specifies. the name of the service to be

placed in the domain created by PSA.

When a user names a service whose implementation depends

on other services, PSA must take this name and effectively

obtain from it the names of the component services. These

details concerning the structure of a service should be

provided by the implementor of the service, and for this

purpose we introduce the service declaration segment. In this

segment, the lessor (implementor) of the service names the

services which are components of the service being declared,

by giving the tree names of their service declarations.

Similarly, the proprietary call-out component of the acp of

the user domain of a proprietary service implicitly names the

domain which encapsulates the service by specifying the tree

name of the service declaration,.

When a domain owner authorizes his domain to call a

proprietary service, he might want to demand that the service

occupy a constrained environment. This demand can be regarded
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as a conditional authorization, of the form "if the service is

benign, then let my domain call the domain which encapsulates

the service." The demand can also be regarded simply as a

declaration. The proprietary call-out component of the access

control packet of the user domain of a proprietary service is

the place where such demands are specified, and PSA will honor

the demand, if it is there, and construct a constrained en-

vironment for the service with which the demand is associated.

Similarly, a service declaration can contain a demand that a

component service occupy a constrained environment, because

the owner (implementor) of the service might want the algorithm

of his service protected from any possibility of theft

through observation of the information it passes to the

component service through processes calling the component

service.

The access control packet of a service declaration seg-

ment is used to store authorizations which allow domains

to use the declared service. The acp of a service declaration

segment has three components: a normal component, a user

component, and an outer-service component. The normal

component of an acp of a service declaration segment S has

the same form as the acp of an ordinary segment, and it is

used for the same purpose: to specify the modes of access



Ceither "r" or "rw") which'domains named by the terms of the

normal component may have 'to segment S. The 'other' components

of an acp of a service declaration segment S relate to the

use of the service declared by S.

The user component of an acp of a service declaration

segment S consists of a list of texms, and each term must be

the tree name of a domain which 'is allowed to use the service

declared by S. PSA will not create a domain encapsulating

the service declared by S for any would-be user domain unless

the user domain is named by a term of the user component of

the acp of the service declaration S. The outer-service

component of an acp of a service declaration segment S con-

sists of a list of terms, and each term must be the tree name

of a service declaration segment S'. The meaning of each

term is that the service declared by S is allowed to be used

as a component service of the service declared by S'. PSA

will not create a domain encapsulating the service declared

by S as a component of another service unless that other

service's declaration is named by a term of the outer-

service component of the acp of the service declaration S.

In the next two sections, we discuss solutions to the

protection problems associated with billing information and

mutually agreed maintenance; and the impact of these solutions

on the design of PSA. Then, in section 5.6, we present a

detailed example of the operation of PSA.



5.4. Billing InformatiOn

If a communication channel whose purpose is the prepara-

tion of invoices is availlable to a proprietary service, the

channel can be used to spy on arguments. The spying would

not go unnoticed by the lessee of the service, since he would

vigilantly observe the additional information (probably

encoded) on the face of his bill. This notification depends

on the lessee seeing all the information which the proprietary

service sends into the invoice channel -- if the lessor has

the chance to edit out the encoded message of his spy program

before the lessee sees the bill, the lessee is kept in the

dark. The Proprietary Services Administration therefore pro-

vides the service of accepting invoice information from pro-

prietary services, preparing bills from the information, and

sending one copy of each bill to both lessor and lessee. We

will call this method of billing the open account channel.

It is characterized by the reproduction in the bill of long

character strings emitted by the proprietary service, giving

the service a high rate of information transfer to its

brother spy, if it should ever start to use it.

A throttled account channel can be made available to the

proprietary service in the form of an operating system

primitive which accepts an integer account item code, which

is an integer between 1 and N, where N is agreed to by lessor

and lessee. Thus the expressive power of the account channel

1557



is limited, but certainly not eliminated; information can be

encoded in the sequence of item codes emitted. The item

codes are used by the operating system in preparing bills,

with fixed charges being associated with each item code.

Charges are fixed for each item code in order to reduce the

expressive power of the proprietary service generating the

bill. As before, one copy of each bill is sent to both

lessor and lessee.

It is clear that to eliminate completely the passage of

spied data through the accounting channel, it is necessary to

eliminate the accounting channel. In its place, two accoun-

ting methods are viable options. The first, and the simplest,

is to have no accounting information at all collected by the

computer utility. Instead, the lessor could charge the lessee

a flat monthly fee. If this option is chosen, the lessee can

be sure that the lessor is not getting any information through

the billing mechanism. However, this mechanism will not

notify the lessor if the lessee should begin to rent out the

service to other users. If the service is designed to com-

pute a result based on its inputs without remembering or

using any information from previous calls, then the lessee

could rent out the service to other users without sharing

any of his own information. So the lessor of such a memoryless

computational service could not accept a flat monthly fee.



The second alternative to having an accounting channel

is to let the lessor charge a fee based on the number of

processes per month which enter (by calling) the domain that

encapsulates the proprietary service. This information can

be collected by installing a counter and a control bit in the

blocks of the ADT defined in figure A2-5, and adding to the

logic of the state transition rule instructions to increment

the counter, when the control bit is on, for every process

that calls into the domain. Once a month the operating sys-

tem would reset this counter, and report to the lessor and

lessee the value it had reached when it was reset. Having

this information, the lessor would be reassured that the

lessee was not selling the service behind his back. But the

lessee might be concerned that the lessor has this detailed

information concerning this aspect of the lessee's activities,

i.e. the number of times the service was called. While this

concern may seem far-fetched, it is possible that the lessor

can draw some intelligent inferences from the number of pro-

cesses that called into the domain of the service. To make

this drawing of inferences more difficult, the reported

number of entrances could be made approximate -- e.g. the

system could report a number of dozens, or scores, or hundreds.

So if the system reported "3 dozen" the actual number could

be anything between 36 and 47.



The lessor and lessee of a proprietary service must agree

to use one of the billing mechanisms described here before

the service is put into operation. The lessor of a service

records in the service declaration of his service the type or

types of bills which his service is prepared to generate, and

the lessee of a service records in the proprietary call-out

component of the acp of the user domain of the service the

type or types of bills which he is willing to let the service

generate. PSA will give the domain encapsulating the proprietary

service, domain entry capabilities for PSA primitives which

implement the most expressive billing method which the lessor

and lessee have agreed to. Also, if the service declaration

specifies more than one acceptable billing method, PSA will

give the domain encapsulating the service a domain entry

capability for a PSA primitive which will return to the ser-

vice the type of billing information it should generate.

In order of their expressiveness, the billing methods

available through PSA are

(1) the open accounting channel

(2) the throttled accounting channel

(3) fees based on the number of calls per month

(4) fees based on the approximate number of calls

per month

(5) flat monthly fees.

160



Only the first two of these require the domain encapsulating

the proprietary service to have domain entry capabilities

for sending accounting information to PSA.

If the lessor and lessee specify billing through a

throttled accounting channel, the number of account item

codes which will be used must be specified in the service

declaration and in the acp of the user domain, and these

numbers must agree; and the dollar amount associated with

each item code must be specified by the service declaration.

If the lessor and lessee specify billing through a fee

based on the approximate number of calls per month, the

divisor which accomplishes the approximating effect must be

specified in the service declaration and in the acp of the

user domain, and these numbers must agree.

When a service is implemented through calls to other

services, all the domains encapsulating the services will be

generating bills which must be paid by the owner of the user

domain of the overall service. This multiplicity of sources

of billing information does not present any great problem:

the lessee of the overall service and the lessors of all the

component services must agree on billing methods by means of

the strategies presented above. The service declaration of

each component service is compared with the proprietary call-

out component of the acp of the user domain of the overall
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service, and a billing method is selected for each component

service.

But when a component service is forced to occupy a

constrained environment by a demand in the service declaration

of some other service working for the user domain of the

overall service, the service declaration that demanded the

constrained environment may also limit the types of billing

methods available to the constrained service. For example,

figure 5-2 shows four domains linked together by domain entry

capabilities. (Program segments are not shown.) Domains

C and D occupy a constrained environment because the service

declaration of service 1 demanded it. The lessor of service

1 is afraid that argument information passed from domain B

(which encapsulates service 1) to domain C will be passed

on to a spy. But the constrained environment will not

prevent billing information from flowing out of domain C to

the owner of domain A, who might be the spy. Therefore the

lessor of service 1 becomes a third party to the billing

information agreement between the lessor of service 2 and the

owner of the user domain, and similarly for the agreement

between the lessor of service 3 and the owner of the user

domain. In the service declaration of service 1, the lessor

of service 1 records the type or types of bills which he is

willing to let the domains in the constrained environment
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generate, and PSA will enforce these restrictions. In

addition, the lessor of service 1 may demand that he receive

copies of the bills generated by domains C and D, so that he

can inspect them and detect suspicious flows of information.

Finally, we must consider accounting and billing tech-

niques for processor time expended and storage space utilized

by proprietary services. Since a hardware mechanism is used

to move processes between domains on inter-domain call and

return, it is not easy to know precisely when a process

enters and leaves each domain it is bound to. Therefore

bills for processor time expended should go the user the

process is working for. On the other hand, it is possible

to measure the storage utilization of a proprietary service

(e.g. in page-days of secondary storage). The owner of the

user domain of the service should pay these costs.

5.5. Mutually Agreed Maintenance

The mutually agreed maintenance problem has two parts.

First, the user of a proprietary service wants to be sure

that the service is not going to change when he doesn't want

it to change. Simple operating system mechanisms accomplish

this form of protection in a straightforward way; they will

be described presently. The second part is that the user of
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a proprietary service wants the service to be fixed quickly

whenever a lurking bug appears, but this desire conflicts

with the user's desire to keep his information protected;

and in addition the process of finding and fixing a bug

threatens the privacy of information belonging to others.

This second part of the problem cannot be resolved by

operating system mechanisms.

To implement the idea of a service not changing, the

operating system requires a feature for keeping a segment

from changing. We will call an unchangeable segment frozen.

A frozen segment may not be written once it has been made

frozen; and it can never by unfrozen, once frozen. The

access control packet of a segment must contain a bit which

indicates that the segment is frozen, and if the bit is on

the packet may not contain terms giving "w" access to any

domain. To freeze a service, all that is required is to

freeze all the program segments of the service and all the

data segments of the service which are provided by the

lessor of the service. Data provided by the user of the

service may be stored in writable segments in the domain

that encapsulates the service and allowed to affect the

operation of the service, but this will not violate the

frozenness of the service. In other words, a service is

frozen when the lessor cannot affect what the service does.
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The owner of the user domain of a service can demand that

the service be frozen with a variable in the proprietary call-

out component of the acp of the user domain. The lessor of

the service can assert that his service is frozen in his

service declaration, and if the assertion is made the lessor

must provide a list of all the segments which implement the

service. When PSA constructs a domain to encapsulate the

service, it will honor the demand of the user domain owner

by initializing the seg-limit component of the acp of the

domain encapsulating the service with the list of segments

provided in the service declaration, and by checking to see

that each of these segments is frozen, and by requiring that

the seg-limit component may be expanded only by the addition

of closeted segments. These constraints on the seg-limit

component of the domain encapsulating the service insure

that the lessor can do nothing to affectthe service after

he has frozen all the segments which he listed in the ser-

vice declaration. Furthermore, the lessor is required to

freeze the service declaration, and PSA will check to see

that it is frozen when it constructs domains encapsulating

the service.

When a service is implemented through calls to other

services, and the owner of the user domain of the overall

service demands that the service be frozen, then all the

component services of the overall service must be frozen.
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PSA will propagate this requirement from the proprietary

call-out component of the acp of the user domain, onto all

the component services of the overall service.

When a bug is discovered or suspected in a proprietary

service, a knowledgeable programmer must test or debug the

service. Since bugs are sometimes data-dependent, it is

necessary for the debugging programmer to have access to

data which exercises the bug, i.e., causes the bug to

appear. Since having access to such data might tend to

violate somebody's privacy, appropriate permissions must

be secured before debugging can take place. For example,

figure 5-3 shows a proprietary service composed of two

component services and two onstrained environments. The

outer constrained environment was requested by the owner

of the user domain, while the inner constrained environment

was requested by the lessor of service 1, the service en-

capsulated in domain B. If the owner of the user domain

suspects that there is a bug in the service, he will pro-

duce documented evidence of the bug and take it to the

lessor of service 1 and complain; and give the lessor of

service 1 permission to investigate the workings of domain

B. This permission must be given by communicating it to

PSA, since PSA has control of domain B. Now suppose that

the debugging programmer employed by the lessor of service

1 decides that the problem is in domain C. He will have
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to produce documented evidence for the lessor of service 2,

and both the owner of the user domain and the lessor of ser-

vice 1 will have to give the lessor of service 2 permission

to investigate domain C. Again, these permissions must be

communicated to PSA, since PSA has control of domain C. PSA

requires two permissions before allowing a debugging programmer

to investigate domain C because domain C is an occupant of

two constrained environments.

This example illustrates a general rule: if a domain

occupies n constrained environments, then permissions from

the n social entities whose oxes are being protected by the

constrained environments, must be communicated to PSA in

order to allow the operation of the domain to be investigated.

Once a bug has been found, the domain whose investigation

led to an understanding of the bug can be fixed immediately.

The fix is incorporated in a corrected program segment, and

a new service declaration must be prepared which names the

corrected segment in place of the one with the bug. Both

the new program and the new service declaration must be

frozen, if this is required by users of the service. Then

PSA is requested to update the domain that was investigated,

by replacing the program with the bug with the new program

segment specified by the new service declaration.

Other domains encapsulating the same service can be

updated to incorporate the change, when this is requested



by the owner of the user domain of the service. When this

updating requires a modification of the format of data

segments, the lessor of the service will prepare a program

to accomplish re-formating of the data segments. PSA will

run this program, in the domain encapsulating the service,

when the lessee of the service requests that his incarnation

of the service be updated.

The lessor of a service makes an updated version of his

service available to users by creating a new service

declaration. Since different versions of the service are

implemented with (slightly) different programs, the service

declaration must name the program segments which implement

the service. This part of the service declaration was

introduced in the context of the requirement that program

segments be frozen, but in fact all service declarations

must name all the program segments that implement the ser-

vice, so that PSA will know which segments to create capabil-

ities for in domains created by PSA which encapsulate the

service. If a new version of a service differs from the

old version because of re-formated data bases, the service

declaration of the new version must name the program which

will accomplish re-formating.

5.6. An Example of the Operation of PSA

In this section, we present an example to show the data
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structure created by PSA when PSA constructs constrained

environments. Figure 5-4 shows a constrained environment

constructed around the domain B, which encapsulates a ser-

vice constructed from component services encapsulated in

domains C1, D, and C2; all working for the user domain, A.

(The domains C1 and C2 each encapsulate the same service,

but they operate on different data.) Figures 5-5, 5-6, and

5-7 show the service declarations for the servies encap-

sulated in domain B, domains C1 and C2, and domain D, respec-

tively. In any real computer utility, the service declara-

tions would be expressed in some computer language; but we

are expressing them in English because our goal is to

communicate to the reader. (The details of a computer

language to express service declarations would obscure

the point of this example.) Figure 5-8 shows that part

of the-naming hierarchy which is used to catalogue the

service declarations and other segments which define the

three services in our example. Our figure 5-5 represents

the contents of segment (user, factoryl, productl, sd.vl);

figure 5-6 represents the contents of (users, factoryl,

product2, sd.v4); and figure 5-? represents the

contents of the segment (users, factory2, productl, sd.v3).

Figure 5-9 shows the lessee's sector of the naming hierarchy,

including the user domain A of the service in our example.
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"The lessor of this service is Benign Enterprises, Inc.

The lessor's mailbox is at (users, factoryl, mailbox).

The short name of this service is "servicel".

The segments which implement this service, with required

access modes, are: (users, factoryl, productl, prog.vl),

mode "e"; (users, factoryl, productl, data.vl), mode "r".

This service is frozen.

The lessor will accept billing on an open accounting channel,

a throttled accounting channel (with 5 symbols having the

following meanings: $2.00, $10.00, $1.00, $3.00, $7.00), or a

fee based on the number of calls per month, or the approximate

number of calls per month (measured in 20's).

The component service referenced by the name "service2" is

declared by segment (users, factoryl, product2, sd.v4).

The component service referenced by the name "sneaky-pete" is

declared by the segment (users, factory2, productl, sd.v3).

This component service must occupy a constrained environment.

Bills generated in this constrained environment must be based

on a throttled accounting channel (with 4 symbols), a fee

based on the number of calls per month, or the approximate

number of calls per month (measured in 20's); and the lessor

of this service must receive copies of bills generated in this

component's constrained environment."

Figure 5-5. Service declaration of service encapsulated in

domain B. 173



"The lessor of this service is Benign Enterprises, Inc.

The lessor's mailbox is at (users, factoryl, mailbox).

The short name of this service is "service2".

The segment which implements this service, with required

access mode, is: (users, factoryl, product2, prog.v4), mode

This service is frozen.

The lessor will accept billing based on an open accounting

channel, a throttled accounting channel (with 3 symbols hav-

ing the following meanings: $1.00, $2.00, $4.00), or a fee

based on the number of calls per month, or the approximate

number of calls per month (measured in 20's)."

Figure 5-6. Service declaration of service encapsulated in

domains C1 and C2.

174



"The lessor of this service is Sharptooth Enterprises, Inc.

The lessor's mailbox is at (users, factory2, mailbox).

The short name of this service is "confidence".

The segment which implements this service, with required

access mode, is: (users, factory2, productl, prog.v3), mode

l l"e.

This service is frozen.

The lessor will accept billing based on an open accounting

channel, a throttled accounting channel (with 4 symbols having

the following meanings: $7.00, $8.00, $6.00, $2.00), or a fee

based on the number of calls per month, or the approximate

number of calls per month (measured in 20's).

The component service referenced by the name "sawhorse" is

declared by the segment (users, factoryl, product2, sd.v4)."

Figure 5-7. Service declaration of service encapsulated

in domain D.
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users

lesee 

acp

! \ \

proprietary call-out component

This domain refers to the service declared by

Cusersfactorylproductlsd.vl) with the name

"football". This service must be frozen, and

it must occupy a constrained environment. The

lessee of the service is Warrior General, Inc.

The lessee's mailbox is at (users,lessee,

mailbox). The lessee will accept billing based

on the approximate number of calls per month

Cmeasured in 20's).

Figure 5-9. The lessee's sector of the naming hierarchy, and

the acp of the user domain A.
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From the acp of the user domain, we can see that the billing

method which will actually be used by the service in our

example will be a fee based on the approximate number of calls

per month, because this is the only method to which the lessee

will agree. The mailboxes which are shown in figures 5-8 and

5-9 serve to receive bills generated by PSA. The mailboxes

are named in the service declarations and in the acp of the

user domain so that PSA will know where they are.

Figure 5-10 shows the structure in the naming hierarchy

which PSA creates to organize the benign domains and closeted

segments of the constrained environment shown in figure 5-4.

This structure provides a unique directory for each of the

domains B, C1, D, and C2; and these directories provide a

place to catalogue the data segments, especially closeted

segments, used by the domains B, C1 , D, and C2. A unique

directory is provided for each domain of the protected

environment in order to avoid name clashes between segment

names. For example, if both the domains C1 and C2 create a

closeted segment named "own-data", no name clash results

because one of these segments will be entered in the

directory (PSA-data, 473, service2) and the other in (PSA-data,

473, servicel, sneaky-pete, sawhorse). In both directories,

the name of the segment entry will be "own-data".

All the directories in the naming hierarchy below the
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directory (PSA-data) are under the control of PSA. This is

because all these directories were created by PSA originally,

and PSA keeps control over everything it creates. Since

control over closeted segments and benign domains depends on

having control over the directories which these segments

and domains are entered in, control over these directories

is crucial. Most crucial of all is the question of control

over the directory (PSA-data). Assuming that PSA is imple-

mented with a program encapsulated in the domain (system, PSA),

figure 5-11 shows how that domain is given exclusive access

to (PSA-data).

The name space of entry names in the directory (PSA-data)

is the name space for whose slots concurrent users of PSA

will race. These races are resolved on the basis of a lock

implemented in the segment (PSA-data, global-control). It

is in this segment that PSA remembers the use of each entry

in the directory (PSA-data). For example, PSA must remember

that the entry named "473" was created to structure a ser-

vice working for the domain (users, lessee, caller), and

that the user domain refers to the service with the name

"football".

The directory (PSA-data, 473) is used to organize those

domains in the outer constrained environment E1 which are

not part of any contained constrained environment. The seg-

ment (PSA-data, 473, control) is PSA's scratchpad
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for information about E1, such as the tree names of the

service declarations of services encapsulated in B and C1.

The short names of services, declared in service declarations,

are used as entry names in (PSA-data, 473).

The directory (PSA-data, 473, servicel, sneaky-pete) is

used to organize the domains in the inner constrained

environment E2. As with the outer constrained environment,

this directory has a segment entry named "control", and

PSA uses this segment for information about E2. The other

entry names used in (PSA-data, 473, servicel, sneaky-pete)

are the short names of services, as declared in service

declarations.

Before it builds the structure shown in figure 5-10,

PSA will insure that all the demands and provisos specified

in the acp of the user domain, A, and in the service

declarations of the three services involved, can be met.

After the structure shown in figure 5-10 is constructed,

PSA will fill in the call-in and call-out components of the

acps of the domains B, C1, D, and C2 so that the domain entry

capabilities shown in figure 5-4 can be created. We will

not specify when the domain entry capabilities will be

created since this question is bound up with the problem of

specifying the operating system's control structure, which

is beyond the scope of this thesis.
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5.7. The Hidden Data Game

Suppose that the user of a proprietary service were

afraid that the service was hiding data in its results. The

user could employ a counter-spy program to sift through the

results, looking for hidden data. Of course, the user will

require some assurance that the counter-spy program is not

the brother spy; so the counter-spy program will have to be

audited.

The counter-spy program would go through the results,

zeroing all unused bits. This is effective in dealing with

storage formats that do not use all their allocated bits,

like varying strings. Floating point results present a

special problem, since data can be hidden in their low-

order bits. One way to control the problem is to have

programmers specify more accurately the necessary precision

of floating-point data. When this is done, the counter-spy

program, from the declarations of the results, will check

that the low-order bits not needed for the specified pre-

cision are zero. This will force the proprietary service

hiding data in floating-point results to alter those results

more severely than otherwise, thus increasing the risk of

using this method. An alternative approach to floating

point results is to have the counter-spy program perturb

the low-order bits -- enough to scramble the hidden data,

but not so much as to reduce the precision of results
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required by the user.

If the results include an area allocated in blocks (e.g.

by PL/I allocate and free statements), the counter-spy pro-

gram must check to see that there are no hidden blocks. The

blocks which are expected to occupy the area will be connected

together b-jpointers in a known way. The counter-spy program

can copy all the expected blocks into another area, and then

examine the blocks remaining in the first area. Unexpected

blocks probably contain hidden data. Also, data can be hid-

den in an area's pool of unused space. Furthermore, each

block which was expected should be sifted through by the

methods of the paragraph above.

These ad hoc methods are suggested to deal with the

threat of hidden data because there does not appear to be

a uniform method of countering the threat that works in all

cases. In fact, it is not possible to enumerate the places

in a proprietary service's results where hidden data might

appear without knowing the meanings of all the result data

returned. These meanings are implicit in the declarations

provided to the counter-spy program described above.

Because the operating system cannot deal with meanings very

well, each user of a proprietary service must protect

himself -- for example, with the counter-spy program driven

by appropriate declarations. The point is that the operating
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system cannot provide the declarations.

It is possible to enumerate the domains into which

hidden data might flow, which are the domains where the

brother spy might reside. But this probably isn't useful

because the enumeration might be quite long, and because

an investigation of any of the domains on the list would

require an invasion of privacy, which would require in

turn a court order. Showing probable cause to get such

a court order would be difficult. The privacy restriction

mechanism of chapter 6 makes hidden data much easier to

deal with.

5.8. Sneaky Signalling

There is a way by which a proprietary service can

broadcast information, namely by manipulating the working

set size of processes which are using the service. There

is no way to stop a proprietary service from doing this

except through auditing. Because the possibility of this

sort of behavior exists, the operating system primitives

which give out information about the working set sizes of

processes must not be widely available. In other words,

information about the working set size of a process using a

proprietary service might be very sensitive information.

A proprietary service can encode information in its

time of running (that is, the amount of processor time



required for an invocation of the service by some user process).

Therefore this quantity is a piece of sensitive information.

A proprietary service can encode information in its

time of delivering an answer if it has access to information

about the passage of real time.

A proprietary service can broadcast information through

a lock that the service is allowed to set and reset, provided

that the service does not occupy a constrained environment.

This is because setting a lock involves writing into the

lock datum, and the only writable data accessible to services

in a constrained environment are the contents of closeted

segments. (Data in a process state is also writable, but

such data is not used for locks for inter-process communication

because data in a process state can be accessed only by one

process.) Since a closeted segment S is accessible only in

one domain D, setting a lock in S cannot broadcast information

to processes outside (i.e., bound to some domain other

than) the domain D.

5.9. The Threat of Sabotage

The purpose of this section is to define the blind

service, and discuss its properties. A blind service is a

service placed in an environment which protects the user

of the service from the possibility that the service will

stop working, or begin a sabotage campaign, at a time



chosen by some enemy of the user. This environment, called

a blind environment, operates by denying to domains in the

environment all unfrozen sources of information. This pre-

vents the enemy from sending signals to his saboteur service.

Also, domains in the blind environment can't find out whom

they're working for, or what time it is. This prevents

narrowly directed sabotage campaigns, unless the saboteur ser-

vice can determine from its input the identity of the user of

its services; and the timing of a sabotage campaign is made

difficult since the saboteur service must deduce the passage

of real time from the limited set of events to which it is

privy. We do not offer any proof that. a blind environment

accomplishes any prevention of sabotage campaigns because

such a conclusion depends on the quantity and quality of

useful information which a saboteur can deduce from its

inputs.

To be precise, a blind environment is a set B of

domains such that:

(1) B is a constrained environment,

(2) all domains DB encapsulate frozen services,

(3) all domains DB can't access any unfrozen objects

except closeted segments,

(4) all domains DB can't find out whom D is working

for, and

(5) all domains DB can't find out what time it is.



A blind service is a service implemented in blind environment.

The owner of the user domain of a proprietary service

may demand that the service occupy a blind environment with

a variable in the proprietary call-out component of the acp

of the user domain of the service. Similarly, the owner of

a service S that uses a component service T may demand that

T occupy a blind environment with a variable in the service

declaration of S. Furthermore, owners of services will

specify in service declarations whether their services will

operate in blind environments, and PSA will not make a

service available to a user who demands that the service

occupy a blind environment unless the service declaration

specifies that the service will operate in a blind environment.

Those parts of the operating system which are responsible

for limiting the flow of information into blind environments

must be audited.

5.10. Summary

There are many ways for the lessor of a proprietary

service to harm a lessee of his service, and there are a

few ways for a lessee to harm the lessor. Some of these

harms can be prevented by the technological means presented

in this chapter, all of which depend on a correctly

implemented operating system which includes a Proprietary

Services Administration (PSA). PSA constructs constrained

environments using benign domains and closeted segments



in order to make it very difficult for a proprietary service to

do argument spying. PSA implements account channels which

proprietary services must use to send invoices for services

rendered. PSA allows users of services to demand that the

services be frozen, to guarantee mutually agreed maintenance

of services. Finally, PSA implements blind environments which

make it difficult for a service to carry out a sabotage cam-

paign which is narrowly directed (i.e., against a particular

set of users) or well timed.

PSA is not useful in solving a number of problems

presented in this chapter, particularly the hidden data

flow problem, the compiler-caller two-pronged attack problem,

and the sneaky signalling problem. It is likely that legal

protections will evolve to fill the gaps in the available

technological protections.



Chapter Six

Privacy Restrictions

6.1. Invasion of Privacy

The mechanisms of the previous two chapters were moti-

vated largely by the privacy needs of would-be users of pro-

prietary services. The fact that we must regard the hidden

data flow problem as a game, to be won by the more clever

team, is indicative of the limitations of the mechanisms

already described. In fact, if a user, e.g. a systems pro-

grammer, has the power to make copies of information and

authorize others to access the copies; then he can invade the

privacy of the original information owners (or others named

by the copied information). This method of invasion of pri-

vacy is illustrated in figure 6-1. A systems programmer and

a spy are shown communicating with their own domains through

consoles. We are assuming that the programs in use in these

domains (D1 and D2) include command interpreters which give

the users at their consoles control over the processes bound

to the domains. The systems programmer has a domain entry

capability into D3, a domain holding a data base; and we are

assuming that the systems programmer can obtain records from

the data base by calling D3. The systems programmer steals

information for the spy by directing his process to call into

D3 to obtain the information, and then to copy the informa-

tion provided by D3 into the shared segment A. The spy can

direct his process to cause the output of information from
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segment A to his console, thereby obtaining the information

stolen for him by the systems programmer.

Furthermore, it would be easy for the systems programmer

to write a program to automate this entire operation by using

segment A as a mailbox for the spy's requests. The spy could

put messages in A which identified the records he wanted, and

the system programmer's process would read these messages,

make calls to D3 and place the answers in additional messages

in A.

The purpose of this chapter is to deter such invasions

of privacy, and to raise the work factor for the humans per-

petrating the invasion. Prevention of such an invasion of

privacy requires that the flow of information to the spy be

cut off, and two times at which this flow might be cut off

are immediately evident. First, the information might be pre-

vented from entering the spy's domain (*). Alternatively,

the information might be prevented from appearing at the spy's

terminal. This second, more permissive alternative is de-

scribed in section 6.2. We call this scheme permissive be-

cause the spy's process is allowed to read the information

whose output is to be prevented; but this permissive scheme

is shown to have a flaw: the spy process can output the

secret information using the very mechanism which is supposed

to protect the information! This problem appears to be in-

trinsic to this type of protection mechanism. While it is

(*) Recall that information is in a domain if it can be read
as data by a process bound to the domain.
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not possible to prevent the unauthorized output of informa-

tion, it is possible to detect it and trigger corrective

action.

The privacy restriction mechanism is similar to, but

more highly evolved than, the system of security compartments

implemented in ADEPT-50 [Wei69].

6.2. Privacy Restrictions

Our method of preventing the invasion of privacy involves

associating a set-of priva-cy restrictions with every segment

and every process in the computer. The crucial idea is that

the restrictions are associated with the information contained

in the segments and processes, and whenever information moves

between segments and processes, the restrictions follow along.

Whenever information is about to leave the computer (e.g. to

appear at a user's console) the restrictions associated with

the information have the power to prevent output.

Figure 6-2 shows our notation for sets of privacy re-

strictions. Rp is the restriction set of the process in

figure 6-2, and RA and RB are the restriction sets of the

segments. For the moment, the restrictions should be thought

of as primitive, indivisible objects. We will describe the

ownership and interpretation of restrictions presently.

The restrictions are propagated from one restriction set

to another as processes execute load and store instructions

which reference segments. Suppose the process of figure 6-2

reads from segment A with a load instruction. Then before the
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process executes another instruction, the process' restric-

tion set is updated as follows: Rp = %RU RA. Thus restric-

tions on the information in A are propagated to the process

when the process reads A. Similarly, suppose the process of

figure 6-2 writes information into segment B with a store

instruction. Then before the process executes another in-

struction, the segment's restriction set is updated as

follows: RB = RBu %. Thus restrictions on information in

the process state are propagated to the segment when the pro-

cess writes B.

The reader should remember that segments are not the

only information-holding entities in a computer system.

Names on entries in directories contain information, and

these names can be read and written by user computations.

Therefore, they must have restriction sets also, and these

restriction sets must be updated and used as just described

for segments.

In order to show how restrictions prevent the output of

information, we must introduce a formal mechanism for identi-

fying users of the computer system to whom output is directed.

Our strategy is to adopt the convention that users are re-

quired to associate themselves with formal objects called

principals when they use the computer. The purpose of the

principal is to identify a person or a set of persons playing

a specific role in an institution. Although in general a set

of persons will be able to associate themselves with a given

principal, only one person at a time will be allowed to so
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associate himself.

Now we introduce a function which serves to define the

effect of restrictions in preventing output. Let be the

set of all restrictions, and let p be the set of all prin-

cipals. Then let f:J- 2 That is, for every restriction

r, f(r) is a set of principals, and these principals are the

ones to whom output of information is to be restricted when

the restriction r is associated with the information.

Although we write the function f as a single function

defined for every restriction, this is mainly a notational

convenience for the following discussion of the operating

system primitive send. In fact, for each restriction r the

set of principals f(r) is defined by the owner of restriction

r. In other words, different pieces of the function f are

defined by the different authorities who control the release

of information stored in the computer.

The effect of restrictions is most easily explained if

we assume that information can leave the computer only if it

is displayed at a terminal where a user is logged in and

associated with a principal. Furthermore, we assume that

there is exactly one operating system primitive, called send,

which can initiate the output of information to a terminal.

Suppose a process P calls the send primitive to output infor-

mation from segment A to a terminal where the user is assoc-

iated with principal Q. The send primitive will allow the



output only if

I vR F Rp
In words, Q must be in the intersection of the f(r)'s as r

varies over RAv Rp. ("r" is a dummy variable in the formula.)

In other words, Q must be in the set f(r) for every restric-

tion r in both of the restriction sets RA and Rp.

It is fairly easy to see why we want Q e n (r) for out-
r'RA

put to be allowed, and somewhat difficult to see why we must

also insist that , n (r) . Restrictions arrived in RA as
r Rp

A was written. When the information is to be output from A,

there is no way to tell which of the restrictions in RA were

originally associated with the information being output, so

all of the restrictions are applied. That is, we require

Q f(r) for all r in RA for output to be allowed to Q's term-

inal.

To see why we also insist that Q e F4(r), consider the
re Rp

program in figure 6-3. It will output the bit string seer no

matter what restrictions are associated with it unless we

insist that QE nf(r). It works by outputting constants

which have no restrictions whatever associated with them, and

the restrictions on the information that governs the choice

between the two constants, the restrictions on secr, get no

further than Rp.

When a process calls send and send finds that r i {¥)

the output to Q's terminal will not be allowed and when this

happens, we say the restriction strikes.
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declare secr(100) bit based(p); /* a secret */

declare one segment integer init(l); /* a constant in its
own segment */

declare zero segment integer init(O); /* ditto */

do i = 1 to 100;

if p -> secr(i) then call send(one);

else call send(zero);

end;

Figure 6-3. A program to output any secret bit string.

lq8



Now we illustrate the use of privacy restrictions to fix

the invasion of privacy problem shown in figure 6-1. Figure

6-4 shows figure 6-1 reproduced with restriction sets and

principals added. The systems programmer is associated with

principal Q1 and the spy is associated with principal Q2.

All that is required to solve the problem is to associate a

restriction r with the data base segment accessed by D3, and

define f(r) so that Q2 f(r). Of course Qld f(r), so the

systems programmer (associated with Q1) can see information

that comes from the data base. But when the system program-

mer's process writes information from the data base into the

shared segment, the restriction r is propagated to RA, where-

upon the spy, associated with principal Q2, will not be

permitted to see any information from A displayed at his

console. Furthermore, as soon as the spy's process reads

from segment A, it will be unable to send any information to

the spy's console, because the process will have r in its

restriction set.

6.3. Information Leakage Despite Restrictions

Restrictions striking are signals. That is, when a

restriction strikes this fact is observable to the user whose

output was not permitted. This might not be the case when

the user doesn't know what to expect of the program producing

the output, but many users will know what to expect from

their programs. In particular, the program of figure 6-5 is

so simple that any reader can quickly see what to expect from
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it. The purpose of the program is to output an array of 100

bits, called "secret", as a pattern of striking restrictions.

The first do loop of the program creates 100 segments in the

directory whose name is held by the variable dir, using the

operating system primitive make-seg. The entries in the di-

rectory are given the names "1", "2", ... , "100" by the

make-seg primitive, and the domain where the program is being

executed is given capabilities for the newly created segments.

The segment numbers f the newly created segments are stored

in the array seg(100). As each segment is created, its

zeroeth word is initialized to the index of the segment in

the "array" of segments in the directory named by dir. (The

function "ptr" constructs a pointer of the form (seg#,word#)

from its arguments.) The second do loop stores the secret as

a pattern of restrictions in the restriction sets associated

with the segments just created. We are assuming that the

secret is stored in a segment S whose restriction set RS con-

tains a restriction which will prevent output of the secret

to the user who is running the program. When the test "if

secret(i)" of the second do loop is executed, the restrictions

of RS are propagated to Rp, the restriction set of the pro-

cess. If the ith bit of secret is 1, the program stores a

zero into the first word of the ith segment, thereby propa-

gating the restrictions of R to the restriction set of the

thith- segment. When this encoding is completed, the program

directs its executing process to self-destruct by calling the
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declare secret(100)

declare seg(100) integer;

declare i integer;

do i = 1 to 100;

call make-seg(dir,char(i),seg(i))

ptr(seg(i),0)

end;

do i = 1 to 100;

if secret(i)

end;

call logout;

login;

do i = 1 to 100;

-> word = i;

then ptr(seg(i) ,l) word = 0;

call send(ptr(seg(i),0)

end;

-) word);

Figure 6-5. A program which encodes and outputs information

as a pattern of restrictions.
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operating system primitive logout. The user immediately logs

back in again, and commands his process to execute the third

do loop. The purpose of the logout-login sequence is to get

a process which is not contaminated by restrictions of R in

its restriction set, which is accomplished because the login

command creates a process with an empty restriction set. (*)

The third do loop calls the operating system primitive send

100 times, attempting to output the zeroeth words of each of

the 100 segments created earlier. If the output is success-

ful, the index of the segment in the array of 100 segments is

printed at the terminal. If a restriction strikes and output

is not allowed, the index does not appear at the terminal.

Assuming that the program runs to completion, the user has a

list, printed by his terminal, of the zero bits of the secret;

and a notification from the system that a restriction struck

for every one bit of the secret.

Some deterrence against this use of restrictions to leak

information might be provided by a mechanism which notifies

the owner of a restriction whenever his restriction prevents

output of information to any user. That is, the restriction

mechanism would provide the information owner with a message

to notify him that his information is being sneaked out of

the computer. In the example above, one message would be

(w] If the login command gave the user a process with the
same restriction set which that user's process had when it
last logged out, this method of information leakage would re-
quire a crony's process to execute the third do loop.
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sent for every one bit of the secret bit string. But in fact

this mechanism would compound the problem, by allowing encod-

ing of information as a pattern of restrictions in a single

restriction set. Figure 6-6 shows a program which demon-

strates this method. The first do loop creates 100 restric-

tions, in the directory named by the variable dir, with entry

names "1",... ,"100". The create-r primitive establishes each

new restriction's owner and the restriction definition f(r).

For our example, we will assume that the owner of these re-

strictions is the author of the program of figure 6-6, and we

assume they are defined with f(r) = the empty set. The sec-

ond do loop of the program encodes the secret as a pattern of

restrictions in the restriction set of the process by using

the operating system primitive place-p, which adds the re-

striction specified by its arguments to the restriction set

of the process. Finally, the program directs the process to

call the operating system primitive send, and all the restric-

tions in strike. Some of the striking restrictions are

from RS, having arrived in Rp when the process executed "if

secret(i)". The remainder of the striking restrictions are

the ones which encode the secret. Now suppose that messages

are sent to all the restriction owners. The author of the

program of figure 6-6 would receive a message for every one

bit of the secret. Of course each message would identify the

striking restriction, and so by examining all the messages

the secret can be reconstructed.
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declare secret(100)

declare i integer;

do i = 1 to 100;

call create-r(dir,char(i),

end;

do i = 1 to 100;

if secret(i)

end;

call send("!");

Figure 6-6.

then call place-p(dir,char(i));

A program which encodes information as a pattern

of surveillance-generating restrictions in Rp.
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From these examples it is clear that the privacy re-

striction mechanism does not erect walls through which

information cannot flow, once the information can be read by

a hostile program which can request output to a terminal,

because the restriction mechanism provides a method of signal-

ling for the hostile program. It should be noted that the

privacy restriction mechanism does provide some protection

against accidental, non-malicious unauthorized releases of

information; but it is less effective in preventing the non-

accidental, well-planned theft of information. The mechanism

can, however, be used to raise an alarm against suspected

theft of information.

An alarm which signals possible theft of information

should be raised whenever the number of times a given re-

striction strikes down output to a given principal exceeds a

fixed limit, specified by the restriction owner. The alarm

should be two-pronged: the restriction owner should be noti-

fied that the principal exceeded his limit, and the principal

which exceeded the limit should be denied any further use of

the computer until the situation has been investigated by an

appropriate authority. When a restriction strikes down out-

put to a principal the time the limit is exceeded, the com-

putation which is sending output to the principal should be

stopped and saved for examination by the "appropriate auth-

ority" introduced above. Since the restriction owner and the

principal whose computation exceeded the limit might be
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responsible to different authorities, the choice of the

"appropriate authority" can be non-trivial.

We will denote the limit introduced above as L(r,Q),

where r is a restriction and Q is a principal. The owner of

r defines the value of this function for all principals Q.

The limit defined by L(r,Q) is the number of times the re-

striction r will quietly strike down output to principal Q,

where "quietly" means that the alarm reaction defined above

is not triggered.

The reader should note that even when the limit is set to

zero, a would-be thief can easily use a single striking re-

striction to signal 10 or 12 or so bits of information. The

method is similar to the program of figure 6-5, modified as

shown in figure 6-7. The program creates 210 segments, and

then places the restrictions on the secret, which arrive in

the restriction set of the process when it evaluates the ex-

pression "fixed(secret)", onto just one of the 210 segments

created previously. The segment whose restriction set is

chosen to be contaminated in this way is the secretth segment

in the array of 210 segments. Later, an uncontaminated pro-

cess executes the second do loop of figure 6-7, and the se-

quence of numbers "1","2","3",... begins to appear at the

terminal. When the executing process requests output from

the contaminated segment, the restriction strikes; and the

user, seeing that it struck, knows the 10 bits of the secret

by mentally adding 1 to the last number to appear at his
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declare secret bit(10)

declare seg(1024) integer, i integer;

do i = 1 to 1024;

call make-seg(dir,char(i),seg(i));

ptr(seg(i),0)

end;

ptr(seg(fixed(secret)),l)

call logout;

login;

do i = 1 to 1024;

-> word = i;

word = 0;

call send(ptr(seg(i),0)

end;

Figure 6-7. A program which

restriction.

-> word);

encodes 10 bits with one striking

2OS
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terminal, and converting that number to binary notation.

All these methods of outputing secret information assume

that the information is readable by a program which is in a

domain that can request output to a terminal where the spy is

willing to let appear the garbage generated by the encoding

schemes discussed above. The next line of defense against

information theft is, therefore, to try to prevent the secret

information from being readable in the spy's domain. In the

next section, a mechanism to accomplish this is described and

evaluated.

-6.4. --Walls-Around Sets of Domains

In this section, we present an extension to the privacy

restriction mechanism which allows restrictions to prevent

information from entering domains. Recall that information

is in a domain if it is readable as data by a process bound

to the domain. Information enters domains through segments,

through processes calling and returning between domains, and

through input from some device attached to the computer.

To allow restrictions to apply to domains, we introduce

a new function dR-- 2 , where is the set of all domains.

That is, for each restriction r, d(r) is a set of domains.

Now suppose a process P is calling or returning to a domain

D. The call or return is permitted to occur provided D is a

member of d(r) for every r Rp. Using set-theoretic notation,

this requirement is written

D n(r).
r Rp



The reason for this rule is as follows: for each restriction

r in RP, P's process state does contain or might contain in-

formation associated with the restriction r. The restriction

owner has defined a set of domains d(r) where the information

associated with r is permitted to be read. So if D d(r),

the process will not be allowed to bind itself to domain D.

The intersection operator (" n") applies this rule for every
restriction in the restriction set of the process, Rp.

Now we want to introduce a similar rule for segments,

but this is difficult because of the sharing of segments by

domains. If a segment is readable in one domain and writable

in another, then information written into the segment by a

process bound to the latter domain immediately enters the for-

mer domain. The situation can be simplified by reducing the

flexibility of allowed segment sharing, so that if a segment

has a writer domain, that writer domain is the only domain

from which the segment can be read. Thus, if a segment can

be read from more than one domain, it cannot be written by

processes bound to any domain. This scheme does not allow a

segment to be readable in one domain and writable in another,

at the same time. Segment sharing is not outlawed, but it

must be mediated by operating system primitives, defined as

follows:

1) initiate-read(seg#,code);

The segment S, specified by its segment number, is made read-

able in the domain D where the primitive was invoked, pro-
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vided the segment is not writable in any domain, and provided

further that

D E Pd(r),
ri RS

where RS is the restriction set of segment S. The output arg-

ument code indicates to the caller the success of his request

for access. If the segment is writable in some domain when

initiate-read is invoked, initiate-read waits until the seg-

ment is no longer writable in any domain. If initiate-read

finds that D d(r) for some r Rs, the restriction r strikes.

2) initiate-write(seg#,code);

The segment S, specified by its segment number, is made read-

able and writable in the domain D where the primitive was in-

voked, provided the segment is not readable or writable in

any domain, and provided further that

D' nd(r)rRs
where RS is the restriction set of segment S. As above, the

output argument code indicates success.

3) terminate-read(seg#);

The domain where the primitive was invoked ceases to be a

reader of the specified segment.

4) terminate-write(seg#);

The domain where the primitive was invoked ceases to be a

writer of the specified segment.

These primitives insure that when information enters

domains through segments, the restriction sets of the segments
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are examined and the formula D nd(r) is evaluated; and if
r# Rs

D d(r) for any re RS, the information in segment S will not

be permitted to enter domain D.

Finally, information can enter domains through some de-

vice attached to the computer. For simplicity, we will treat

this as a special case of information entering a domain

through a segment. The segment serves as a buffer: the in-

formation flows from the device to the segment, and then the

segment is made readable in the domain which requested the

input. The device owner can specify that input from the de-

vice to any buffer segment B results in propagating a set of

restrictions, Rdevice' into RB. Then, when the buffer is to

be made readable in the requesting domain D, the operating

system requires that

DE nd(r).
r Rc

This completes the specification of the extension of the

privacy restriction mechanism to erect walls around sets of

domains. As before, these walls provide protection against

accidents, but they are not very effective against well-plann-

ed efforts of a spy to steal information, when the spy can

place a program inside the wall. The methods of information

theft developed in section 6.3 are easily applicable to the

problem of getting information through this wall. For ex-

ample, the method of theft shown in figure 6-5 can be applied

by placing the program of figure 6-8 inside a domain which

has access to the secret information. This program creates
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declare secret(100) bit(l) based(p);

declare seg(100) integer;

declare (i, code) integer;

do i = 1 to 100;

call make-seg(dir,char(i) ,seg(i));

call initiate-write(seg(i),code);

ptr(seg(i),0) -> word = i;

end;

do i = 1 to 100;

if secret(i) then ptr(seg(i),l) -> word = 0;

end;

do i = 1 to 100;

call terminate-write(seg(i));

end;

Figure 6-8. A program to encode 100 bits.
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100 segments and encodes the secret information as a pattern

of contaminated restriction sets -- contaminated, as before,

with the restrictions from the segment holding the secret.

After the secret has been encoded, the spy can command his

process, running bound to a domain where the secret informa-

tion is not permitted to enter, to execute the program of fig-

ure 6-9. This program attempts to initiate-read each of the

segments which encode the secret. When a striking restriction

prevents a successful initiate-read, the return argument code

is set to a non-zero value. Thus, the secret information is

obtained by examining the values of the return argument code.

The spying method just illustrated can be defeated if

the system augments the restriction set of the process with

the striking restrictions whenever initiate-read or -write re-

turns a nonrzero code because D d(r), provided the strik-

ing restrictions also do not allow output to the spy's term-

inal, through an appropriately defined f(r). It can also be

defeated if there is a limit on the number of times a re-

striction will quietly strike down input to a domain; such

that when the limit is exceeded, the offending process and

its entire computation are saved for later examination by an

appropriate authority, the restriction owner is notified, and

the user whose process triggered this action is denied fur-

ther access to the system until a time set by the "appropriate

authority" just introduced (again). But this alarm mechanism,

like the alarm mechanism of the previous section, cannot pre-
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declare segment integer, i integer, code integer;

do i = 1 to 100;

call initiate(dir,char(i),segment);

call initiate-read(segment,code);

if code = 0 then call send(0);

else call send(l);

end;

Figure 6-9. A program to print out 100 encoded bits.
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vent a single striking restriction from signalling 10 or 12

or so bits of information. This is illustrated by the pro-

gram of figure 6-10, which encodes 12 bits by creating 212

segments and contaminating the restriction set of one of them

th
-- the secrett- one -- with the restrictions on the secret in-

formation. As before, the segments are created in the direct-

ory named by the variable dir. Once the information has been

encoded, the spy can run the program shown in figure 6-11

which will output to the spy's console the zeroeth word of

each of the 212 segments. We are assuming that the spy's

process is running bound to a domain which the secret informa-

tion is not permitted to enter, so when the program of figure

6-11 tries to initiate-read the contaminated segment, the

alarm described above goes off, and output to the spy's term-

inal is shut off by the system. So then the spy knows the 12

bits, by adding 1 to the last number to appear at his terminal

and converting to binary.

We will denote the limit just introduced as L2(r,D),

where r is a restriction and D is a domain. The owner of r

defines the value of this function for all domains D. The

limit L2(r,D) is the number of times the restriction r will

quietly strike down input to domain D, where "quietly", as be-

fore, means that the alarm reaction is not triggered.
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declare secret bit(12) based(p);

declare seg(4096) integer, i integer;

do i = 1 to 4096;

call make-seg(dir,char(i),seg(i));

call initiate-write(seg(i),code);

ptr(seg(i),0) -> word = i;

call terminate-write(seg(i));

end;

call initiate-write(seg(fixed(secret)),code);

ptr(seg(fixed(secret)),l) -> word = 0;

call terminate-write(seg(fixed(secret)));

Figure 6-10. A program to encode 12 bits with one striking

restriction.
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declare (segment, code, i) integer;

do i = 1 to 4096;

call initiate(dir,char(i),segment);

call initiate-read(segment,code);

call send(ptr(segment,0) -> word);

end;

Figure 6-11. A program to output 12 encoded bits.
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6.5. The Conflict between Disclosure and Privacy

In the previous two sections, we described alarm mech-

anisms triggered by a count exceeding a limit, where the quan-

tity being counted was the number of times a restriction

struck down output to a particular user(principal), or input

to a particular domain. The action which follows the alarm

includes checkpointing the computation which set off the

alarm, calling in an "appropriate authority" to investigate

the saved computation, and notifying the restriction owner

whose limit was exceeded. If two or more striking restric-

tions set off an alarm at the same time, it might be that

the notifications just specified are being used to encode

secret information, and so it might be appropriate to notify

one of the restriction owners before the other. Therefore

the computer system should not notify either(any) of the re-

striction owners at the time of the alarm. The "appropriate

authority" introduced above should notify the restriction

owners, in an order (and with a timing) based on his inves-

tigation of the saved computation. (The reader should note

that the above strategy assumes that there is no ranking of

restrictions available for use in deciding whom to notify

first. Such a ranking might be defined if all the restric-

tion owners were subject to a single authority.)

The important thing about the decision of the "appro-

priate authority" is that he is deciding whether the notifi-

cations he can authorize will result in disclosure of sensi-



tive information. To do this he must understand the meaning

of the presence of the striking restrictions in the restric-

tion set that struck down output to a terminal or input to a

domain. If one of the striking restrictions encodes secret

information, notification results in disclosure; whereas if

the striking restriction represents the presence, in the in-

formation that was to be output to a terminal or input to a

domain, of information that the restriction owner is respon-

sible for protecting, then notification results in an in-

creased awareness on the part of the restriction owner of

where his information is flowing inside the computer. In the

latter case, notification furthers protection of privacy, be-

cause the restriction owner will know that an unauthorized

release of information was attempted, and he can take remed-

ial action.

When a single restriction strikes and sets off no alarm,

the restriction owner should be notified because the striking

restriction represents an attempted unauthorized release of

information. But if two or more restrictions strike and set

off no alarm, the possibility remains that one or more of the

striking restrictions are being used to encode sensitive in-

formation. Once again, the problem is to decide whether the

purpose of each striking restriction is disclosure (through

encoding) or the protection of privacy. But there is no easy

way to decide this. The only obvious clue that would indicate

that restrictions are being used to encode information is a
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large number of striking restrictions. Therefore, our heu-

ristic solution to the problem of what to do when two or more

restrictions strike is to sound the alarm if there are many

striking restrictions, and otherwise, to notify the restric-

tion owners. If the decision is to sound the alarm, the com-

putation which set off the alarm is checkpointed and an "ap-

propriate authority" is called in to investigate the saved

computation and notify the restriction owners in some reason-

able order. If the decision is to notify the restriction

owners, the computation whose output to a terminal or input

to a domain was struck down is allowed to proceed: the off-

ending process signals an error condition and looks for an

enabled condition handler in the domain to which it is bound.

Now we must define how many restrictions striking are

enough to set off the alarm. In order to let the restriction

owners choose the amount of protection they are receiving, we

associate a limit L3(r) with every restriction r. When a set

of restrictions frl,r2,...,rnn,n >/2 strikes without sounding

the alarms defined in the previous two sections, the alarm

will be sounded nevertheless if for some i, L3 (ri) n, where

114iN n. It is clear that this algorithm will sometimes err,

but the fact that none of the previously defined alarms were

set off by the striking restrictions indicates that the in-

formation being protected by the striking restrictions is not

the most sensitive or valuable information stored in the com-

puter.
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6.6. After the Restriction Owner is Notified

After a restriction owner is notified that his restric-

tion has struck down output to a terminal or input to a domain

in the computation of a user associated with a principal Q,

the restriction owner will establish communication with the

user associated with Q, and ask him what question his program

was answering, and what its sources of data were, especially

the data which carried with it the striking restriction. Upon

receiving user Q's response, the owner of the restriction will

have to decide: (1) Is it reasonable for user Q to get an ans-

wer to his question, in light of the reduction of privacy

which such a release would imply for the restriction owner or

other parties whose privacy the restriction owner is respon-

sible for? (2) Does he (the restriction owner) believe what

user Q said his program was doing? The restriction owner must

make a judgement between disclosure and privacy.

If the judgement, once made, is to release the informa-

tion, the restriction owner will command the computer system

to. lift the restriction from the answers generated by Q's pro-

gram, perhaps replacing it with a new, slightly looser re-

striction. Assuming that the restriction struck down output

to a terminal, then if r is the restriction which struck, the

restriction owner could replace r, in the restriction set

associated with Q's answer, with a new restriction r' such

that f(r') = f(r) U Q . With the restriction thus loosened,

Q's process will be able to use the send primitive to get the

22Z



answer to Q's terminal.

Thus we see the computer system must have primitives to

place, lift, and replace restrictions; create and destroy re-

strictions; and define and redefine f(r)'s and d(r)'s. These

primitives are defined in section 6.9.

It is important to note that the judgement which the re-

striction owner must make might be a delicate and difficult

judgement. This is because the judgement depends on the sen-

sitivity of the information which carried the striking restric-

tion in the first place, the nature of the computation which

Q's program performed on this information, and the nature and

sensitivity of Q's program's other inputs. For example, if

Q's program aggregates the information which carried the

striking restriction, as for example by computing the average

of a set of numbers, then the answer is likely to be consider-

ed less sensitive than the input data. But if Q's program

combines input information from two different sources, the

answer might well be more sensitive than either of its inputs.

For example, combining input about a person's income where the

information sources are the Internal Revenue Service and the

Census Bureau is illegal. This illustrates the fact that the

sensitivity of information is not an absolute, but rather is

a variable which depends upon the context in which the in-

formation is used.

If the restriction owner does not trust the user assoc-

iated with Q, he (the restriction owner) will want to audit
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Q's program before making his judgement on the question of

lifting the striking restriction. He will want to see whether

Q's program is aggregating the sensitive information, or com-

bining it with other information. If the judgement is to re-

lease the information (subject to some specified restriction),

and if Q intends to use the program periodically, the restric-

tion owner might be faced with the task of periodically audit-

ing Q's program. This is unreasonable on the face of it, be-

cause auditing is a costly task, performed by people. There-

fore the computer system must contain mechanisms for freezing

Q's program, once it has been audited, so that it cannot be

changed; and mechanisms for associating with the frozen pro-

gram the capability to lift or replace the restriction owner's

restriction. Mechanisms for freezing this type of program

are implemented by the computer system's- Restriction Removal

-Administration (RRA). The strategy of the RRA is to get a

copy of Q's program from Q (the source program), and release

it to the information owner, who will audit it. When the in-

formation owner agrees to release the information, the RRA

compiles the program from its copy of the source program, and

installs the program in a domain which is under the control

of the RRA. The information owner gives this domain the

capabilities for lifting or replacing restrictions, and the

RRA gives Q the right to call the domain. The primitives

which this domain can use to lift and replace restrictions

are given in section 6.9.
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The RRA strategy given extends easily to the case in

which Q's program is combining information that carries re-

strictions belonging to more than one restriction owner. Q's

program must be audited by all the restriction owners, and

all must agree to the release of the program's outputs and

give the domain containing the RRA's frozen copy of the pro-

gram the necessary capabilities for lifting or replacing re-

strictions.

6~7-, Benefits and Co-sts of Privacy Restrictions

The privacy restriction mechanism is a tool which society

can use to (1) hold information more securely, and(2) request

and enforce judgements between disclosure and privacy. The

mechanism is vigilant in its action to keep restrictions asso-

ciated with information by propagating restrictions to restric-

tion sets associated with information destinations (segments

and processes' states) whenever information is copied or com-

bined by the computer. The mechanism erects walls around

domains, striking down any attempt to make information enter

a domain which it is not permitted to be in by the function

d(r), where r is a restriction associated with the information.

Because each domain is under the control of a specific auth-

ority in society, and because the seg-limit component of the

access control packet of a domain allows such authorities to

place strict controls on the collection of programs which can

direct the actions of processes bound to domains, established

authority has effective means of preventing information pro-



tected by privacy restrictions from being read by hostile

programs.

When a restriction strikes, the restriction owner will

be asked to make a judgement between disclosure and privacy.

The privacy restriction mechanism will not operate to make

such judgements better in any moral sense, but it will make

them occur more frequently. Members of society will be more

aware of the balance between disclosure and privacy, provided

they are aware of the increased volume of decisions.

Policy decisions between disclosure and privacy will be

expressed in programs, as described in the previous section,

and as a result the complexity of these decisions can be

allowed to increase, to the limit of the programmer's art.

To the extent that the ability to handle complexity allows

policies which are more fair, the privacy restriction mech-

anism is a force for good.

The privacy restriction mechanism has six major costs.

First, there is the cost of hardware to perform and control

union operations on restriction sets associated with processes

and segments. This hardware is described in the next chapter.

Second is the cost of executing system software which makes

decisions regarding information transfers, which decisions de-

pend on restriction sets and the functions d(r) and f(r).

Third is the cost of using larger numbers of smaller segments,

which will result from the necessary efforts of programmers to

keep their restriction sets straight. Information which a
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programmer expects to carry a uniquely different set of re-

strictions must be stored in its own segment to avoid inad-

vertent association of the restrictions with other informa-

tion. Fourth is the cost of developing software to harness

the privacy restriction mechanism to solve real problems.

Fifth is the cost of developing and auditing programs that

aggregate or combine information in ways that demand a propa-

gation of restrictions more complex than the union operation

performed by hardware. And finally, sixth is the cost of re-

sponding to alarms generated by striking restrictions.

The first three costs are likely to fall dramatically

with the cost of computing hardware. Two of the costs (num-

bers 4 and 5) are one-time software costs whose levels are

tied to the productivity of programmers and auditors. The

sixth cost arises from a requirement for the services of a

highly trained investigator, and the amount of this cost will

depend on the rate at which alarms are set off, and the pro-

ductivity of the investigator.

Good estimates of these costs will not be possible until

the operation of a prototype system, serving a real community

of users, can be studied.

6.8. Process Synchronization

When two processes have access to the same segment, they

can interact in ways that defeat the purpose of the privacy

restriction mechanism, or that make its implementation in-

efficient. For one example, suppose that a process requests
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that information be sent from a segment to a terminal. The

send primitive evaluates n f(r), and suppose the output is
r Rpu Rses

permitted and started; i.e., the send primitive causes the

computer hardware to begin sending information to the termin-

al. Now suppose that another process writes information into

the given segment, in such a place that the newly written in-

formation will be sent to the terminal. If this were allowed

to happen, the newly written information would escape from

the computer despite the restrictions associated with it.

This is called the sender-writer problem.

Another example of difficulties introduced by multipro-

cessing is the writer-reader problem. This occurs when two

processes are sharing a segment -- one writing and the other

reading. Suppose that the processes are implemented in a

multiprocessing computer system, and that there are two pro-

cessors available, one assigned to each process we are con-

sidering; and suppose that the writer process writes a word

in the segment, and immediately afterwards the reader process

reads that word. When these events occur, the restriction

set of the segment must be updated (as follows: R =
seg

Rseg URp , where Pw is the writer process) when the writer

process writes, and then the restriction set of the reader

process must be updated (r = RprU Rseg' where Pr is the

reader process) when the reader process reads. Thus we see

that restrictions must pass from the restriction set of the

writer process to the restriction set of the reader process.
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One logical way to accomplish this is to maintain a single

central copy of R in the multiprocessing computer system.
seg

All the processors would refer to this central copy. But this

reduces the efficiency and availability of the computer, be-

cause of contention for access to the central mechanism which

holds Reg, and because if the central mechanism breaks down,

the entire computer system becomes unavailable.

Our solution to these process synchronization problems is

to require that writable segments have no readers. This re-

quirement is not the same as the similarly worded requirement

introduced in section 6.4, because in that case the writers

and readers of segments which were discussed were domains,

whereas in this case the writers and readers are processes.

To be precise, we call a process which can read a segment S a

readersproce-Ss of S, and we call a process which can write a

segment S a writer process of S. Our strategy is to allow

segments to have one reader-writer process, or many reader

processes, but never one reader process and a different writer

process at the same time. So when a segment has a reader pro-

cess which isn't a writer process itself, it has no writer

process.

When a segment has no writer process, its restriction set

will not change. A multiprocessing computer system would be

free to make copies of such an unchanging restriction set.

A correctness proof for the send primitive would be free to

assume that the segment would not change.
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When a segment has a writer process, the writer process

is a reader process of the segment but the segment has no

other reader processes. When a writer process calls send,

send can assume the segment won't change provided send doesn't

return until the output is complete. A multiprocessing com-

puter system would not be required to broadcast changes in the

restriction set of a segment with a writer process, because

only one processor of the system at a time would be permitted

to deal with a segment with a writer process.

Segment sharing between would-be reader and writer pro-

cesses must be mediated by operating system primitives. Our

design incorporates this mediation into the primitives which

were introduced in section 6.4 to mediate sharing of segments

by domains. The primitives operate by manipulating a some-

what modified segment capability, in the context of a slightly

modified processor state transition rule. The segment capa-

bility introduced in Appendix 1 was the 4-tuple (type,mode,

length,addr). To implement the idea of a segment having a

single writer process, the segment capability must be expand-

ed by the inclusion of a component whose purpose is to ident-

ify the writer process, if the segment has one. The new seg-

ment capability is therefore the tuple (type,mode,proc_id,

length,addr), where procid is a unique identifier of a pro-

cess and mode is a 2-bit string (the bit w(mode) having been

superceded by the proc_id component). The processor state

transition rule (figure A1-2, part 3) is modified by the re-
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placement of the test of the w(mode) bit by the test,

"is proc_id(9) = pro id(cap)?", and the test which validates

segment reading is modified by the inclusion of tests to ex-

clude reading by non-writer processes when the segment has a

writer, which is indicated by a non-zero value in the proc_ id

component of the segment capability. No process will have a

zero proc id. A fragment of the modified state transition

rule is shown in figure 6-12.

Reading words as instructions from segments will be con-

sidered by the privacy restriction mechanism to be equivalent

to reading data words. Therefore the instruction fetch logic

of the state transition rule (figure A1-2, part 1) must be

modified, as shown in figure 6-13. The purpose of the addi-

tional tests is to exclude execution of a segment by non-

writer processes when the segment has a writer.

Having modified our definitions of process and capability

to support our segment-sharing process-synchronizing strategy,

we can proceed to define the primitives which implement the

strategy. These definitions supercede the definitions of the

same-named primitives in section 6.4.

1) initiate-read(seg#,code);

The segment S, selected by its segment number, is made read-

able in the domain D from which the primitive was invoked, and

the invoking process is remembered as a reader process of S,

provided that the segment S is not writable by any process in

any domain, and further provided that D fnd(r). The primi-
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tive makes the segment S readable in domain D by turning on

the r(mode) bit in the segment capability for S in D's C-list.

If S has a writer (process or domain), the process which in-

voked the primitive is made to wait until S has no writer, at

which time the executing process is made a reader. If informa-

tion in S is not permitted by restrictions to enter domain D,

and if none of the striking restrictions set off the alarm de-

fined by L2(r,D), the striking restrictions are associated with

the output argument code whose purpose is to indicate the out-

come of invoking the primitive.

2) terminate-read(seg#,code);

The process invoking the primitive ceases to be remembered as

a reader of the segment S, selected by its segment number in

the domain D from which the primitive was invoked. If the pro-

cess invoking the primitive is the last remembered reader of S

in domain D, S ceases to be readable in domain D. This is ac-

complished by turning off the r(mode) bit in the segment capa-

bility for S in D's C-list. The output argument code indicates

if invoking the primitive was successful.

3) initiate-execute(seg#,code);

4) terminate-execute(seg#,code);

These primitives are identical to the above two primitives, ex-

cept that the e(mode) bit of the segment capability is manip-

ulated. We consider execute access to a segment to be a spec-

ial case of read access in this context, so the list of remem-

bered reader processes introduced above will include processes

Z3a



which invoked initiate-execute as well as those which invoked

initiate-read.

5) initiate-write(seg#,code);

The segment S, specified by its segment number, is made read-

able and writable by the process invoking the primitive, in the

domain D where the primitive was invoked, provided either the

segment has no reader processes and no writer processes or the

invoking process is already the writer process, and provided

that D Wi(r). The primitive makes the segment readable and
Ad s

writable by the invoking process in domain D by placing the

proc id of the invoking process into the procid component of

the segment capability for S, and by turning on the r(mode)

bit in the segment capability for S, in D's C-list. If S has

either readers or writers, the process invoking the primitive

is suspended and placed in a queue of would-be writers. At

such future time that there are no readers, no writers, and no

higher-priority would-be readers or writers, the suspended pro-

cess is made a writer of S. If information in S is not allowed

by restrictions to enter domain D, and if none of the striking

restrictions set off the alarm defined by L2(r,D), the striking

restrictions are associated with the output argument code whose

purpose is to indicate the outcome of invoking the primitive.

6) terminate-write(seg#,code);

The process invoking the primitive, and the domain D where the

primitive was invoked, cease to be readers and writers of the

segment S, selected by its segment number in domain D. This
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is accomplished by zeroing the proc id component of the segment

capability for S, and by turning off the r(mode) bit in the

segment capability for S, in D's C-list; provided the invoking

process actually is a writer of S. The output argument code

indicates if invoking the primitive was successful.

The critical reader will have noticed that the above def-

initions of primitives do not make any reference to the access

control packets of segments which are being made accessible by

the primitives. We are assuming that the access control packet

of a segment is consulted at the time a segment is assigned a

segment number in a domain, and if access is not to be permitt-

ed, no segment number is assigned. If access is to be permit-

ted, the mode specified by the acp of the segment is intersect-

ed with the mode specified by the seg-limit component of the

acp of the domain, and this mode (possibly more restrictive

than the two modes it was formed from) is stored in the table

of contents segment for the domain; and it is this intersected

mode which must be consulted by the primitives just defined.

These primitives will not give any domain more access to any

segment than the amount of access specified by the intersected

mode.

When the owner of the segment or domain modifies his auth-

orizations stored in the access control packet, the intersect-

ed mode must be recomputed. If, at the time the intersected

mode is recomputed, the domain which is affected has a greater

amount of access than permitted by the new intersected mode,
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that access should be revoked. The reader should note that we

are giving priority to the revoker of access, placing his in-

terests above those of the user of the access (the domain and

process(es) affected). This is a social design choice because

the choice takes the form, "Whose purposes shall be served

first?" There are no great technological problems involved in

revoking access; for example, Multics implements immediate

access revoking.

6,9. Restrit'tion Administationo Primitives

Restrictions are named and controlled through the use of

the naming hierarchy. For this purpose, we define a new kind

of directory entry: the restriction entry. This type of entry

contains the following information about the restriction:

(1) the definition of the set of principals f(r), i.e. the val-

ue of f(r) for this r; (2) the definition of the set of dom-

ains d(r), again for this r; (3) the definitions of the three

limit functions L1(r,Q), L2(r,D), and L3(r); and (4) the name

of the principal who is to be the recipient of notifications

generated by the striking of this restriction.

The access control packet of a restriction entry consists

of a list of terms, and each term consists of a tree name of a

domain and a four-bit mode. The modes of access to a restric-

tion are called read ("r"), modify ("m"), place ("p"), and

lift "1"). The meaning of each term of the acp of a restric-

tion is that the named domain is allowed to successfully invoke

primitives: to examine the restriction entry if the "r" mode
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bit is on, to modify the restriction entry if the "m" bit is

on, to place the restriction in the restriction set of a seg-

ment or a process if the "p" bit is on, and to lift (remove)

the restriction from the restriction set of a segment or pro-

cess if the "1" bit is on.

The arguments of the primitives are defined with the

following declarations.

directory

entry

f

d

L1

L2

L3

principal

seg name

seg#

char(*) This is the tree name of a directory.

char(*) This is the name of an entry of a

directory.

chart*) This character string specifies a set

of principals, the set f(r).

char(*) This character string specifies a set

of domains, the set d(r).

char(*) This character string specifies the

function L1 (r,Q), for one r.

char(*) This character string specifies the

function L2(r,D), for one r.

integer This is the limit L3(r).

char(*) This is the identity of a principal.

char(*) This is the tree name of a segment.

integer This is the segment number of a seg-

ment capability.

The restriction administration primitives are defined as

follows:

1) create-r(directory,entry,f,d,Ll,L2,L3,principal);

A new restriction is created in the specified directory with



the specified entry name, provided that the domain where the

primitive was invoked is permitted to modify the directory,

and provided the restriction set of the process invoking the

primitive is empty. This last proviso prevents the encoding

of secret information as a pattern of created restrictions.

The remaining arguments of the primitive are input arguments

used to initialize the contents of the new restriction entry.

The acp of the new restriction entry is initialized to contain

a single term giving "rmpl" access to the domain where the

primitive was invoked.

2) delete-r(directory,entry);

The restriction specified by its entry name in the specified

directory is deleted, provided the domain where the primitive

was invoked is permitted to modify the directory and the re-

striction entry, and provided the restriction set of the pro-

cess which invoked the primitive is empty. This last proviso

prevents secret information from being encoded as a pattern of

deleted restrictions. After it is deleted, a restriction can

no longer strike or sound any alarm.

3) read-r(directory,entry,f,d,L1,L2,L3,principal);

The contents of the restriction entry, specified by its entry

name in the specified directory, are copied into the variables

named by the remaining arguments, provided the domain where the

primitive was invoked has "r" access to the restriction.



4) modify-r(directory,entry,f,d,L1,L2,L3,principal);

The contents of the restriction entry, specified by its entry

name in the specified directory, are discarded and replaced by

the contents of the variables named by the remaining arguments,

provided the domain where the primitive was invoked has "m"

access to the restriction, and provided the restriction set of

the process which invoked the primitive is empty. This last

proviso prevents secret information from being encoded as a

pattern of modified restrictions.

5) place-r(directory,entry,segname);

The restriction specified (by its entry name in the specified

directory) is added to the restriction set of the specified

segment, provided the domain where the primitive was invoked

has "p" access to the restriction, and provided the domain

where the primitive was invoked has authority to place restric-

tions on the segment. This latter authority is granted through

the use of a new mode in the access control packet of a seg-

ment. This new mode is called "p", so the rule for the place-r

primitive is that the domain where the primitive was invoked

must have "p" access to both the restriction and the segment.

6) lift-r(directory,entry,seg name);

The specified restriction is removed from the restriction set

of the specified segment, provided the domain where the primi-

tive was invoked has "1" access to the restriction.
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7) replace-r(dirl,entryl,dir2,entry 2 ,seg_name);

The first four arguments must specify two restrictions r1 and

r2. Provided the domain where the primitive was invoked has

"1" access to r and "p" access to r2 and "p" access to the

segment specified by seg_name, and provided r1 is a member of

the restriction set of the specified segment, r1 is removed

from and r2 is added to the restriction set of the segment in

an indivisible operation.

8) place-s(directory,entry,seg#);

The specified restriction is added to the restriction set of

the specified segment, provided the domain where the primitive

was invoked has "p" access to the restriction, and provided

that the specified segment is writable in the invoking domain,

and provided the invoking process is a writer process of the

segment.

9) lift-s (directory,entry,seg#);

The specified restriction is removed from the restriction set

of the specified segment, provided the domain where the primi-

tive was invoked has "1" access to the restriction, and provid-

ed that the specified segment is writable in the invoking dom-

ain, and provided the invoking process is a writer process of

the segment.

10) place-p(directory,entry);

The specified restriction is added to the restriction set of

the invoking process, provided the domain where the primitive
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was invoked has "p" access to the restriction.

11) lift-p(directory,entry);

The specified restriction is removed from the restriction set

of the invoking process, provided the domain where the primi-

tive was invoked has "1" access to the restriction.

6.10. Individual Privacy and the Computer of the Future

The privacy restriction mechanism can be used to give

individuals greater rights of privacy than ever before. Sup-

pose there were a public computer utility which implemented

the privacy restriction mechanism, and suppose that individ-

uals used the utility to prepare and submit income tax returns.

The Internal Revenue Service (IRS) would use the utility to ac-

cept and process tax returns completely within the utility, in

the context of policies and procedures for destroying all hard

copies generated by the utility. Because of these policies

and procedures, individuals could be sure that their income tax

information was available only through the computer utility.

Individuals could then use the privacy restriction mechanism

to retain control over release of income tax information held

by the Internal Revenue Service.

An individual (call him K) who uses the utility to prepare

and submit income tax returns would keep several different

types of information in the utility. First, K would keep the

relevant records from which his tax return would be prepared;

and second, K would generate trial tax returns in an effort to

pay the lowest possible tax. These types of information would
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not be released to anyone but K. The third type of informa-

tion in this example is the tax return that K actually submits

to IRS.

The first and second types of information would be kept

by K in segments under his control and having an access control

packet containing one term giving K's home domain "rwp" access,

with the copy flag on so that K's home domain can pass the

segment as an argument to a domain encapsulating an income tax

preparation service. In addition, the first and second types

of information would be protected by a restriction r1 owned by

K, such that f(rl) = fK), d(rl) = [home-domain(K), tax-service-

domain-working-for-K}, L(rl,Q) = 0, L2(rl,D) = 0, and L3(r 1)

1. Note that when we say, "f(rl) = Kj", we are using the

symbol "K" to stand for the principal with which the individ-

ual K associates himself. This should not cause any ambigui-

ties, since the meaning is clear from the context. The princi-

pal to be notified when r1 strikes is K.

To protect himself from his tax preparation service, K

must require that the service be encapsulated in a benign dom-

ain. This will prevent any hostile program in the service

from using any of the spying techniques described in section

6.4, because all the writable segments created by a benign

domain must be closeted segments, under the control of PSA.

K would place the restriction r1 in the restriction sets of

segments containing input to the tax preparation service, and

so r1 would be propagated to restriction sets of the service's



closeted segments, and to restriction sets of the service's

output argument segments. Thus the restriction r1 would pre-

vent K's tax records and his trial tax returns from being ac-

cessible in any domains other than K's home domain, and the

benign domain encapsulating his tax preparation service; and

the information restricted by r1 will be permitted to appear

only at K's terminal; and any attempt to steal K's informa-

tion in a sneaky way will set off an alarm because of the low

values of L(rl 1 Q), L2(rl,D), and L3(rl).

When K chooses a tax return to submit to IRS, he will re-

place the restriction r1 in the restriction set of the segment

containing the tax return information with a new restriction

r2, such that r2 is also owned by K, f(r2) = KJ UP(IRS), where

P(IRS) is a set of principals associated with the Internal

Revenue Service whose users might need to examine K's tax re-

turn, d(r2) = {home--domain(K} U D(IRS), where D(IRS) is a set

of domains working for the Internal Revenue Service, L(r2,Q)

= 0, L2 (r2,D) = 0, L3(r2) = 1, and the principal to notify if

r2 strikes is K. (The Internal Revenue Service will publish

specifications of the sets P(IRS) and D(IRS) for taxpayers us-

ing this method of submitting tax returns.) In addition, K

will give "1" access to r2 to some IRS data-aggregating dom-

ains. To insure that this requirement does not unreasonably

degrade K's privacy, these data-aggregating domains must be

maintained by the Restriction Removal Administration, and the

frozen programs in the data-aggregating domains must be avail-



able for auditing by any taxpayer or interested association

of citizens.

The restriction r2 will prevent K's tax return from being

made available to anyone but the authorized agents of the

Internal Revenue Service. K will submit his tax return by

commanding his process to call an IRS tax-return-accepting

domain, passing the tax return as an argument segment. That

domain will make a copy of the tax return, and the privacy re-

striction mechanism will propagate the restriction r2 to the

copy.

In this example we have not specified higher values of

L1, L2, and L3 for r2 than we specified for rl, because we are

assuming that K is both very concerned about possible release

of his tax return information and also affluent enough to af-

ford the services of investigators to respond to alarms which

his restriction sets off. We are assuming that the processing

performed by IRS is more complex than the processing required

to prepare a tax return, and therefore more likely to acci-

dentally cause the restriction r2 to strike. If K were not so

affluent, he would probably specify higher values for L(r2,Q),

L2(r2,D), and L3(r2), and obtain a reduced amount of protection

for his tax return.

In addition to the enhancement of personal privacy which

the privacy restriction mechanism makes possible, the mechan-

ism can be used to loosen restraints on the use of statistical

information which arise from the possibility of indirect dis-
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closure.

"Indirect as well as direct disclosures
must be considered, and these can be a major
source of difficulty. Thus, suppose a small
county has six hardware stores, and that a city
within the county has four of them. If retail
sales are published for the county, and also
for the city (we assume each would individual-
ly meet disclosure requirements) an indirect
disclosure occurs. Each of the two stores in
the balance of the county could directly de-
termine his competitor's sales by taking the
difference between the county statistics and
the city statistics. Thus, if disclosure is
to be avoided the data for the city can be made
available, and not the county, or for the
county and not the city. Indirect disclosures
should be avoided, at least in any sensitive
type of information.

"The consequences of indirect disclosures
are that priorities are necessary in determin-
ing which statistics will be made available
and which will not, in order to avoid making
available some relatively unimportant informa-
tion and thereby subsequently denying statistics
that have highly important uses.

... the priority problem means that the first
comer, who may have a limited use or need in
terms of public interest, may forclose the
possibility of later retrieval of other more
important information."

-- Morris H. Hansen [Hans71]

Two methods of applying the privacy restriction mechanism

to the loosening of indirect disclosure restraints can be sug-

gested. The first method is not very practical, because it de-

pends on not publishing any of the statistics, but making the

statistics available through the computer utility instead, to

disjoint sets of users. The lack of practicality is evident

when considering the problem of keeping these sets of users

disjoint. Suppose we call the two statistics A and B. We



associate restrictions rA and rB with A and B, respectively;

and we require that f(rA) f(rB) = 0 and d(rA) d(rB) = 0. So

the restrictions will insure that no principal has access to

both A and B, and no domain has access to both A and B. But

this elegant "solution" will be punctured by any principal in

f(rA ) (or f(rB)) who communicates A (B) to some principal in

fCrB) (f(rA)), perhaps communicating by means external to the

computer utility.

A more realistic solution to the problem can be suggested,

involving publishing one of the statistics, say A, and holding

B in the computer utility. B will not be released to any

principal, but it can be released to data-aggregating programs

that have been audited and certified to produce results from

which B cannot be reconstructed. If the restriction rB is

associated with B, as before, we will have f(rB) = , and d(rB)

defined to be a set of domains maintained by the Restriction

Removal Administration which encapsulate programs which have

been audited by the authority that controls the use of B.

Let SA (for Statistical Authority) denote the authority

responsible for the use of B. A would-be user of B will sub-

mit a program to RRA to be frozen and subsequently audited by

SA. If the program passes the audit, whose purpose is to in-

sure that B cannot be reconstructed from the result produced

by the program; then SA will permit the segment containing B

to be read by the domain D in which RRA installs the audited

program, and SA will include D in the definition of d(rB), and
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SA will give domain D "1" access to rB and "p" access to a new

restriction rD, so that the program in D can lift rB from its

result, replacing it with rD. The user will be allowed to call

D, and the answer produced by D will be protected by rD, which

will remain under the control of SA. The set f(rD) will in-

clude the principals for whom the program in D is working, so

that D's result can get to its would-be users.

In this way the statistic B can be put to some use, albeit

at some expense, despite the fact that statistic A was publish-

ed and the possibility of indirect disclosure requires that B

not be publicly known.

6.11. Proprietary Services Revisited

The user of a proprietary service can use privacy restric-

tions to help him win the hidden data game, and the lessor of

a proprietary service can use privacy restrictions to deny his

competitors the use of his service.

If a user of a proprietary service is concerned about the

threat of hidden data, he can associate a restriction r with

the argument data which will be input to the proprietary ser-

vice. Since the results produced by the service depend on the

input arguments provided to the service by its caller, the re-

striction r will be associated with the results, and also with

any hidden data generated by the service. Now, by appropriate-

ly defining f(r) and d(r), the user of the proprietary service

can limit the flow of hidden data to a set of domains d(r).

Furthermore, the set of principals f(r) who are permitted to
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see the results of the proprietary service will be the only

principals allowed to see any hidden data, if it is there. By

limiting f(r) and d(r) to principals and domains which he

trusts, the user of the proprietary service can reduce his

worries over the threat of hidden data. On the other hand, if

the user of the proprietary service doesn't trust anyone, he

can use f(r) and dr) to reduce the scope of his distrust, and

conserve thereby his suspicious energies.

The lessor of a proprietary service can deny his competi-

tors the use of his service by associating a restriction r with

the program segments which implement his service, and defining

f(r) and d(r) to include his customers (and their customers,

...) and their domains, but to exclude his competitors and

their domains. Whenever a process is using the proprietary

service, the restriction r will be propagated to the restric-

tion set of the process, and from there it will be propagated

to the restriction sets associated with the results produced

by the service. Since his competitors and their domains are

excluded from the sets f(r) and d(r), the lessor of the ser-

vice can be sure that his competitors will not get to use any

results produced by his service.
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Chapter Seven

Priva'cy Restriction Processor

7.1. Introduction

The purpose of this chapter is to describe the hardware

components and system strategies of a multiprocessing computer

system which implements the privacy restriction mechanism

which was defined in the previous chapter. The major new com-

ponent of this hardware design is the Privacy Restriction

Processor (PRP). The other hardware components are Processing

Units (PUs) (which have been called "processors" in previous

chapters), memory, and a central communicator. Figure 7-1

shows how these modular components are interconnected to form

a multiprocessing computer system. The arrangement of PUs and

memory boxes is straightforward: each PU can access each mem-

ory. Also, each PU can communicate directly with all other

PUs in the system, through the central communicator. This com-

munication is required to efficiently manage the system's seg-

mented virtual memory. The function of the central communi-

cator could be performed by the memory boxes, but we show it

as a distinct hardware box to underscore its independence.

Each PU has an attached PRP. For the moment, we will re-

strict our attention to a single PU-PRP pair. Recall that the

PU is the active component of a process P. The purpose of the

attached PRP is to hold P's restriction set; to hold the re-

striction sets of segments being read and written by P; and to
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perform (set-theoretic) union operations on the restriction

sets it holds, in response to the actions (reading and writ-

ing of segments) of the attached PU. The PRP has a small high-

speed memory for holding restriction sets, backed up by re-

striction set storage in main memory. Therefore an additional

function of the PRP is to manage its restriction set memory,

reading and writing restriction sets from and into the main

memory. We will assume that the PRP uses its attached PU's

ports to memory for this.

Our description of the PRP will proceed from a consider-

ation of the important events which occur in a multiprocess-

ing computer system. The complete list of important events is

given in section 7.3. Of these, the most important events are

the reading and writing of segments by a PU. Therefore we be-

gin by describing how a PU goes about reading and writing seg-

ments. Our description is an abstraction from the state tran-

sition rule in Appendix 1. (*)

The PU contains programmable registers including general

registers, index registers, base registers, and a program

counter. The base registers and program counter contain seg-

mented addresses of the form (seg#,word#). This form, (seg#,

word#), is also the form of the effective addresses generated

by running processes. Segment numbers are meaningful in the

context of particular domains. Each process state contains

(*) The principal difference between the state transition rule
of Appendix 1 and the abstraction used here is the merging,
for the purposes of this description, of the instruction fetch
logic with the operand fetch logic.
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a binding to a domain's C-list, thus providing a context for

the interpretation of effective addresses. The PU interprets

an effective address (seg#,word#) by using seg# as an index in

the C-list to access the capability for the addressed segment.

From the capability the PU can determine if the intended ac-

cess is permitted in terms of mode (i.e., if reading, writing,

or executing the segment is permitted), and if word# length(

segment). Provided this is true, the PU will complete the

reference to the segment.

In order to speed up memory accesses, each PU contains an

associative memory to hold segment capabilities that were used

recently. This is similar to the associative memories in the

processors of Multics [Sc71]. Each word of the associative

memory has the form (seg#,mode3,length,pagetable_addr). The

PU, in interpreting an address (seg#,word#), first searches

the associative memory for a word whose seg# field is equal to

the seg# of the effective address. If such a word is found,

the PU uses the other information in that word instead of look-

ing up the capability in the C-list. Thus the system saves a

memory cycle. But if there is no match found in searching the

associative memory, the PU fetches the capability from the

C-list, loading the newly fetched capability into the associa-

tive memory. Thus subsequent accesses to the same segment

don't have to look up the capability. Since the associative

memory is finite, the least recently used word in it might be

deleted when a new capability is loaded.
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Recall from section 6.8 that segment capabilities have

the form (type,mode,proc_id,length,page table_addr), where

mode is a 2-bit string which tells whether the segment identi-

fied by the capability is readable, and whether the segment is

executable, by processes bound to the domain defined by the

C-list from which the capability came; and proc id identifies

the writer process of the segment, if it has one. When a seg-

ment capability is loaded into a PU's associative memory, the

information in these two components (mode,procid) is condens-

ed into a 3-bit mode string called mode3. The following three

functions define what each bit of mode3 will be whenever a new

capability is loaded into a PU's associative memory.

w(mode3) = (proc_id(capability) = proc_id());

r(mode3) = r(mode) (proc_id(capability) = 0 V

(procid(capability) = proc_id()));

e(mode3) = e(mode) (proc_id(capability) = 0 V

(proc_id(capability) = proc_id($)));

Recall that proc_id(9) is the identifier of the process being

evolved by the PU. The reader should compare these three func-

tions with the state transition rule fragments shown in figures

6-12 and 6-13 and note that figure 7-2 and figures 6-12 and

6-13 perform equivalent access validation tests.

Figure 7-2 is the fragment of the PU's state transition

rule which performs access validation tests and uses the asso-

ciative memory. In figure 7-2, "AM" means associative memory.

"P's intent" refers to whether the process P being evolved by
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the PU is reading a word as data, reading it as an instruction,

or writing data. "FAULT" means a trap to the operating system

due (in the cases in this flowchart) to an attempted access

violation. Figure 7-2 is an abstraction from the state transi-

tion rule in Appendix 1, modified to accomplish process synch-

ronization required by the privacy restriction mechanism.

7.2. Associative Memory' Control' Bits for the PRP

For the moment, assume that we have built a PRP to hold

restriction sets of processes and segments and do the appro-

priate union operations on these sets as the PU proceeds. The

PU must tell the PRP what to do, but it is necessary for the

PU to avoid telling the PRP to do too much. For example, sup-

pose a process P stores a word into segment A. The PRP will

perform the operation RA = RAU R. Now suppose P stores ano-

ther 99,999 words into A. It would be terribly wasteful to do

the union operation 100,000 times if Rp is unchanging and thus

the operation accomplishes nothing the last 99,999 times.

Of course it is possible to avoid this waste. The tech-

nique is to add two bits to each word of the PU associative

memory. If A is a segment whose capability is held in the

associative memory, we will call these bits Uread(A) and

U write(A). When U read(A) is 1, the meaning is "do a union

when reading from A"; and when U write(A) is 1, the meaning

is "do a union when writing into A". The Uread and U write

bits are set to 0 after a union is actually performed, so sub-

sequent unions will not be performed until the bits are reset
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to 1.

Whenever a union operation expands Rp (i.e., whenever an

operation of the form Rp = R u RA makes Rp a larger set), all

the U write bits in the associative memory are reset to 1.

Whenever the execution of the restriction administration prim-

itive lift-p reduces %, all the U_read bits are reset to 1.

This is accomplished by means of a special instruction. But

when Rp is expanded by a union operation, this is noticed by

the hardware and the U write bits are reset to 1 according to

the state transition rule fragment in figure 7-3. Figure 7-3

is an expansion of figure 7-2, and thus it shows how to modify

a PU to accomodate a PRP; and in particular, figure 7-3 shows

how the U read and U write bits are used.

7.3. Events

Many important events which occur in multi-processing

computer systems are affected by the introduction of the

Privacy Restriction Processor. The PRP responds to events oc-

curring in the associated PU, and it also responds to events

generated by the action of other PUs and communicated by one

of the system's central communicators. Among the events occur-

ring in the associated PU, in addition to the reading and writ-

ing of segments, the PRP responds to the execution of special

instructions by the PU. This instruction set is given in sec-

tion 7.6. The union operations performed by the PRP, together

with its responses to special instructions and the system's

central communicator, collectively are the PRP's tactics for
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implementing restriction sets. These tactics are derived from

a consideration of strategies for handling the important events

occurring in a multiprocessing computer system.

The use of the special instructions just introduced is

permitted only in authorized operating system domains. The

dom ids of authorized domains will be wired into or set in

switches in the PU, and the PU will fault whenever an unauthor-

ized domain issues one of the special instructions. Instruc-

tions which signal the central communicator, and input/output

instructions, are similarly protected from unauthorized use.

The following list of important events which occur in

multiprocessing computer systems was derived from contempla-

tion, from conversations with graduate students and faculty of

the Computer Systems Research Group of Project MAC, and from

our study of Multics. The list is as complete as this student

could make it.

In the list of events, P means any process being evolved

by a PU.

1) a) P reads from a segment.

b) P writes into a segment.

c) The PU evolving P picks up a segment capability.

d) The PU evolving P deletes a segment capability from its

associative memory.

2) P does a send to output information.

3) The PRP does a union operation that produces an oversize

restriction set. (Restriction overflow.)

4) a) P does an initiate--read.
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4) b) P does a terminate-read.

c) P does an initiate-execute.

d) P does a terminate-execute.

e) P does an initiate-write.

f) P does a terminate-write.

5) a) P does a calldomain.

b) P does a return-domain.

6) a) P does a create-r.

b) P does a delete-r.

c) P does a read-r.

d) P does a modify-r.

e) P does a place-r.

f) P does a lift-r.

g) P does a replace-r.

h) P does a place-s.

i) P does a lift-s.

j) P does a place-p.

k) P does a lift-p.

7) The operating system reassigns a PU to a new process.

8) A PU takes a fault. Especially interesting is the segment

fault which needs to make a segment inactive, since this

involves the central communicator.

9) A PU takes an interrupt.

10) a) The operating system starts up.

b) The operating system reconfigures a PU into the system,

or out of the system.

c) The operating system shuts down.
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11) a) Segments are backed up by a "daemon" process under the

control of the operating system.

b) Segments are retrieved from backup media by a "daemon"

process under the control of the operating system.

7.4. Formats

From a consideration of the strategies for handling the

events just introduced, a set of PU-dependent and PRP-depend-

ent storage formats emerges. In fact, the formats and the

strategies coalesce together in the mind of the designer.

Some of the formats were presented in previous sections, and

are repeated here for completeness.

7.4.1. Segment Capability

mode Two bits called "r" and "e" which control

whether processes may read or execute the

segment.

proc id The unique identifier of the process which

may write the segment, if it is writable.

(All zeroes means no writing allowed.)

page_table addr The absolute address of the segment's page

table, provided fault = 0.

fault A validity bit for page_table_addr. The PU

takes a segment fault when it picks up a

segment capability with fault = 1.

length The length of the page table.

has R set A bit which says whether this segment has a

restriction set. (*)

(*) All of the segments which contain operating system data
bases will not have restriction sets, and therefore the
has R set bit in segment capabilities in operating system dom-
ains will be 0. If operating system data base segments did
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7.4.2. PU Associative Memory Word

This is the associative memory introduced in section 7.1,

which holds segment capabilities for speedy reference by the

PU.

mode3 Three bits called "r", "e", and "w" to con-

trol reading, executing, and writing. These

bits are computed as specified in section 7.1.

U read A bit which says the PRP must do a union

when the PU reads from this segment.

U_write A bit which says the PRP must do a union

when the PU writes into this segment.

has R set A bit which says whether the segment has a

restriction set.

page_table addr The absolute address of the segment's page

table.

length The length of the page table.

seg# The segment number of the segment in the

domain to which the process being evolved by

the PU is bound.

7.4.3. Domain Entry Capability

dom_id The unique identifier of the domain which

can be called through the use of this

capability.

(seg#,word#) The address of a procedure entry point in

the called domain, where calling processes

which use this capability will begin

have restriction sets, those restriction sets would gradually
accumulate almost every restriction in the system, because all
the processes use the services of the operating system. Then
this large collection of restrictions would be propagated to
all the processes, and the system would stop working.



execution.

R check A bit which says whether to check that the

called domain is in rd(r) when a call is

made using this capability, and similarly

for the paired return. (*)

7.4.4. PRP Associative Memory Word

page_table addr The absolute address of the page table of a

segment for which a restriction set is held

in the PRP.

location The location of the restriction set in the

PRP's restriction set memory.

size The size of the restriction set.

modified A bit which says whether the restriction set

of the segment has been modified.

writable A bit which says whether the associated PU

is evolving a writer process of the segment.

7.4.5. Restriction Set Control Word

available A validity bit. If a PRP begins to pick up

a restriction set for which available = 0,

it will cause its attached PU to fault.

size The size of the restriction set.

7.4.6. Restriction

oversize A bit which says that this restriction stands

for a set of restrictions stored elsewhere.

(*) The check whether the target domain (the destination of the

call or return) is in [d(r) is necessary to erect walls

around sets of domains, as described in section 6.4. Recall
that d(r) is the set of domains that information restricted by
r is permitted to be in. The purpose of the R check bit, which
makes the test optional, is to speed up calls and returns be-
tween domains of the operating system.
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unique_id A unique identifier.

7.4.7. Restriction Set Storage

We are assuming that restriction sets are stored adjacent

to the bases of page tables. Thus, the address of the restric-

tion set control word of a segment's restriction set is

page_table_addr - 1. This assumes a paged segmented virtual

memory, but this is not essential. In an unpaged implementa-

tion, the restriction set would be located just before the

segment itself (from the point of view of the physical memory

allocation mechanism). In such an implementation, page table_

addr would be replaced by a segment_base_address, and length

would be the length of the segment.

Figure 7-4 shows the storage format of a page table and a

restriction set.

7.5. Strategies

In this section we present strategies for handling the

events presented in section 7.3. Recall that P means any pro-

cess being evolved by a PU.

la) P reads from a segment. (Let A be that segment.)

Provided the reading is permitted by the mode test and

the length test, and provided the segment has a restriction

set, and provided the segment's U read bit is on, the PU will

tell the PRP to do the union operation Rp = Rp RA, and the PU

waits to see if Rp was expanded. The PU identifies A to the

PRP by telling the PRP A's page table_addr. The PU also tells

the PRP the bit w(mode3) for the segment A, just in case the
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PRP is not holding RA when this event occurs. The reason why

the PRP needs to know the value of w(mode3) will be given in

the description of event lc.

Whenever the PU starts to tell the PRP to do Rp = RpU RA

or RA = RAURP, the P will wait for the PRP to finish its

previous operation, and if the PRP is signalling for a fault

(e.g. restriction overflow), the PU faults.

The PRP responds to the request to do the union operation

Rp = R U RA by first looking in its associative memory for a

word representing RA. If none is found, the PRP picks up the

restriction set RA from main memory, as described in event lc.

The PRP uses its Union Processor to compute RpU RA, and re-

places Rp with this result. The PRP tells the PU whether this

operation expanded %.

lb) P writes into a segment. (Let A be that segment.)

Provided the writing is permitted by the mode test, the

length test, the has R set bit test, and the U write bit test,

the PU will tell the PRP to do the union operation RA = RAU Rp.

The PU identifies A to the PRP by telling the PRP A's page_

tableaddr. The PU also tells the PRP the bit w(mode3), which

will be 1, just in case the PRP is not holding RA when this

event occurs.

The second paragraph under event la applies to this event

also.

The PRP responds to the request to do the union operation

RA = RAU Rp by first looking in its associative memory for a



word representing RA. If none is found, the PRP picks up the

restriction set RA from main memory, as described in event c.

The PRP uses its Union Processor to compute Rp URA, and re-

places RA with this result (this modifies only the PRP's cur-

rent copy of RA), and sets the modified bit in the associative

memory word representing RA to 1 if this operation modified

RARA .

lc) The PU evolving P picks up a segment capability.

The PU loads the segment capability into its associative

memory. If the has R set bit is 1, the PU tells the PRP the

page_tableaddr of the segment, and the value of w(mode3) for

the segment. The PRP examines its associative memory to see

if it is holding the restriction set for the segment. If the

PRP is holding the restriction set for the segment, it does

not need to do anything. (*) If the PRP is not holding the

restriction set for the segment, the PRP proceeds to pick up

the restriction set from main memory. This action, i.e. pick-

ing up the restriction set from main memory, might also be

taken in response to events la and lb, as just described. If

the available bit in the restriction set control word is 0,

the PRP signals the PU to fault. Otherwise, the PRP picks up

(*) If the PRP is holding the restriction set when this event
occurs, the PRP could compare the value of w(mode3) obtained
from the PU with the writable bit for the restriction set,
stored in the PRP associative memory word. If they differ, an
operating system error is indicated and the PRP should tell
the PU to fault. If w(mode3) = 0 and writable = 1, the writ-
able segment has somehow obtained a non-writer process. If
w(mode3) = 1 and writable = 0, the segment has somehow obtain-
ed a writer process without its restriction set, which must
have been used previously by a reader process, first being
flushed out of the PRP. 269



the restriction set from next to the page table and the PRP

loads a word into its associative memory to represent the fet-

ched restriction set. In that word, the modified bit is ini-

tialized to 0 and the writable bit is set to the value of w(

mode3).

The PRP maintains LRU information for its associative

memory, so when its restriction set storage is full and it has

to pick up another restriction set, it replaces the least re-

cently used restriction set in main memory, provided it is

marked modified.

ld) The PU evolving P deletes a segment capability from

its associative memory.

The PU tells the PRP the page_table_addr of the deleted

capability, provided the hasR_set bit is 1. The PRP will re-

place the restriction set for that segment in main memory,

provided it is marked modified. When the PU picks up a seg-

ment capability and has to delete a segment capability from

its associative memory to make room for the new one, the PU

first tells the PRP about the deletion, and then the PU tells

the PRP about the new segment capability.

2) P does a send to output information. (Let A be that

segment from which output is requested.)

There are three cases to consider, depending on whether

the process invoking the send is a reader or a writer of A.

Case I. P is a reader of A. Since A has a reader pro-

cess, it has no writer processes, and so RA is unchanging.

Using the copy of RA stored next to the page table, and the
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value of Rp stored in the PRP, the send primitive calculates

0 ;(f) and decides whether to permit or to strike down the

output. If there is any restriction r RAU R such that the

principal to whom output is directed is not in f(r), then the

restriction r strikes. (The calculation of n f(r) is de-
r rRA v p

tailed in the paragraph after the discussion of Case III.)

If no restriction strikes, send starts the output. Then, ei-

ther send returns to the calling procedure immediately or it

waits for the output to be finished. If the return is immed-

iate, the operating system will not allow A to have any writer

processes until the output is finished. We are assuming that

output occurs directly from A, without an intervening buffer.

Case II. P is a writer of A. So RA might be in the PRP

associated with the PU evolving P. The send primitive tells

the PRP to flush out RA, using a special instruction. The PRP

responds by replacing RA in main memory, if it is marked modi-

fied. Then send calculates n (r)and decides whether to do
r(ERAu KP

the send or initiate the striking of some restriction. (See

the paragraph on calculating A f (r).) If no restriction

strikes, send starts the output and makes P wait. When the

output process completes, it wakes up the process P, and send

directs P to return.

Case III. P is neither a reader nor a writer of A. Out-

put is not permitted in this case.

Now we describe the calculation of n (r). This com-
putation is complicated by the possibility th restrictions

putation is complicated by the possibility that restrictions
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in RA or stand for larger sets of restrictions, indicated

by the condition oversize = 1. These larger sets of restric-

tions will have been stored in the Oversize Restriction Table

(ORT), an operating system per-system data base, upon the oc-

currence of a restriction overflow. We will call a restriction

for which oversize = 0, an ordinary restriction. Each oversize

restriction is the root of a tree, defined by the ORT, whose

terminal branches are ordinary restrictions. So the first

step in calculating V +(g) is to represent RA URp as a set

of ordinary restrictions, by following out the trees in ORT

for the oversize restrictions. Then, for each of these ordin-

ary restrictions, its address in the naming hierarchy (a pair

(directory,entry)) is determined from the Master Restriction

Table (MRT), another per-system data base. Using these add-

resses, the value f(r) is obtained for each r in the (possibly

expanded) RA uRp. From these f(r)'s the intersection nf()
is calculated.

3) The PRP does a union operation that produces an over-

size restriction set. (Restriction overflow.)

The normal size for a restriction set is between 0 and 4

restrictions. When the PRP does a union operation, the result

could be as big as 8 restrictions. Whenever the result of a

union operation is larger than 4 restrictions, the PRP signals

the PU to fault. The PRP has a result register which will

hold 8 restrictions, so nothing is lost but time. The fault

takes the PU into the PRP domain of the operating system,



which tells the PRP to store the oversize restriction set it

generated in the ORT, using a special instruction. The PRP

domain associates a newly created restriction, for which

oversize = 1, with the oversize restriction set stored in the

ORT. Then the PRP domain replaces the oversize restriction set

in the PRP's result register with the newly created restriction

just introduced, using a special instruction. Finally, the

PRP domain returns from the fault.

4) The process synchronization primitives.

The strategies are designed to allow restriction sets to

remain in the PRP as long as possible, so that time spent by

the system loading restriction sets from main memory into the

PRP is minimized. Thus, restriction sets of segments with

reader processes are allowed to remain in the PRP upon the oc-

currence of the process exchange event (event 7) and the call-

domain and return-domain events (event class 5), and are only

flushed out when the last reader process does a terminate-read.

Restriction sets of segments with a writer process are marked

writable in the PRP associative memory word. Such restriction

sets are allowed to remain in the PRP upon call-domain and

return-domain events in order to speed access of processes

having write access to a segment in several domains. However,

they (the "writable" restriction sets) are flushed out of the

PRP by the process exchange event in order to guarantee that

at most one PRP holds a copy of the potentially modifiable

restriction set.

273



4a) P does an initiate-read.

No special action is required beyond that specified in

section 6.8.

4b) P does a terminate-read. (Let A be the segment be-

ing terminated.)

If P is the last remembered reader of A, the terminate-

read primitive uses the central communicator to tell every

PRP in the system to flush out RA. Since A has no writer pro-

cess, none of these copies of RA will be marked modified and

so the PRPs will simply delete them. This action is taken in

anticipation of A's getting a writer process: if such a pro-

cess writes A, expanding RA, and then gets rescheduled onto a

PU whose PRP holds the old RA, the restrictions newly added to

RA would not be properly propagated.

4c) P does an initiate-execute.

No special action is required beyond that specified in

section 6.8.

4d) P does a terminate-execute.

The same action as specified for event 4b is performed.

4e) P does an initiate-write.

No special action is required beyond that specified in

section 6.8.

4f) P does a terminate-write. (Let A be the segment

being terminated.)

The terminate-write primitive tells the PRP attached to

the PU evolving P to flush out its copy of RA, using a special

instruction. The PRP will replace RA in main memory, provided
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it is marked modified; and the PRP will delete its associa-

tive memory word representing RA . As in the case of event 4b,

this action is taken in anticipation of A getting a new writer

process. Only the PRP attached to the PU evolving P will be

holding a copy of RA because RA is marked writable, because

writable segments have exactly one writer process, and because

the process exchange event (event 7) causes the PRP to flush

all restriction sets marked writable.

5a) P does a call-domain.

If the R check bit of the specified domain entry capabil-

ity is 1, the PU takes a fault into the PRP domain. The PRP

domain computes n d(r), following out oversize restriction
r'Rp

trees as necessary, and decides whether P will be allowed to

proceed into the target domain, or whether to strike down the

call. The PRP domain obtains the current value of R from the

PRP, using a special instruction. If and when the PRP domain

returns from the fault, the PU allows P to become bound to the

target domain. The PU stores the value of the Rcheck bit

with the return address of the call in the sectioned stack.

The PU clears its associative memory whenever the process

it is evolving becomes bound to a new domain, because segment

numbers have different meanings in different domains.

The reason for allowing the computation of nd() to be

skipped is to provide speedy calls and returns between domains

of the operating system.
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5b) P does a return-domain.

If the Rcheck bit stored with the return address in the

sectioned stack is 1, the PU takes a fault into the PRP dom-

ain. As in event 5a, the PRP domain decides whether P will

be permitted to proceed into the target domain, or whether to

strike down the return; based on whether the target domain is

in nd(r) .
NB: It is ironic that the fast inter-domain call and re-

turn sought in chapter 4 must be slowed down by this necessary

check. But note that the cost of performing this check can be

paid by the owners of the restrictions in Rp. If this is done,

the restriction owners are paying for the protection of their

information, rather than the owner of P paying for that pro-

tection; but this would allow malicious users to pile up costs

for restriction owners. To alleviate this effect, the owner

of P and the restriction owners might share the costs.

6a) P does a create-r.

The create-r primitive makes an entry in the Master

Restriction Table for the newly created restriction. Note

that whenever a restriction entry is renamed or moved from one

directory to another, the MRT must be updated.

6b) P does a delete-r.

The restriction is marked deleted in the MRT. The unique_

id which represents the deleted restriction cannot be reused

unless it is garbage-collected out of every restriction set

in the computer system.
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6c) P does a read-r.

No special action is required beyond that specified in

section 6.9.

6d) P does a modify-r.

No special action is required beyond that specified in

section 6.9.

6e) P does a place-r. (Let A be the segment named by

seg_name.)

If the named segment is not active (i.e., does not have

a page table), the computer contains only one copy of its re-

striction set and the place-r primitive is easy to do. It's

more interesting when other processes are reading or writing

the segment. Typically P is neither a reader nor a writer of

the segment, but we give P priority over readers and writers

because doing a place-r is quick and so the disruption to read-

ers and writers is minimal. The place-r primitive turns off

the available bit in the restriction set control word for RA,

and then place-r uses the central communicator to flush out RA

from all PRPs. The PRPs respond by replacing RA in main memory

if they are holding it and it is marked modified, and in any

case by deleting their associative memory words for RA. After

receiving acknowledge from all the PRPs signalled by the cen-

tral communicator, place-r has access to the only copy of RA

in the computer. The place-r primitive then adds the restric-

tion named by its arguments (directory,entry) to RA, and does

oversize processing if RA overflows. Then place-r turns the
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RA available bit back on, and wakes up all the processes that

needed RA and faulted because of the available bit being off.

6f) P does a lift-r. (Let A be the segment named by

segname.)

This is similar to place-r, except that a restriction is

being removed from RA. The priority of P over readers and

writers of A is the same, as is the use of the available bit

and the central communicator. A slight complication arises

when RA includes oversize restriction sets and the restriction

to be removed is not in the topmost level of RA. Figure 7-5(a)

shows an RA which contains two ordinary restrictions r and r2

and the oversize restriction r. (The "*" simply means that

r3 is oversize.) Suppose that lift-r is told to lift r4 from

RA . It would not be correct to remove r4 from the definition

of r, because this would have the effect of removing r4 from

other restriction sets containing r, such as RB in figure

7-5(a). The lift-r primitive must make an isolated copy of RA,

and remove r4 from that. Figure 7-5(b) shows the isolated

copy of RA implemented as a new oversize restriction r*

6g) P does a replace-r.

This is simply a lift-r followed by a place-r, performed

without turning the restriction set available bit on between

the end of the lift-r and the beginning of the place-r.

The following two events, invocations of the primitives

place-s and lift-s, differ from invocations of the primitives

place-r and lift-r in the following ways: the invoking pro-

cess must be a writer process of the referenced segment, and
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that segment is specified with a segment number rather than a

tree name. For details, see section 6.9.

6h) P does a place-s. (Let A be the segment numbered

seg#.)

Since P must be a writer process of A, place-s uses a

special instruction to flush RA out of the PRP attached to the

PU evolving P, whereupon place-s has access to the only copy

of RA in the computer. The primitive place-s then adds the

restriction named by its arguments (directory,entry) to RA,

and does oversize processing if RA overflows.

6i) P does a lift-s. (Let A be the segment numbered

seg#.)

Since P must be a writer process of A, lift-s uses a

special instruction to flush RA out of the PRP, as above in

event 6h. The primitive lift-s then removes the restriction

named by its arguments from RA, taking account of oversize re-

striction sets as described above for event 6f.

6j) P does a place-p.

The primitive uses a special instruction to copy out Rp

from the PRP attached to the PU evolving P, adds the restric-

tion named by its arguments to Rp, does oversize processing if

Rp overflows, uses another special instruction to load Rp back

into the PRP, and uses a third special instruction to set all

the U write bits to 1 in the associative memory of the PU

evolving P.

6k) P does a lift-p.

This primitive is similar to place-p, except that a re-
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striction is removed from Rp, which requires taking account of

oversize restriction sets as described above for event 6f;

and the lift-p primitive finishes by using a special instruc-

tion to set all the Uread bits to 1 in the associative mem-

ory of the PU evolving P.

7) The operating system reassigns a PU to a new process.

This event begins with an interrupt which takes the PU to

be reassigned into the traffic controller domain of the operat-

ing system. None of the segments in the traffic controller do-

main have restriction sets, so the restriction sets stored in

the PRP attached to the PU are unchanging. The traffic con-

troller makes a copy in its data base of the process state of

the process being interrupted. The traffic controller uses a

special instruction to copy out Rp from the PRP attached to

the PU, and the traffic controller stores this Rp associated

with the process state of P. Then the traffic controller uses

a special instruction to tell the PRP to flush out all restric-

tion sets of writable segments. The PRP responds by replacing

in main memory all such restriction sets which are marked mod-

ified; and by deleting its copies of such restriction sets

whether marked modified or not. The traffic controller picks

another process to run, loads its Rp into the PRP with a spec-

ial instruction, loads its process state into the PU, and lets

it continue its work. The loading of the new process state

into the PU terminates this operation, and the new process

returns out of the traffic controller domain.
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8) A PU takes a fault.

Control of the PU passes to an operating system domain

where the fault is handled (except for user-domain faults,

which cause control to be passed to the program which signals

the condition associated with the fault (*)). We restrict our

attention here to the segment fault, because the response to a

segment fault is to make the segment involved active, which

may require that some other segment be made inactive. When a

segment, say segment A, must be made inactive, the following

things are done. First, every segment capability for A is

modified by setting its fault bit to 1. Then the central com-

municator is used to tell every PU to clear out of its assoc-

iative memory any word with the page_table_addr of A. The cen-

tral communicator also tells every PRP to flush out RA, if it

has a copy of it. The PRPs respond by replacing RA in main

memory if it is marked modified, and by deleting copies of RA

whether marked modified or not. After receiving acknowledge

from all the PRPs and PUs signalled by the central communicat-

or, A's restriction set and page table can be removed from the

Active Segment Table to make room for the page table and re-

striction set of the new segment.

9) A PU takes an interrupt.

The PU stores the process state of the process it was

(*) When there is no handler enabled for the signalled condi-
tion in the domain where the condition occurred, it is not
clear what should be done. This is one of the problems which
must be solved by the operating system's control structure,
which is outside the scope of this thesis.
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evolving someplace, and picks up the process state of an

interrupt-handler process, which has the effect of taking the

PU into the operating system domain that handles the interrupt,

and the PU clears its associative memory because it is moving

between domains. We are assuming that none of the segments in

the operating system domain that handles the interrupt will

have a restriction set. So while the PU is evolving the

interrupt-handler process, the PRP sits and does nothing.

When the interrupt handling is done, the PU picks up the pro-

cess state of the interrupted process, clears its associative

memory, and continues evolving the interrupted process.

10a) The operating system starts up.

While the operating system is starting up, one PU is do-

ing the work of startup while the other PUs wait. These other

PUs will be brought into the system by means of reconfiguration

events (event 10b). So we need only consider the PU doing the

startup. It begins its task using an absolute mode of address-

ing memory, and shifts over to a segmented addressing mode

only after initializing the mechanisms which support the sys-

tem's segmented virtual memory. While the PU is using the ab-

solute mode of addressing memory, the attached PRP sits and

does nothing. When the PU shifts over to the segmented

addressing mode, the attached PRP clears its associative mem-

ory and sets its register for holding Rp to . Subsequent use

by the PU of segments which have restriction sets, as indicat-

ed by the has R set bit of segment capabilities, will result
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in union operations being performed by the PRP.

10b) The operating system reconfigures a PU into, or out

of, the system.

The first process to run on a PU being configured in, and

the last process to run on a PU being configured out, is that

PU's idle process. Idle processes are usually bound to the

idle process domain of the operating system. (This is where

PUs being configured in have their security hardware tested

before being put to work.) The idle process domain uses a

special instruction to clear out the PRPs attached to PUs

being configured in and out. A PRP responds to this instruc-

tion by clearing its associative memory and its register hold-

ing Rp to .

10c) The operating system shuts down.

If we assume that shutdown is terminated by making the

last working PU evolve an idle process, we can be sure that

that idle process will clear that PU's PRP.

lla) Segments are backed up by a "daemon" process under

the control of the operating system.

The backup daemon is given a segment capability for the

segment to be backed up, and the has R set bit in the capabil-

ity is 0. In this way the daemon avoids acquiring all the re-

strictions associated with the segments on which it works.

When the backup daemon backs up a segment, it also copies the

restriction set of the segment onto the backup media. There-

fore the backup daemon has the privilege of obtaining copies

of segments' restriction sets.
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llb) Segments are retrieved from backup media.

The retrieval daemon deletes the on-line copy of the

damaged segment, and its restriction set; and replaces these

with the segment contents and restriction set retrieved from

the backup media.

7.6. Tactics

Here are the elementary operations which the PRP must per-

form to effectively support the strategies of the previous

section.

1) The PRP must accept information from the attached PU

about where restriction sets are located. The PU initiates

this when it picks up a segment capability.

2) The PRP must pick up restriction sets from main memory.

The PRP must request its attached PU to fault if a restriction

set's available bit is 0.

3) The PRP must replace restriction sets in main memory.

This must be done in response to:

a) deletion of a segment capability from the PU

associative memory.

b) need for space in the PRP restriction set memory.

The least recently used restriction set is select-

ed.

c) a special instruction, which specifies the seg-

ment's page_tableaddr.

d) a request from the central communicator. Two

kinds of requests will get this response:

dl) a request to flush a restriction set, spec-

ified by page_table_addr.
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d2) a request to flush a segment capability

from all PUs' associative memories, the

segment being specified as before by page_

table addr.

e) a special instruction which causes all writable

restriction sets to be flushed from the PRP.

4) The PRP must clear itself to null contents in response

to a special instruction.

5) The PRP must do union operations Rp = Rp U RA and

RA = RAU Rp in response to requests from the PU. The PRP must

request the PU to fault when the result of a union operation

is too big.

6) The PRP must put down Rp in, and pick up Rp from, main

memory in response to special instructions.

7) The PRP must put down its result register in, and pick

up a new result register contents from, main memory in response

to special instructions. (This is for handling restriction

overflow.)

[8) The PU must set all the Uread bits in its associative

memory to 1, or set all the U write bits to 1, in response to

special instructions. This tactic is mentioned here for

completeness.]

The elementary operations listed above are the only opera-

tions which the PRP is required to perform. It is obvious that

a digital electronic device which performs the given element-

ary operations can be constructed.
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7.7. Summary

We have described the hardware Privacy Restriction Pro-

cessor, and the hardware and software strategies and tactics

which permit a multiprocessing computer system to implement

the system of privacy restrictions developed in chapter 6.

The PRP consists of an associative memory which records what

restriction sets the PRP is holding, a location-addressed re-

striction set memory, a Union Processor for forming unions of

restriction sets, memory for the restriction set of the pro-

cess being evolved by the PU the PRP is attached to, and

control logic which co-ordinates the parts just enumerated to

accomplish the actions (tactics) described in section 7.6.
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Chapter Eight

Authority Hierarchies

8.1. Introduction

The purpose of this chapter is to describe means by which

the administrators of a computer utility can be prevented from

having absolute power over all the information stored in and

processed by that utility. In chapter 2, we noted the re-

quirement that noone should have such great power over

society's information systems. But in chapter 4 we introduced

a hierarchically controlled naming hierarchy, similar to the

file hierarchy of Multics, whose hierarchical control mechan-

ism gives the administrators who control the Root the power to

extend their control to include every computing object named

by the naming hierarchy. A naming hierarchy with a built-in

monocratic authority structure is not adequate in social con-

texts where several independent authorities share a single com-

puter utility, because the several authorities would be risk-

ing loss of independence.

The monocratic authority structure of the naming hierarchy

introduced in chapter 4 arises from the nature of control over

directories. Control over directories is exercised by means

of operating system primitives which examine and modify direc-

tories; and control over directories is authorized by access

control packets (acps), which name the domains which may suc-

cessfully invoke the primitives which examine and modify the

directories. Because the naming hierarchy is a tree of direc-
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tories, every directory except the Root is an entry of a super-

ior directory, which provides a place for storage of director-

ies' access control packets. In other words, a given direct-

ory's acp is stored as a part of its entry in the superior

directory in the naming hierarchy, and the acp of the Root,

since the Root is the most-superior directory, is stored in

some unique place (but not in any directory).

The authority structure of the naming hierarchy is mono-

cratic because the right to modify a directory carries with it

the right to modify access control packets in that directory.

For example, figure 8-1 shows how users are organized into

projects and given directories to serve as "personal Roots"

from which to build naming sub-hierarchies. The directory

(users,MultLab,Rotenberg) is Rotenberg's personal Root, to be

used as the starting point in catalogueing the computing ob-

jects created by Rotenberg. The user Rotenberg's control over

this directory is authorized by the acp which gives the domain

(users,MultLab,Rotenberg,home) read ("r") and modify ("m") ac-

cess to the directory. But because of the monocratic author-

ity structure, Rotenberg cannot be sure that he will retain

exclusive control over his directory. The administrator of

the MultLab project, Clark, can obtain control of Rotenberg's

personal Root by simply requesting the operating system to

modify the acp of (users,MultLab,Rotenberg). This request will

be honored provided it comes from Clark's home domain, (users,

MultLab,Clark,home), because that domain has the right to mod-
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ify the directory (users,MultLab), which includes the right to

modify all the access control packets in (users,MultLab).

Similarly, the system administrator Jones can obtain control

of the directory (users,MultLab) because her home domain is

authorized to modify the directory (users), and having done

that, Jones can then obtain control of (users,MultLab,Roten-

berg). Figure 8-2 shows how the access control packets of fig-

ure 8-1 would be modified by the authoritarian actions just

described.

This chapter will formulate a solution to the problem of

monocratic authority in a computer utility, but it is import-

ant to recognize that the solution should not interfere with

the reasonable exercise of rational authority. We will not

propose that Jones' control over the directory (users) be elim-

inated, because such control is required to add new projects

to the utility, and to delete old ones. Similarly, Clark needs

control over the directory (users,MultLab) to add users to the

MultLab project, and to delete old ones. Our solution intro-

duces two new computing objects, offices and authority hier-

archies, for the purpose of controlling changes to access con-

trol packets.

8.2. Authority Hierarchies

In place of the monocratic authority structure of the

naming hierarchy just described, we propose that a computer

utility should contain independent authority-expressing mech-

anisms for independent authorities in society. Corporations
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and branches of governments are examples of independent auth-

orities in society. The structure in the computer utility

which represents and serves an independent authority in soc-

iety is the authority hierarchy. Each authority hierarchy

consists of a tree of offices. Each office contains a list of

entries (possibly an empty list), and each entry points to an-

other office of the authority hierarchy. Each entry of an of-

fice has an associated name (a character string) which serves

to uniquely identify the entry in the context of the contain-

ing office. One office of each authority hierarchy, called

the most-superior office, is not pointed to by any entry of

any office. Each authority hierarchy has a unique hierarchy

name (a character string) which serves to distinguish each

authority hierarchy from all other authority hierarchies in

the computer utility. (The name space of hierarchy names is

administered by the computer utility administrators, subject

to the constraint that they cannot rename an authority hier-

archy. The reason for this constraint will become evident pre-

sently.) Every office in an authority hierarchy can be named

by a hierarchy tree name, which is the sequence of office entry

names that defines a path through the tree of offices from the

most-superior office to the office being named. An arbitrary

office can be specified with an office name, which is an order-

ed pair consisting of a hierarchy name and a hierarchy tree

name.

The purpose of each office is to authorize changes to
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some collection of entries of directories. The changes auth-

orized by offices include modifications to access control

packets, renaming of directory entries, and deletion of direc-

tory entries. These three types of changes were previously

authorized by the "modify" mode of access to directories.

With the introduction of offices and authority hierarchies, we

are eliminating the mode "modify" and replacing it with the

mode "append", which gives the right to add new entries to

directories. This "append" right is all that remains of the

previously defined "modify" right.

In order to record which offices control which directory

entries, each entry of a directory contains the office name of

some office. Requests to modify directory entries are made by

processes invoking operating system primitives. Each office

contains an agent list which the operating system consults

when it receives requests to modify entries of directories.

The agent list is a list of domain names. A request to modify

an entry of a directory will be honored if the request is made

by a process calling from a domain D such that the name of D

is an element of the agent list of the office named by the

office name contained in the directory entry whose modifica-

tion was requested. Thus, when a domain D is an agent of an

office 0, requests that originate in D can exercise the powers

of office 0. In most of the examples in this chapter, the

domains named by agent lists are the home domains of users,

i.e. persons. Since users command processes bound to their
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home domains, users can exercise the powers of offices.

The effect of introducing authority hierarchies to our

model of a computer utility is to make control of directory

entries, and especially of access control packets, fundament-

ally different from control of all other computing objects

(which is the function of access control packets). Adding a

new mechanism makes the model more complex, but it allows the

model to express an important social relationship: the inter-

action between the exercise of power and the status quo. The

acps represent the status quo. They tell what access is per-

mitted by what domains to each computing object. To change an

acp is to exercise a right of control over the computing object

whose acp is changed, and this exercise of a right is the fun-

damental unit of power over the computer utility. Because com-

puters are becoming the nervous system of our society, it is

important to know who has power over computers. The authority

hierarchies provide would-be observers of the social scene with

a structured expression which tells who has power in the com-

puter utility.

Figure 8-3 illustrates how the naming hierarchy of figure

8-1 can be placed under the control of two authority hierarch-

ies, named SysAdmin and MAC, shown in part 2 of the figure.

(The reader should note that the names "SysAdmin" and "MAC"

are being used for two purposes in figure 8-3: to name auth-

ority hierarchies, and to name entries in the directory (users

). It is not difficult to tell from the context of each in-
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stance of these names which meaning is intended.) In figure

8-3, part 1, and in other figures in this chapter, the office

name which tells which office authorizes changes to an entry

of a directory is shown as part of the access control packet

associated with the entry. For example, the acp of the direc-

tory (users) in figure 8-3 names the office "SysAdmin,()".

The empty list in the office name denotes the most-superior

office of the SysAdmin authority hierarchy. Thus the office

(SysAdmin,()) controls the directory (users). When we say,

"controls the directory", we mean that the given office con-

trols changes to the directory entry which points to the given

directory. This includes control over changes to the acp of

the given directory, plus control over renaming and deleting

the entry which points to the given directory.

Figure 8-3, part 2, shows the two authority hierarchies

SysAdmin and MAC. The MAC authority hierarchy consists of

many offices, of which four are shown in detail. The office

(MAC, (CSR,stdnt,Rotenberg)) controls the directory (users,

MultLab,Rotenberg); while the office (MAC,(CSR,stdnt)) con-

trols the directory (users,MultLab). In the MAC authority

hierarchy, we are using abbreviations for the names of entries

in offices. "CSR" is an abbreviation for "ComputerSystems_

Research" and "stdnt" is an abbreviation for "student_projects".

Figure 8-3 is an example of a non-monocratic authority

structure. To see this, consider what would happen if the

user Smith, a member of the SysAdmin project, attempted to
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gain control of the directory (users,MultLab). To do this,

she would have to modify the acp of that directory, but she

cannot modify it because she is not named by the agent list of

the office (MAC,(CSR,stdnt)). To be more precise, she does

not have control of a domain named by the agent list. Further-

more, she cannot modify any agent list of the MAC authority

hierarchy unless she happens also to be one of the authority

system's locksmiths. We will describe the locksmithing func-

tion in section 8.4.

In the situation just described, in which persons assoc-

iated with one authority hierarchy are trying to access an ob-

ject which is under the control of another authority hierarchy,

it is easy to say what the desired outcome is: access should

not be permitted unless authorized by the appropriate office

of the controlling authority hierarchy. This answer is easy

to see because it springs immediately from the underlying

philosophy that authority hierarchies represent independent

authorities. It is more difficult to say what should happen

when a person's domain is named by the agent list of an office

of a given authority hierarchy, and that person wants to access

a computing object which is under the control of another office

of the same authority hierarchy. For example, suppose Clark

wanted to obtain control of the directory (users,MultLab,

Rotenberg). We will describe protocols for the exercising of

"higher" authority in section 8.3.

To complete the description of our example, we must say



how the acps shown in figure 8-3 were initialized. We will

assume that the Root and the directory (users) already exist

as this description begins. The first action of interest oc-

curs as the system administrator Jones creates the MultLab

directory. Because the acp of the directory (users) contains

one term giving "read" and "append" access to Jones' home dom-

ain (whose name is (users, SysAdmin,Jones,home)), the request

to create the directory (users,MultLab) must have come from

(users,SysAdmin,Jones,home). The system's rule is that the

domain which creates a computing object is given access to that

object. Therefore the acp of the directory (users,MultLab) is

initialized to contain a single term giving "read" and "append"

access to (users,SysAdmin,Jones,home). But who should have

the authority to modify this newly created acp? To provide

an answer to this question, we introduce a new concept: the

authority of a domain. The authority of a domain is specified

by an office name, and it is this office name which is placed

in newly created acps to control their subsequent modification.

The authority of a domain is recorded in the acp of the domain,

and for our example we will assume that the authority of

(users,SysAdmin,Jones,home) is (SysAdmin,(administrator_l1)).

(When a domain is created, its authority is initialized to be

identical to the authority of the creating domain.)

Figure 8-4 shows the naming hierarchy just after the dir-

ectory (users,MultLab) is created. The system administrator

Jones would continue by creating the directory (users,MultLab,
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Clark) and the domain (users,MultLab,Clark,home). We will

assume that the user Clark has been registered with the utili-

ty's accounting subsystem, so that he can log in and command

a process bound to the domain (users,MultLab,Clark,home), and

we will assume that Saltzer has created the office (MAC, (CSR,

stdnt)) and initialized its agent list to name the domain

(users,MultLab,Clark,home).

The next action of interest occurs as the system admini-

strator Jones passes control of the directory (users,MultLab)

over to the office (MAC,(CSR,stdnt)). Jones accomplishes this

by commanding her process to invoke an operating system pri-

mitive which will change the office name recorded in the acp.

Like any other request to modify an acp, the request will be

honored if the request is made from a domain named by the

agent list of the office named by the office name contained in

the acp whose modification is requested. In this case, the

request is made by Jones' process calling from Jones' home

domain, and so it is honored. Figure 8-5 shows the naming

hierarchy just after the acp of (users,MultLab) is modified.

The next action of interest occurs as Clark, whose home

domain is the agent of (MAC, (CSR,stdnt)), causes the deletion

of the term "(users,SysAdmin,Jones,home): ra", from the acp of

(users,MultLab). Once this is done, the directory (users,

MultLab) cannot be accessed in any way by the system administ-

rator Jones, or any other system administrator. Then Clark

would command his process to add, to the acp of (users,MultLab
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), the term "(users,MultLab,Clark,home): ra". Thus Clark es-

tablishes his control over the "MultLab directory".

Now the process just described for the directory (users,

MultLab) is repeated for the directory (users,MultLab,Clark)

and Clark's home domain, (users,MultLab,Clark,home). After

Clark has control of the acp of (users,MultLab,Clark,home),

he would change the authority of (users,MultLab,Clark,home) to

(MAC, (CSR,stdnt)) .

Finally, Clark would request an independent audit of the

acps of (users,MultLab), (users,MultLab,Clark), and (users,

MultLab,Clark,home); and an audit of the collection of seg-

ments, especially program segments, for which the domain

(users,MultLab,Clark,home) contained capabilities. If Clark

were to request this information from his own process bound to

his home domain (users,MultLab,Clark,home), he could be fooled

by a naming hierarchy simulator program placed in his home

domain by the system administrator Jones (who created the home

domain). Such a simulator program could pretend, for example,

that (users,MultLab) was under the control of (MAC,(CSR,stdnt))

when it was really still under the control of (SysAdmin,

(administrator 1)). Therefore an independent audit is necess-

ary.

8.3. Higher Authority and Protocols

It is a common occurrence in organizations for officials

to issue directions to, or make requests of, their subordin-

ates. It might happen that a subordinate is requested to ex-
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ercise some right of control over a computing object, e.g.

to change an access control packet. For example, figure 8-6

shows an object whose acp can be modified by commands issued

by person B, because B commands a process bound to a domain

named by the agent list of the office (Auth,(sub)), which is

the office named by the acp. Similarly, person A commands a

process bound to a domain named by the agent list of the office

(Auth,()). We say that A is an agent of (Auth,()). B is an

agent of (Auth,(sub)). Now suppose that A is B's superior in

the organization represented by Auth. A could ask B to change

the acp of the object, and B could object and refuse to comply

until the side effects of the change, which B ought to be ex-

pert about because he is an agent of (Auth,(sub)), are under-

stood. If A had the power to change the acp himself, he might

go ahead and do it with insufficient thought to the side eff-

ects. Yet in some organizations, superiors will require this

power. The problem for a computer utility is to implement an

authority hierarchy mechanism which will serve organizations

having disparate traditional behavior patterns in their super-

ior-subordinate relationships.

A protocol is a rule which the computer follows in re-

sponding to the request of a higher authority. We are assum-

ing that the computer will infer the authority relationships

between people by noting who is an agent of what office. For

example, the computer would infer that A is B's superior be-

cause A is an agent of an office which is superior to the off-
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ice that B is an agent of. Each organization will choose its

own protocols. Each protocol will apply to requests of some

particular kind which originate from agents of some particular

set of offices. In other words, each protocol will have a

definite scope, which is the set of requests to which the pro-

tocol applies. The people who are agents of offices of auth-

ority hierarchies ought to know and understand the protocols

associated with their authority hierarchies, so that they will

know what to expect in dealing with other members of their or-

ganizations. In a real sense, the protocols associated with

an authority hierarchy are a statement of "the rules of the

game" of the organization represented by the authority hier-

archy, at least as regards exercising rights of control over

computing objects. When protocols are changed, affected people

will want to be notified or consulted in advance, because pro-

tocols have the power to protect agents of offices in import-

ant ways.

Protocols are composed of the following five types of

activities:

1. Notification. Agents of offices, or particular per-

sons specified by the protocol, are notified when the protocol

is invoked. In the example of figure 8-6, a protocol is in-

voked when A commands his process to modify the acp of the ob-

ject, because the operating system discovers that A's domain

is not named by the agent list of the office specified in the

acp of the object, but it is named by the agent list of an
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office superior to that office. The protocol might notify all

agents of the office (Auth, (sub)).

2. Delay. The protocol can specify a time delay of a

specific length, or until messages are received from persons

notified, before any action (activity of type 5) will take

place. In our example, B's opportunity to explain to A the

side effects of A's requested modification can be built into

the protocol, as a delay. Also, a delay might be used to re-

solve conflicts of privacy.

3. Polling. The protocol can poll a group of people and

use their votes to decide whether to perform the action whose

request caused the invocation of the protocol. In our example,

all the agents of (Auth,()) and (Auth, (sub)) might vote on A's

requested change to the acp of the object.

4. Auditing. A journal of invocations of the protocol

is kept or published. This might be used to inform members

of the organization how other members voted on polls conducted

by the protocol.

5. Action. The action whose request caused the invoca-

tion of the protocol is performed. This might be immediately

preceeded by additional notifications.

Protocols will be specified (in a formal language) by the

organizations for which they will work. Protocols will be

implemented by programs (compiled from the protocol specifica-

tions) encapsulated in domains which are under the control of

an independent group of administrators, the Protocol Adminis-



tration. The Protocol Administration will have its own auth-

ority hierarchy, and the offices of that authority hierarchy

will have control of that part of the naming hierarchy where

domains encapsulating protocols are catalogued. When the Pro-

tocol Administration finds that its work requires the use of a

protocol, such protocols will be under the control of the auth-

ority system's locksmiths.

An organization changing a protocol will communicate to

the Protocol Administration the new protocol together with its

intended scope and a list of persons to be notified when the

protocol is installed. In addition to the notifications re-

quested by the organization, the Protocol Administration will

send notifications of the installation of the new protocol to

all the members of the organization who were receiving notifi-

cations from any protocol(s) replaced by the new protocol. In

this way, members of organizations are kept informed when their

organization's "rules of the game" are changing.

The Protocol Administration will keep records of protocols

installed and notifications sent, and these records will be

subject to subpoena. This is intended to deter members of or-

ganizations authorized to transmit new protocols to the Proto-

col Administration from using this power in any improper way.

The following types of requests will be honored by the

computer utility according to a protocol:

1. Requests by a higher authority (agent of a superior

office) to change an access control packet which is controlled
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by an inferior office.

2. Requests by a higher authority to change the agent

list of an inferior office.

3. Requests by a higher authority to activate surveill-

ance over actions of agents of inferior offices.

4. Requests by any agent of any office to change the

agent list of that office.

8.4. Locksmithing

The locksmiths in our design of a computer utility auth-

orization system have the following two functions:

1. To control the agent lists of all the most-superior

offices.

2. To install and maintain protocols for the Protocol

Administration's authority hierarchy.

The reason for placing control of agent lists of most-superior

offices in the locksmithing function is that some catastrophe

might kill all the agents of the most-superior office of an

organization's authority hierarchy, and the computer utility

must provide a way for that organization to install new most-

superior agents. The reason for placing control of the Proto-

col Administration's protocols in the locksmithing function is

to avoid the recursion problem which would be encountered if

the Protocol Administration controlled the protocols of its own

authority hierarchy. The locksmiths would send notifications

concerning changes to such protocols, just as described in

section 8.3 for other protocols. The locksmiths would keep

records of all their actions, and such records would be subject
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to subpoena.

The locksmithing functions are implemented by primitives

of the operating system, and the use of these primitives is

authorized by a special office, called the locksmiths' office,

which has an agent list that names the locksmiths' home dom-

ains. While this mechanism succeeds in telling the computer

utility who the locksmiths are, it introduces the problem of

authorizing changes to the agent list of the locksmiths' off-

ice. An infinite tower of superior offices could be introduced

to solve the problem of authorizing locksmiths, but this is

akin to mathematical fantasy and is not practical. A finite

tower of superior offices leaves untouched and still trouble-

some the problem of responding to a catastrophe that kills all

the agents of the most-superior office. Roughly speaking, the

problem of authorizing the locksmiths is a recursion with no

fixpoint, like the conundrum "Who watches the watchers?".

The simplest way to authorize the locksmiths while avoid-

ing the recursion problem introduced above is to record the

agent list of the locksmiths' office on a loop of paper tape,

or a mini-disk, mounted on a peripheral device of the computer

utility (*), conceivably associated with a security officer's

console. In this way the secure authorizing of locksmiths de-

pends on physical locks and keys on the device where the agent

(*) Every request by a process to use a locksmithing primitive
will cause a scan of the agent list. The agent list could be
read into the computer utility every time a locksmith uses a
locksmithing primitive, or it could be read in only occasion-
ally.
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list is mounted, and on the secure operation of input from

that device. Although the secure operation of input/output

functions of a computer utility is outside the scope of this

thesis, we do not doubt that hardware and software mechanisms

can be devised to protect input and output operations. Thus

the problem of authorizing locksmiths is reduced to the pro-

blem of controlling the key that opens the physical device

where the agent list is mounted. This key might be locked in

a safe deposit box in a bank, so that an independent authority

(the bank) will have some control over, and keep records of,

the use of this key.

8.5. Sharing Computing Objects

Whenever two officials, neither of whom is a subordinate

of the other, have a substantial interest or expertise in con-

trolling a computing object, they might agree to share control

of that object. We are restricting our attention to the case

where neither official is the other's subordinate because when

the pair is a superior-subordinate pair, the superior can tell

the subordinate what to do, or the superior's rights of control

are established by a protocol as described in section 8.3, or

both. The computer utility must have a mechanism to allow con-

trol of computing objects to be shared by officials or offices

which are not directly or transitively related by the superior-

subordinate relationship.

One way of modifying the authority hierarchy mechanism to

accomodate the new relationship between officials just de-
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scribed is to allow acps to contain two, or perhaps more,

office names. This achieves an encoding of the information

that the named offices share the acp in question, but no in-

formation is provided about which rights of control are to be

exercised by which office. The mechanism must include means

for offices to share rights of control over acps, and for that

purpose we introduce a new kind of node, the protocol block,

which may be used in constructing authority hierarchies.

Recall that each office contains a list of entries (possibly

an empty list), such that each entry points to an immediately

inferior office. To include protocol blocks in authority hier-

archies, we expand this definition and allow an entry of an

office to point to either another office, or to a protocol

block. As before, each entry has an associated name, and each

office of every authority hierarchy except the most-superior

office is pointed to by exactly one entry. Protocol blocks,

however, may be pointed to by more than one entry. Figure 8-7

shows a protocol block which is pointed to by an entry named

"sharel" in the office (Auth,(sub,officel)) and an entry named

"share2" in the office (Auth,(office2)). We say that the off-

ices (sub,officel) and (office2) share the protocol block

shown in figure 8-7. The purpose of the protocol block is to

contain bindings to protocols which will determine how the

computer utility will respond to requests that relate to shar-

ed computing objects, or to the protocol block itself. Figure

8-7 shows two protocols bound to the protocol block (sub,
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officel,sharel).

Protocol blocks establish the sharing of control over

acps that name the protocol block instead of some office.

Figure 8-7 shows a computing object whose acp contains one of

the names of the protocol block in the figure; thus the pro-

tocols associated with the protocol block effectively deter-

mine how the two offices (Auth,(sub,officel)) and (Auth,(off-

ice2)) share control of the computing object.

Each protocol block must have at least two associated pro-

tocols. The first of these must contain the algorithm for de-

ciding whether to honor requests to change acps which point to

the protocol block, when such requests come from agents of the

offices that share the protocol block. For example, the pro-

tocol which decides whether to honor a request to change the

acp shown in figure 8-7 might poll all the agents of the off-

ices that share the protocol block, and use the agents' votes

as the basis for its decision. But when a higher authority

requests a change to an acp controlled by a protocol block, a

protocol associated with the authority hierarchy containing

the office of the higher authority will be used to decide

whether to honor the request.

The second protocol which must be associated with each

protocol block must contain the algorithm for deciding whether

to honor requests to revoke the participation of one of the

offices that share the protocol block. If one office can re-

voke the participation of the other offices that share the
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protocol block, that one office has more power than the other

offices. If no office can revoke the participation of any

other sharing office, a state of trust must exist between the

sharing offices. What each trusts is the wisdom of the agents

of the other sharing offices, and the propriety of the first

protocol (defined in the previous paragraph).

8.6. Programmed Decision Making

It is very likely that the basic access control mechan-

isms described in this thesis will be unable to meet special-

ized requirements of users. This is because no provision has

been made to allow access control decisions to depend on com-

plex, user-specified considerations.

This limitation of the users' freedom to specify access

can be eliminated by introducing a variant form of the access

control packet, called a call packet. The call packet con-

tains a domain entry capability which effectively points to an

entry point of a domain which takes the place of detailed

access information recorded in the access control packet. The

call packet also contains an argument list which describes the

arguments expected by the entry point specified by the domain

entry capability. Whenever the operating system needs to make

an access control decision based on the contents of an access

control packet, and the acp is a call packet, the operating

system will construct the specified argument list and call the

specified domain with the specified arguments; and the called

domain will return its decision to the operating system; and
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the operating system will enforce that decision.

When the user can write a program to make access deci-

sions, whether it is a program that is called because it is

named in a call packet or a caretaker program for a data base

encapsulated in a domain, the user can modularize the program,

if it is large and complex, along the lines defined by the

user's organizational delegation of authority. For example,

figure 8-8 shows a Venn diagram of a set of requests A which P

is responsible for granting or refusing, and a subset B of A

which Q is responsible for granting or refusing. We are as-

suming that P has delegated to Q the authority and responsibil-

ity for deciding requests in B. If P and Q carry out this de-

cision-making function by writing programs to make the deci-

sions, those programs would be joined together as shown in

figure 8-9. P's program would examine the incoming requests,

and for requests in B, P's program calls Q's program. B must

be a recursive set, and P's authority for defining B is exer-

cised by writing the program fragment that tests whether re-

quests are in B.

It is very likely that P will require Q's program to be

encapsulated in a domain other than the one in which P's pro-

gram is encapsulated, to prevent Q's program from usurping P's

authority. Figure 8-10 shows how an authority hierarchy which

expresses the fact that Q is P's subordinate is used to protect

the authority of P's program. The authority hierarchy, at the

upper left of figure 8-10, is named AP; and we assume that
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the person P is an agent of the office (AP,()) and the person

Q is an agent of the office (AP, (AQ)). The set of requests A

is generated by requests for access to the computing object at

the upper right of figure 8-10, which has a call packet that

invokes P's program progP in the domain domP, both of which

are under control of the office (AP, ()). When progP gets a re-

quest in B, it calls progQ in the domain domQ, both of which

are under the control of the office (AP,(AQ)). P could have

even more control over progQ if domQ were under the control of

(AP, (0)).

8'.'6.1. Sharing Delegated, Authority

If a superior official P with two subordinates Q and R

has the authority and responsibility for granting or refusing

a set of requests A, P might delegate authority over overlap-

ping subsets of A to the subordinates Q and R. Figure 8-11,

part 1, top right, shows a Venn diagram of two subsets B and C

of A such that B C 0. We are assuming that A has delegated

authority over B to Q, and authority over C to R. When a

request in B C, the shaded part of the Venn diagram, must be

acted on, Q and R might consult together and reach a joint de-

cision. The remainder of figure 8-11, and figure 8-12, toge-

ther show one way for P, Q, and R to automate a process by

which they might reach a joint decision.

We are assuming that each of P, Q, and R will write de-

cision-making programs which will be joined together as shown

in figure 8-11, part 1, center. P's program progP
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in domain domP is called by processes which need responses to

requests in A. The program progP is shown in figure 8-12.

progP will call Q's program progQ in domain domQ if the request

it is working on is in B, and progP will call R's program

progR in domR if the request is in C. For simplicity, we

assume that the needed decision is a one-bit, yes-or-no ans-

wer. The line "if is b & is c then return(ok b & ok c);" in

P's program gives both Q and R effective authority to veto

the request. If the request is in A - (BU C), progP uses its

internal procedure decide here to make the decision.

P's authority over Q and R is represented in the computer

utility by the authority hierarchy shown in figure 8-11, part

1, top left. We are assuming that P is an agent of (AP,()),

Q is an agent of (AP, (AQ)), and R is an agent of (AP, (AR)).

P's authority over the set of requests A is exercised by P's

program progP, and P's delegation of authority to Q and R is

expressed by the calls in progP to progQ and progR. These lat-

ter two programs are prevented from usurping the authority of

progP because they are encapsulated in isolated domains domQ

and domR, respectively, and because domains domQ and domR are

under the control of P. Figure 8-11, part 1, bottom, shows

that these two domains encapsulating the subordinate programs,

in addition to the domain domP and the program progP, are under

the control of the office (AP,()) of which P is an agent.

When a request to be decided is in B C, a joint decision

must be reached. progP will call both progQ and progR, and
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procedure(request) returns(bit(l));

declare (is b,is c,okb,ok c) bit(l) initial("0"b);

declare (progQ,progR) external entry returns(bit(l));

is b = belongs to B();

is c = belongsto C();

if is b then ok b = progQ(request,is c);

if is c then ok c = progR(request,is b);

if is b & is c then return(ok b

if isb then return(okb);

if isc then return(ok c);

return(decide here());

& ok c);

belongs to B: procedure returns(bit(1));

end belongs_toB;

belongsto C: procedure returns(bit(l));

end belongs_to_C;

decide here: procedure returns(bit(l));

end decide here;

end progP;

Figure 8-12. P's program.
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the latter two programs will have the information that the re-

quest is in B AC because of the arguments is_c and is_b passed

to progQ and progR, respectively, by progP. We are assuming,

in this simple example, that progQ is aware of special con-

siderations which apply to requests in R's bailiwick by means

of information in the segment R_to_Q. Thus, when progQ is

called with parameter isc equal to 1, progQ will use informa-

tion in R to Q in making its decision. Similarly, when progR

is called with parameter isb equal to 1, progR will use in-

formation in the segment Q_ to R in making its decision. Fig-

ure 8-11, part 2 shows how the data segments R_to_Q and Q_to_

R are kept under the control of R and Q, respectively. The

acp of R to Q names the office (AP,(AR)), of which R is an

agent; and the acp of Q_to_R names the office (AP,(AQ)), of

which Q is an agent.

A more complex model of consultation between the two sub-

ordinates can be programmed if progP will create a second pro-

cess, and make one process call progQ while the other process

calls progR. These two processes, controlled by progQ and

progR, could send each other messages about the request to be

decided; and thus the decision-making computation could be

interactive and flexible, up to the limit of the programmer's

art.



8.6.2. Graft

The purpose of this section is to point out that graft

can be programmed in the context of the interactive message-

based decision-making computation suggested above. (*) The

programs progQ and progR might sell favorable decisions for

promises of payments to be made to Q and R, respectively,

which promises might be received through messages.

Graft can be prevented by insuring that progQ and progR

communicate only with each other, or by letting concerned

persons audit progQ and progR.

(*) This distressing thought due to Stephen N. Zilles.
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Chapter 9

Conclusions

9.1. On the Nature of Protection Systems

Protection systems are composed of walls and watchers.

For example, banks have vaults with extremely tough walls,

and guards at every door, and also automated watchers in the

form of electronic or photographic cameras which can be

activated in the event of a robbery. In the computer protec-

tion system presented in this thesis, the walls are provided

by domains, as described in section 3.5; and the privacy

restriction mechanism is a watcher. The privacy restriction

mechanism effectively watches the copying and combining of

information as directed by programs in the computer, by

propagating restrictions among restriction sets. The propa-

gated restrictions are then used to define new walls which

have the effect of striking down output to users or input to

domains. Having a watcher in our protection system in addi-

tion to walls is the crucial ingredient which allows the

system to prevent accidental unauthorized releases of infor-

mation.

Protection systems depend on non-forgeable objects. In

the computer described in this thesis, some of the non-forge-

able objects are the process state components which bind

processes to domains, the names of domains, the agent lists

of offices, and privacy restrictions. The operations in the



computer which modify any of these non-forgeable objects all

require some form of authorization. For example, the domain

entry capability effectively authorizes modifications to the

binding of a process to a domain.

An interesting taxonomy of protection systems, due to

Wilkes [Wi68], distinguishes list oriented systems from

ticket oriented systems, but both types require non-forgeable

objects. In a list system, control of access to the protected

object is specified by a list of authorized accessors. When-

ever an access is attempted, the list is searched for the

name of the would-be accessor; thus protection depends on

non-forgeability of such names. In our design, an example

of a list system may be observed in the access control packets

of segments, which contain lists of domains which are allowed

to access the segments.

In a ticket system, access to the protected object is

granted to any accessor who can present the proper ticket;

thus protection depends on non-forgeability of the tickets.

In our design, segment capabilities are tickets presented by

domains to the processor hardware to validate requests, made

by processes bound to the domains, to read, write, or execute

(as instructions) segments.

9.2. Survey of the Sources of Complexity

A computer that keeps secrets is necessarily part of a

larger information system, embedded in society, that keeps

secrets. The design of such a computer is an interdisciplinary
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task; that is, such a computer is a system which must operate

correctly in terms of criteria established in several appli-

cable bodies of knowledge, particularly social and technical

knowledge. It is appropriate to think of a body of knowledge

as a mountain range, with students climbing all over it, and

hopefully up it, in the sense of acquiring knowledge of deeper

results. Research makes the mountains grow, as results pile

up, and individual specialized disciplines seem to grow their

own mountains. In the context of this metaphor, interdis-

ciplinary work produces a bridge between mountains. Founda-

tions for interdisciplinary work are laid in the mountains of

the relevant disciplines, and we have found that complexities

introduced in such foundations are likely to become manifest

in unexpected ways.

We have observed three sources of complexity in our

design: (1) the tension between future good and future evil

that might transpire as a result of use of a computer utility,

(2) the social conventions by which American capitalist

society is organized, and (3) the logical limitations intro-

duced by the theory of recursive functions.

The computer is a tool that people will use to further

their individual and group purposes, both good and evil. The

goods and evils created by the technology described in this

thesis are consequences of the tradeoffs that must be built

into a computer utility that serves the conflicting interests

of individuals and groups that want privacy, a society that
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requires some disclosures, and computer users who want to

share information. Probably no technologist will ever invent

any technology that has only good effects. Technologists

with moral sensibilities will direct their energies into

projects whose social outcomes they will value, but decisions

about how to apply available technology will be influenced

by a wide range of considerations and interests that reflect

values apart from those that motivate the seminal tech-

nologists. Those values which are most widely accepted will

be codified as laws to require and outlaw good and evil

technology, respectively.

The social conventions of our society's capitalist

economic life have contributed considerably to the complexity

of our design, most notably to the design of the Proprietary

Services Administration, described in chapter 5, and the

design of access control packets for domains, described in

chapters 4 and 5. Other social conventions have contributed

still other complexities; e.g., man's willingness to trust

others finds expression in the system of warrants described

in section 4.7, which allows users of segments to be assured

by others that particular program segments are not Trojan

Horses.

Finally, the cold, hard realities of recursive function

theory impose limitations on our design. In chapter 6, we

noted that when two restrictions strike at the same time and



both set off alarms, the computation whose activity is thus

interrupted must be checkpointed and examined later by an

"appropriate authority" to determine whether the purpose of

each striking restriction is to protect privacy, or to leak

information. We conjecture that this problem is unsolvable,

in the recursive function theoretic sense. That is, we con-

jecture it is impossible to write a program to make this

decision. If the problem were solvable, then the notifica-

tion to the restriction owner whose striking restriction is

trying to leak information could be suppressed, and the

computer system would be more secure.

Our conjecture is based on the idea that programs can

have hidden purposes. In a formal logical system for proving

theorems about programs, sentences in a formal language are

associated with paths through which control flows between

statements of the program. The validity of the sentences

associated with the program can be established by proving

that if the sentences associated with the entry points are

true when control reaches the entry points, then whenever con-

trol reaches any other path (the entry point is a special

path), the sentence associated with that path will be true.

In this context, the purpose of a program is to make true

the sentence associated with the path through which control

leaves the program. Now suppose this computer system is

programmed with a programming system which requires programmers

33Z



to supply these sentences which, in effect, tell what their

program does; and suppose that the programming system checks

for itself that the sentences are valid, as defined above. A

programmer might write a program whose purpose is to leak

information and supply a valid set of sentences which hide

this purpose. For example, if the programmer wrote the

sentence "true" for every path in his program, then the

sentences say nothing about what the program does, and yet

whenever control is in any path, the sentence associated

with the path is true. In this example, all the purposes of

the program are hidden.

There is only one straightforward way to find the hidden

purposes of a program, and that is to enumerate all the

sentences which are provably true when control leaves the

program. This will be a recursively enumerable set of

sentences, but probably not a recursive set (this is the

heart of our conjecture), analogous to the fact that the set

of sentences provable from most interesting sets of axioms

will be a recursively enumerable, not recursive,set. So, if

we were trying to find an effective procedure to deal with

the situation of two restrictions striking at the same time

and sounding two alarms, we would arrive at the problem of

determining the hidden purposes of programs; and when the

set of hidden purposes is not recursive, this straightforward

way peters out.
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We are not sure whether to despair or be gleeful in the

face of this seemingly unsolvable problem. But since it

appears that the computer cannot muddle through the situation

of two restrictions striking simultaneously sounding two

alarms, the mechanism in chapter 6 checkpoints the computa-

tion and calls in an "appropriate authority," a human, who

must proceed to solve the particular case at hand of the

problem that is probably unsolvable in general. We expect

the human to solve the particular case because the human will

bring additional specialized information to bear on the

problem, and because human problem-solving is aided by flashes

of insight.

Our design of a computer that keeps secrets has included

a relatively large number of different, intricate mechanisms.

The complexities of our design grew out of the complexities

of the design's foundations. If there were an abstraction

that encompassed all the sources of complexity, perhaps in

the form of a theory that was simple and internally coherent

and that explained both society and computers, then the

mechanisms of our design would be simple when explained in

terms of that theory. But we have found no such theory.

Computers are defined and limited by natural and logical laws,

while protection mechanisms are developed and maintained to

protect the interests of concerned communities or individuals.

A simple theory that explained computer protection mechanisms
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would have to encompass concepts ranging from the sensitivi-

ties and selfishness of humans to the non-recursiveness of

certain sets. Probably no such theory exists, or can exist.

9.3. on Robotic Watchers

"It all depends on whose ox is gored."

-- (folk wisdom)

The ultimate important questions which must be asked

about protection systems are, "Who benefits?", and "Is it

fair?" Such questions are relatively easy to ask and answer

with respect to the walls of protection systems, because the

walls are visible to everyone and any thinking person can

observe the walls, ask the questions, and decide as an

individual whether the walls are fair. This is slightly

more true with respect to physical walls such as those of

banks and international borders, which are visible to the

eye, than with respect to walls erected inside computer

systems, because some technical expertise is required to

understand the walling-out function provided by domains.

But the utlimate questions, "Who benefits?" and "Is it

fair?", are much harder to answer with respect to watchers.

The watchers we have in mind are the police forces, especially

the free-wheeling type of investigators like James Bond(*) or

those of the C.I.A., who carry on such "important" work as

(*) James Bond is a fictional superhero created by Ian Fleming.



spying, overthrowing governments, and other "dirty tricks."

The basic problem with the free-wheeling investigators

is that they operate in secret, and therefore citizens have

no way of deciding for themselves if the actions of these

watchers are fair unless the secrecy is removed. But the

investigators have argued, quite successfully, that secrecy

is essential to their functioning. One way we see to solve

this problem is to replace the free-wheeling investigators

with a fleet of robots controlled by computers, and to open

to public scrutiny the programs that control those robots,

which we call robotic watchers. Note that we are not pro-

posing to make public the investigative files compiled by

robotic watchers; such files about specific cases being

worked on would remain secret. But the procedures by which

the robotic watchers operated would be available for public

examination, and individuals could answer the questions "Who

benefits?" and "Is it fair?" for themselves by reading the

procedures. The processes of public scrutiny, criticism and

debate would shape the robotic watchers, and make them more

fair. Eventually, robotic watchers might become more highly

trusted than politicians.

An example of a simple robotic watcher should help to

clarify this conception: imagine an electronic device with

radar "eyes" mounted on a police car, observing all the cars

on the road (including those in the opposite lanes) for the



purpose of estimating the drunkenness of the drivers. Such a

machine, if it worked, would help save many innocent lives.

It is known that drunk drivers make many mistakes, so it seems

reasonable to expect that such behavior could be detected by

a robot.

However, two factors make the emergence of sophisticated

robotic watchers unlikely. First, there is the risk of in-

stant totalitarianism at some time in the future, which might

occur if the power of the robotic watchers were to be seized

in a coup. Second is the high probability of encountering

unsolvable problems (in the recursive function theoretic

sense) which tend to make a proposed robotic watcher impossible

to implement adequately. These factors will probably limit

the applications to which robotic watchers will be applied

to simple watching operations that assist human investigators.
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Appendix 1

Process State and State Transition Rule

The purpose of this appendix is to define the process

state and state transition rule of our process which jumps

between domains and has a sectioned stack. This definition

of a process is different from those of Lampson [La69] and

Schroeder [Sc72b] because domains are not a part of our

process; rather the domains exist in the environment of all

the processes.

The process state, denoted 9, is a tuple whose com-

ponents are listed in figure Al-l. The first three components

of 9 effectively bind the process to a domain; these com-
ponents are called dom id, vb, and dom pt addr. The com-

ponent vb is a validity bit which signifies, when it is 1,

that the value of dom_ptaddr is the absolute address of the

page table of the C-list of the domain whose unique identifier

is domid. The component domid is logically adequate by

itself to bind the process to the identified domain. But for

reasons of efficiency, the component dom pt addr is included

also. Our design aims to minimize the cost of letting

processes jump between domains, to the extent that it can be

minimized when the domains are not a part of the process

state. The fourth component, pc, is the program counter; and

it has the form (seg#,word#), as in the Multics process.

The registers of the process include accumulators, base

registers, index registers, and perhaps also floating point
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component

to identify the domain to which the

process is bound

validity bit for dom pt_addr

dom pt addr

pc

to locate the C-list of the domain

identified by dom id

program counter of process

registers

stack pt addr

Min}

Max

general computation

to locate the sectioned stack of the

process

to define the accessible portion of the

sectioned stack

proc id to identify the process

fault# to identify the causes of faults

Figure Al-l. The components of the process state .

dom id

vb

purpose



registers. The component stack_pt_addr is the absolute

address of the page table of the process' sectioned stack.

The components Min and Max define the accessible portion of

the sectioned stack. The component proc_id is a unique

identifier of the process. It is not modified by the state

transition rule at all. Finally, the component fault# is

used to record the reasons why when the process takes a fault.

Our state transition rule does not ever show this component

being modified explicitly, but in fact it is set by the

activity of every box labelled "FAULT". These boxes all

transfer control of the processor to the box labelled "all

FAULTs" at the top of part 9 of figure A-2, whereupon the

fault# is examined.

Figure A1-2 is the state transition rule of our process.

This state transition rule completely defines all protection-

related activity of the processor dwhich evolves our process

(except for the privacy restriction mechanism and processor

defined in chapters 6 and 7).

Figure A1-2, part 1 shows the processor logic for valid-

ating the process' binding to a domain, followed by instruc-

tion fetch logic. If the validity bit vb is 0, the processor

searches a system data base called the Active Domain Table

(ADT) trying to find dom_pt_addr(dom_id). This is the

absolute address of the page table of the C-list of the domain

identified by dom id. If the identified domain is active, the

search is successful and the processor can proceed. Otherwise

the processor generates a fault, jumping thereby into the
Tf If
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operating system program which will activate the domain. We

describe the search of ADT in detail in Appendix 2.

The instruction fetch logic begins by examining a cap-

ability from the array C-list(dom_pt_addr). By "C-list

(dom_pt_addr)", we mean the C-list stored in the segment whose

page table address is dom_ptaddr. For the purposes of notat-

ing the state transition rule, we define a C-list to be a set

of ordered pairs {(cap#,capability)} which is a function in

the set-theoretic sense. A capability is a 4-tuple or a

triple, depending on its type. Segment capabilities are

4-tuples, having the form (type, mode, length, addr), subject

to the constraint that the first component, i.e., type(cap-

ability), must have the value 0. The other components of a

segment capability are referred to as mode(capability),

length(capability), and addr(capability). The component

mode is a 3-bit string whose bits are referred to as e(mode),

r(mode), and w(mode). The component length tells the length

of the segment. The component addr is the absolute address

of the base of the page table of the segment. We refer to

the segment as Seg(addr(capability)), and for the purposes

of notating the state transition rule we define Seg(addr

(capability)) to be a set of pairs {(word#,bitstring)}

which is a function in the set-theoretic sense.

The instruction fetch logic checks that the capability

selected by seg#(pc) is a segment capability, that its e(mode)

bit is on, and that the segment is long enough to contain a

2 7



word#(pc)-th word. The fetch logic then reads that word

from the segment, indexes the program counter, and analyses

the fetched instruction. The state transition rule imple-

ments six different classes of instructions. These are

register-to-register functional operation instructions

(e.g., "ADD"), memory reference instructions (e.g., "LOAD"

and "STORE), a conditional transfer instruction (which can

be made to transfer unconditionally), stack growing and

shrinking instructions, the call-domain instruction, and the

return-domain instruction. These last two are the only

members of singular instruction classes.

Figure A1-2, part 2 shows the state transition rule for

register-to-register operations. Our model does not have

much detail in this area because the realm in which these

operations operate, to wit the registers of the process state,

is a uniformly protected collection of information. There

can be little argument against the assertion that a process

has the right to read and write its own registers, and that

is all these operations require.

Figure A1-2, parts 3 and 4 show the state transition

rule for references to memory. All such references begin

with the formation of an operand address, a two-part address

(t,x). If t is equal to the constant STACK#, the address

refers to the sectioned stack. (If t is to be represented by

a 15-bit field, we would choose 215-1 as the value of STACK#.)
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The tests in fgure A1-2, part 3 which determine what reading

and writing operations are allowed; are similar to the tests

shown in figure 3-4, part 2, our model of Multics. Figure

A1-2, part 4 shows that a reference to the sectioned stack

is allowed only if Min < x < Max. Thus, the sectioned stack

has no accessible words when Min = Max. The state transition

rule will keep Min less than or equal to Max, as will be

seen.

Figure A1-2, part 5 shows the state transition rule for

transfers of control. We are assuming that the conditional

transfer instruction is used for unconditional transfers, as

in the IBM System/360 [IBM64]. The transfer target address

is validated before the transfer is effected, so that when

the target address is invalid the programmer trying to fix

the bug will know exactly which instruction attempted the

transfer. This feature is adopted from Multics [Sc72a].

Figure A1-2, part 6 shows the state transition rule for

growing and shrinking the accessible portion of the sectioned

stack. A process may grow its accessible portion at any

time and by any (positive) amount; and it may shrink its

accessible portion all the way down to zero length. Note

that words of the stack are zeroed as Max is reduced.

Figure A-2, part 7 shows the state transition rule for

the call-domain instruction. The instruction specifies an

argument window size and a domain entry capability. Domain

5S3
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entry capabilities are triples of the form (type,dom id,

startaddr), subject to the constraint that the first com-

ponent, i.e., type(capability), must have the value 1. The

other components of a domain entry capability are referred

to as dom id(capability) and start addr(capability). The

component dom id is the unique identifier of the called

domain. The component start addr is a two-part address of

the form (seg#,word#) which is interpreted to be an address

in the address space of the called domain.

The call-domain instruction uses four words of the sec-

tioned stack to save the values of dom id, pc, Min, and Max

from the process state. These are used to effect a subse-

quent return-domain. By convention, the calling program

allocates four words just before the argument window for this

purpose. (In a real implementation, Min and Max might fit

into one word; but that isn't too important.)

Figure A1-2, part 8 shows the state transition rule for

the return-domain instruction. The saved values of domid,

pc, Min, and Max are recovered from the stack; stack words

are zeroed if Max is to be reduced; and the process state

components dom id, pc, Min, and Max are replaced.

The reader should note that in figure A1-2, parts 7 and

8, whenever dom id is modified the validity bit vb is set to

0. Thus, when the next domain binding test is performed

(figure A1-2, part 1), the ADT will be searched to find the

absolute address of the base of the page table of the C-list

of the new domain. 3 g
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Figure A1-2, part 9 shows the state transition rule

which governs the processor's responses to FAULTs. The

process state, including the reason for the fault, is stored

in the sectioned stack, and control is transferred to an

appropriate program. The state transition rule recognizes

two classes of faults: system faults (e.g., DOMAIN FAULT)

and ordinary faults (e.g., fixedoverflow). In cases of

ordinary faults, control of the processor is transferred to

the constant address ADDR2 where, in every domain, there is

a program (called the fault interceptor module in Multics)

that knows how to respond to the fault -- typically by

searching for an enabled fault handler, i.e., a program in

the domain which has previously declared it should be noti-

fied of certain faults, should they occur.

In cases of system faults, the state transition rule

moves the process into a new domain. The new domain is

selected by the functions SYS_DOM(fault#) and SYS_DOM_PT

(fault#); and control is transferred to the location selected

by the function ADDRl(fault#). These functions are wired

into the processor, or their values are set in switches in

the processor.
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Appendix 2

ADT Reference and Management

The purpose of the Active Domain Table is to allow

processors to find quickly the base address of the page table

of the C-list of a given domain, identified by that domain's

unique identifier. A processor making such a reference to

the ADT will hash the unique identifer, obtaining thereby

an index into a table of pointers at the base of the ADT.

We are assuming that every processor knows where the ADT is

located in memory (this information could be set in switches

wired into the processor, or taken from a register set by

the operating system), and we are assuming that the ADT is

an unpaged segment. Each pointer from the table of pointers

leads to a list of blocks in the ADT, each of which contains

the unique identifier of an active domain, and its corres-

ponding dom pt addr. The processor searches this list look-

ing for a block containing the unique identifier it's in-

terested in, and either finds it and proceeds, or doesn't

and faults. Figure A2-1 shows one list of blocks in the ADT.

If the desired block is not found, the processor takes

a fault into an operating system domain responsible for main-

taining the ADT. Figure A2-2 shows this domain, and one

other operating system domain. The fact that fault events

are occurring is notated with the arrow on the left pointing

at the ADT domain. Names of domains are written inside the
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circular figures that represent the domains. The AST domain

maintains the Active 'Segment'Table (AST), which contains page

tables and file maps of active segments. We can associate a

valid page table address with a segment just when it is

active, so the strategy for handling the domain fault is to

activate the C-list segment of the selected domain, and load

a block into the ADT holding that domain's dom id and

dom_pt_addr.

From information recorded by the processor in the stack

at the time of the fault, the program in the ADT domain re-

trieves the dom id of the domain that wasn't active. The

ADT domain uses the Master Domain Table (MDT) to look up the

unique identifier of the C-list segment of the desired domain.

(The MDT is a large, paged segment.) The ADT domain calls

the AST domain to make active the C-list segment, specified

by its unique identifier.

The AST domain determines whether the specified segment

is active, and if not it is made active, and in any event the

AST domain returns the C-list segment's page table address.

The strategies by which the AST domain operates are described

in Appendix 3.

After the return from the AST domain, the ADT domain

searches for a free block in the ADT, frees one if necessary,

loads the new dom id and dompt addr into the block in the

ADT, threads the block onto the appropriate list, and re-

turns from the fault. After the return from the fault, the



process once again searches in the ADT, finds what it's look-

ing for, and thus can continue.

The task of freeing blocks in the ADT to make room for

new information is the price that must be paid to share the

ADT's services among all the processes in the system. A

global lock on the ADT is required to properly synchronize

ADT reference events and ADT management events, and successful

searches in the ADT must set a bit to inform the program in

the ADT domain that an ADT block has been used.

The global lock on the ADT can be explained most easily

in terms of a read-alter-rewrite memory cycle. This is a

service performed by a memory controller for a processor,

wherein a processor receiving the service is guaranteed that

no other processor is accessing the addressed word at the same

time. The service consists of reading the addressed word and

delivering it to the processor, waiting for the processor to

alter the word, and re-writing the altered word in the address

from which it was first read. We will assume that the first

word of the ADT segment is devoted to this global lock, and

we will call it ADT_lock. When ADT_lock is greater than zero,

a number of processors are searching in the ADT. When ADT_

lock equals zero, the ADT is not in use. When ADT lock = -1,

the ADT is being modified. Only one process is allowed to

modify the ADT at a time. Processors searching in the ADT

are given priority over a processor which wants to modify the

ADT.
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Figure A2-3 shows the state transition rule of our

processor which locks the ADT by adding 1 to ADTlock, pro-

vided ADT lock > 0. This figure is an expansion of part of

figure A1-2, part 1, where the search of the ADT was intro-

duced. Figure A2-4 shows the state transition rule for two

new instructions, Lock ADT and Unlock ADT, which a process

will issue when it needs to modify the ADT and is finished

modifying the ADT, respectively.

Figure A2-5 shows a PL/I-like declaration for a block

of the ADT. The component block.next is the offset in the

ADT of the next block to be searched if this block does not

contain the desired dom id. When block.next = 0, there is

no next block. A backward pointer block.back allows quick

removal of a block from a search list. When a searching

processor finds the dom id it needs in a block, the block.-

used bit is set to 1. The pointer block.c next defines a

cycle through all the blocks that can be removed from the

ADT -- a cycle which is followed by a process trying to free

a block, according to the algorithm shown in figure A2-6.

The algorithm considers in turn each of the blocks which

are threaded together by the component block.cnext. The

algorithm selects for removal blocks which have their "almost"

bit on and their "used" bit off. The algorithm turns a block's

"almost" bit on when the C-list associated with the block no

longer has any pages in the fast memory device. The ADT must

be big enough so that processes won't hang up for long
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declare 1 block based(p),

2 dom id integer,

2 domptaddr integer,

2 next integer, /* next in search list */

2 used bit(l), /* 1 = recently found by search */

2 almost bit(l), /* 1 = ready to go */

2 back integer, /* previous in search list */

2 c next integer; /* next in review cycle */

Figure A2-5. Declaration of ADT block.
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declare s semaphore init(l), (p,q) pointer;

P(s);

do while ("l"b);

if p -> block.used then do;

p -> block.used = "O"b;

p -> block.almost = "O"b;

end;

else if p - block.almost then do;

Lock ADT;

if -- p -> block.used then do;

call free block(p);

Unlock ADT;

q = p;

p = ptr(seg#(ADT),p -> block.c next);

go to found one;

end;

else do;

Unlock ADT;

p -> block.almost = "O"b;

end;

end;

else if pages in core(p -> block.dompt addr) = 0

then p -> block.almost = "l"b;

p = ptr(seg#(ADT),p -> block.cnext);

end;

found one: V(s);

call unfreeze activation(q -> block.dom_pt_addr);

Figure A2-6, part 1. Algorithm to find an old domain in ADT.
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Notes.

(1) free block(p) disentangles the block at p from the ADT

search list it's in.

(2) seg#(ADT) is a constant, the permanent segment number of

the ADT in the ADT domain.

(3) pages_in core is a call to the AST domain to be told the

number of pages of the specified segment which occupy fast

memory devices.

(4) unfreeze activation is a call off to the AST domain to

permit the specified page table to be removed from the AST.

(5) P(s) and V(s) are semaphore operators which provide

mutual exclusion of processes modifying the ADT.

Figure A2-6, part 2. Algorithm to find an old domain in ADT.
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searching for blocks associated with recently unused C-lists,

but this should not be an irksome constraint.

The program that begins at the label foundone will

place new values of dom id and domptaddr into the found

block, and then thread that block onto the appropriate search

list in the ADT. If the block is threaded onto the end of

the search list, the ADT need not be locked during the

threading.
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Appendix 3

Memory Multiplexing

We are assuming that the technique of paging [Ki62] is

used to multiplex the high speed memory device among all the

segments in the system. Every segment which can have a page

in the high-speed memory must have a page table in the AST,

and such segments are called active. In this respect, the

system here being described is very similar to Multics [Ben72].

The purpose of this appendix is to discuss the multiplexing

of the AST among all segments to which references are being

generated by running processes.

Every segment capability in every C-list has a fault bit

in addition to the four components (type,mode,length,addr)

introduced in Appendix 1. This fault bit is a validity bit

for the addr component: when the bit is .0, addr is valid:

i.e., addr is the address of the page table of the segment.

But when the fault bit is 1, the segment might not be active--

that is, it might not have a page table and so the addr

component is regarded to be invalid and so the processor

faults if it should need to use this capability. The fault

is called a segment fault and the system's response to the

segment fault is to make the referenced segment active,

store the correct page table address in the addr component

of the capability that caused the fault, and turn off that

capability's fault bit. Thus part of the job of the fire-

wall domain is helping the system respond to a segment fault.
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Figure A3-1 shows the domains of the operating system

which are involved in responding to a segment fault. The

domain to which the process goes when the fault occurs is

the Table of Contents (ToC) domain. From information recorded

by the processor in the stack at the time of the fault, the

program in the ToC domain retrieves the dom id of the domain

where the process was executing and the seg# of the segment

being referenced. From the Master Domain Table, the program

in the ToC domain looks up the segment number of the C-list

in the firewall domain, which by convention is also the

segment number of the table of contents segment for that

C-list in the ToC domain. The Master Domain Table can be

regarded as a function {(domid,(!_id,seg#))} which maps

domain unique identifiers to pairs whose first component,

!_id, is the unique identifier of the C-list segment, and

whose second component, seg#, is the segment number of the

C-list in the firewall domain. We are assuming that every

C-list has a segment number in the firewall domain which does

not change as long as the C-list exists. This assumption is

not essential--we could arrange to multiplex the name-space

of segment numbers in the firewall domain over a larger col-

lection of C-lists--but the assumption makes our description

simpler.

Armed with the segment number of the table of contents

segment, the program in the ToC domain looks up, in the

appropriate table of contents, the unique identifier of the
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segment to which a reference caused the fault. Then the

ToC domain calls the AST domain to activate the segment,

specifying the unique identifier of the segment, and the

C-list segment number and seg# of the segment, so the AST

domain can remember in its AST trailers segment the locations

of all active capabilities (i.e., with fault bits off) for

active segments. The AST domain returns the page table

address of the segment, now guaranteed to be active (though

it could have been active before). The ToC domain calls the

firewall domain to turn off the fault bit in the segment

capability and replace the addr component of the capability

with the new true page table address supplied by the AST

domain. After the firewall domain returns, the ToC domain

returns from the fault, and the process will reference the

segment thereafter without generating a segment fault, as

long as the segment remains active.

While the services of the AST are multiplexed among all

the segments in the system, some segments are active all the

time. For example, operating system domains' C-lists are

always active, as are the MDT and the table of contents

segments of operating system domains. After a segment fault,

the ToC domain will cheerfully generate another segment fault

referencing an inactive table of contents segment for the

domain in which the first fault occurred; because the table

of contents segment of the ToC domain, which is used to re-

spond to the second segment fault, is always active.
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The C-lists of active domains are also required to be

active segments, so that the domptaddr's stored in the

ADT will remain valid.

When the AST domain needs space in the AST for a new

page table, it will de-activate a segment (not, of course,

any segment marked "always-active"). C-list segments are

handled differently from other segments in this regard,

because the addr components of segment capabilities are

pointers into the AST. Because of this, C-list segments

are de-activated when the domains they define are de-acti-

vated (i.e., no longer represented in the ADT). We will

return to C-list segments shortly. When the AST domain

needs space in the AST, it chooses for de-activation a non-

C-list segment with the smallest number of pages in core.

After initiating the removal of the segment's remaining pages

from core (if any), the program in the AST domain reads the

"trailers" associated with the page table to determine which

C-lists hold segment capabilities pointing to the page table.

The AST domain calls the firewall domain to get the fault

bits in these segment capabilities turned on. If the system's

central processors have associative memories for holding

segment capabilities, the AST domain broadcasts a request

that they be cleared (or, to be economic, that any capability

in an associative memory pointing to the given page table be

cleared). After following this procedure, the page table is

available for re-use.



In the above procedure for de-activating a segment, it

is necessary to turn on fault bits in segment capabilities

which contain the page table address of the segment. The page

of the C-list containing the segment capability must be paged

in for the firewall domain to turn the fault bit on. But this

use of the C-list page must not affect the C-list page usage

reported by the pages in core entry point of the AST domain

called from the algorithm of figure A2-6, because that usage

figure is intended to reflect activity of running processes

bound to the domain defined by the C-list. So the pages in

core entry point will not tell the true number of pages in

core, but rather the number of pages used as C-lists, as

opposed to used as data. The implication for the processor

design is that every page table word has two usage bits

(rather than one, as in Multics). One usage bit is set for

any usage (as in Multics); the other is set for usage to

retrieve capabilities from C-lists. These latter usage bits

provide the basis for the number returned by pages_in_core.

When a domain is de-activated, the AST domain is informed

by a call from the algorithm of figure A2-6. The AST domain

will de-activate the C-list segment, but only after setting

all the fault bits in its segment capabilities back on and

removing all references to the C-list segment from the AST

trailers. This requires a call to the firewall domain.
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This completes our description of memory multiplexing,

except we have not yet described the special status of sectioned

stack segments in the memory multiplexing scheme. This special

status is required because of the involvement of sectioned

stacks in processor multiplexing, to which we now turn.

The operating system includes a domain dedicated to

multiplexing the system's processors among the processes

which are eligible to run. This is the traffic controller

domain, and it is entered by two major methods: either

through a call to its entry point named wait, or through a

timer runout fault. The process that is directed to call

this entry point or takes this fault is giving away its

processor. The program in the traffic controller domain

selects a new process to give the processor to, and prepares

for the process switch by insuring that the new process'

sectioned stack segment is -active. This is trivial if the

process is one from a pool of so-called loaded processes:

loaded processes have active stacks by definition. If the

selected process is not loaded, the traffic controller calls

the AST domain to activate the selected process' stack seg-

ment, and adds the selected process to the pool of loaded

processes.

Then the traffic controller issues its process-exchange

instruction and the processor stores in memory some of the

components of the process state, and reads from different

words of memory new values for these same components. The



locations stored into and read from are specified by

registers of the process chosen by convention. The com-

ponents of the process state which are stored and modified

are registers, stack pt addr, Min, Max, and proc id. Since

the first four components of the process state, i.e., dom id,

vb, dom_ptaddr, and pc; are not modified, the processor

continues to execute the program in the traffic controller

domain. The fact that the processor is running a new process

will not be manifest until the process leaves the traffic

controller domain, which is done by a return. This is a

return from the wait entry point of the traffic controller or

a return from a timer runout fault--whichever is indicated by

the contents of the sectioned stack of the new process.

Before the new process leaves the traffic controller, it

examines a per-processor data base to see if the old process

should be unloaded, and if so it calls the AST domain to

accomplish this. (The process can find out what processor

it's running on by examining a fixed field of the state com-

ponent fault#.)

The AST domain will keep sectioned stacks active until a

notification through a call from the traffic controller domain

to de-activate them.

There is a small, but crucial protection issue here,

which is the privileged hardware instruction process-exchange.

The processor must refuse to execute this instruction unless



the executing process is bound to the traffic controller

domain, which the processor can detect by examining the

process state component dom_id. The value of dom_id for

the traffic controller domain can be wired into the

processor.



Appendix 4

Argument Segment Primitives

The purpose of this appendix is to define precisely the

operating system primitives which allow domains to share argu-

ment segments.

The primitive which is used to create a capability for

the argument segment in the domain to be called is pass-

segment(seg#,dom#,mode,copy_flag,new_seg#,code). The first

argument, seg#, is the segment number of the argument segment

in the calling domain. The argument dom# is the capability

number of a domain entry capability, which defines the domain

to be called. The argument mode is a 3-bit string which

defines the mode component of the capability to be created in

the called domain, except that this mode of usage to be given

to the called domain may not authorize greater access privileges

than are available in the calling domain. In other words, the

pass-segment primitive will not create new access privileges;

it only extends privileges which existed previously. The

fourth argument, copy-flag, is a bit which will be remembered

in the table of contents segment of the called domain and used

to authorize or deny any further passing of the argument

segment to domains called by the called domain. In short,

copy-flag is a bit which authorizes additional capabilities

for the argument segment. The fifth argument, new-seg#, is

an output argument which will be the segment number of the
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argument segment in the called domain. The last argument,

code, is an output which signals success.

The pass-segment primitive is implemented mainly in the

Table of Contents domain. The program there accesses the

table of contents of the calling domain to see that the copy

flag of the selected segment is on for the calling domain,

and that the mode of access to be given is contained in the

mode of access posessed by the calling domain. Provided

this is so, the program obtains the dom_id of the called

domain from the table of contents entry for dom#, and uses

the Master Domain Table to obtain the segment number of the

C-list and table of contents of the called domain. In the

table of contents of the called domain, the program obtains

a new segment number and records the unique identifier of

the segment being passed (obtained from the table of con-

tents of the calling domain), the mode being allowed, and

the copy flag specified; all associated with the new segment

number. The ToC domain calls the firewall domain to create

the capability in the called domain. Finally, the ToC domain

returns the new segment number to the caller of pass-segment.

To facilitate the reclaiming of passed segments, the

pass-segment primitive records, in the entry for the passed

segment in the calling domain's table of contents, the identity

of the called domain and the segment number of the segment

there. In other words, the pass-segment primitive grants
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access to the segment by creating a new capability, but

"with a string attached." The grantor can "pull on the

string" at any time and take the new capability back. The

philosophy behind attaching a string to capabilities is

simply the realization that a capability might be used un-

expectedly to gore the grantor's ox; coupled with the judge-

ment that the computer system should serve the purposes of

the user whose ox is being gored through the use of the new

capability, rather than the purposes of the capability-

borrowing ox-gorer. Clearly, this is not a technical judge-

ment, but a social one: whose purposes shall be served

first? Different workers have made different judgements on

this question, see for example Vanderbilt [Va69] and Fabry[Fa68],

where are described systems in which it is not possible to

take back capabilities once they have been granted.

The primitive which reclaims a passed segment capability

is reclaim-segment(seg#,dom#,code). The argument seg# is

the segment number of the argument segment in the calling

domain. The argument dom# is the capability number of a

domain entry capability, which defines the domain from which

a capability for the passed segment is to be removed. The

argument code is an output which signals success.

The reclaim-segment primitive is also implemented mostly

in the Table of Contents domain. The program there accesses

the table of contents of the calling domain to verify that



seg# is a segment number, that dom# is the capability number

of a domain entry capability for calling a domain which we

will refer to as "the called domain," and that the specified

segment was in fact passed to the called domain. Provided all

this is so, the program will proceed to reclaim the capability

from the called domain, and from all domains to which the

capability was passed by the called domain (if the original

call to pass-segment specified a copy-flag of 1), and from

all domains to which the capability was passed by those

domains, and so on. The program in the Table of Contents

domain can find all these domains because of the "strings"

recorded in tables of contents by the pass-segment primitive.

These "strings" define a tree whose nodes are capability

slots in domains' C-lists where are found passed capabilities

to be reclaimed. A simple recursive program can follow the

tree to its ends. At each node of the tree, a call to the

firewall domain is made to remove the capability associated

with the node from its C-list.

There is an interesting process synchronization problem

here, closely associated with the social question mentioned

previously: should the purposes of the capability-reclaimer,

or the purposes of a would-be passer of the capability, be

served first? Our answer to this question is expressed as a

priority given to reclaiming processes over passing processes.

This priority is implemented with a list of segment unique

identifiers of segments whose capabilities are being reclaimed,
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maintained by the ToC domain. The pass-segment primitive

will consult this list and make the executing process wait,

if it has been asked to pass a capability for a segment on

the list. For each segment on the list, there will be a

process executing the reclaim-segment primitive, reclaiming

a tree of capabilities for the segment. When that process

has finished, it will remove the entry it placed in the list,

and wake up any processes which the pass-segment primitive

directed to wait because of the entry on the list. The

awakened process might find that the capability specified by

the seg# argument to pass-segment has been removed by the

reclaiming process.

Finally, the primitive which validates the segment number

of an argument segment is is-arg-seg(seg#,code). The argu-

ment seg# is allegedly the segment number of an argument

segment passed from the calling domain. The argument code is

an output whose value signals whether the seg# is valid, in

the above sense. The is-arg-seg primitive is implemented

mainly in the Table of Contents domain. The program there

verifies that seg# is the segment number of an argument seg-

ment by examining the table of contents segment of the called

domain. (Recall that the "called domain" is the one which

calls is-arg-seg.) The table of contents segment also records

the identifier of the domain from which the segment was passed.

It is necessary to check that this is the calling domain, i.e.,

the domain that directed the process to call the domain that
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called is-arg-seg. To do this, it is necessary to examine

a protected word of the sectioned stack. To allow this, there

is a privileged domain of the operating system in which every

sectioned stack is accessible as an ordinary segment. This

domain is called the stacks domain. The program there, when

called by the is-arg-seg primitive, will return the unique

identifier of the domain which caused the second inter-domain

call before the call to the stacks domain. (The second call

before the call to the stacks domain is the call into the

called domain, since the called domain called the ToC domain, and

the ToC domain called the stacks domain.)

In fact, the stacks domain is used by the pass-segment

and reclaim-segment primitives also, to find out the identifier

of the domain from which they were called. The call to the

stacks domain is required because the stored identifier of

the calling domain is made inaccessible by the sectioned stack.



Appendix 5

Taxonomy of Responsibilities of Programs

The purpose of this appendix is to define the responsi-

bilities of programs. We assume that the institutions or

persons who own the programs will be required by society to

shoulder the responsibilities incurred by the programs. The

events which generate responsibilities for programs are

simply the events defined by the state transition rule (the

reading and writing of information in segments, and the call-

into to and returning from programs), and the events defined

by calls to the primitives of the operating system.

In defining the responsibilities, we use some words and

phrases which require prior explanation. We refer to control

of processes, which is exercised by programs, because the

state transition rule requires processes to take instructions

from the program designated by the program counter pc until

some instruction causes a transfer of control to another

program. We refer to the release of information, which

includes sending information out of the computer to a user,

making a copy of information in the computer (e.g., in an

argument window or an argument segment), and passing an

argument segment to a called domain. We mean the term

release to include also actions whose side effects will lead

to future movement of information, such as calls on

operating system primitives to add a term to a segment's
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access control packet, or to add a term to the seg-limit com-

ponent of a domain's access control packet, or to redefine

f(r) or d(r) in a restriction's access control packet, or to

modify the restriction set of a segment or a process. We

refer also to the distribution of information, by which we

mean a set of releases (possibly empty) of that information.

By use of information we mean the undertaking of any compu-

tation with the given information as input.

By maintenance of information we mean the avoidance of

any modifications to the information that leave it in an

incorrect or inconsistent state. When a block of data has a

lock bit associated with it, one possible rule for examining

or manipulating the block is to set the lock bit first, and

reset it when done; and to wait for it to be reset whenever

an attempt is made to set it when it's already set. This

convention is an example of proper maintenance. "Proper" is

a somewhat fuzzy word (like "reasonable"); whenever we use it

we open an area of discourse for lawyers.

Now we turn to enumerating the responsibilities of pro-

grams.

A program that directs a process to read words from

segments (or the process' stack) and compute results from

them, is responsible for so directing the process. Similarly,

a program that directs a process to write words in segments

(or in its stack) is responsible for so directing the process.



In other words, the program is responsible for what it makes

a process do.

A program that calls another program is responsible for

releasing control of the executing process, and it is respon-

sible for the release of the arguments of the call to the

called program. It is responsible for the content of the

arguments only to the extent that it computed them. The

called program becomes responsible for the proper distribu-

tion, use, and maintenance of the arguments it received, and

for the proper control of the executing process. If the

called program is in another domain, all the programs in the

called domain become responsible for the proper distribution,

use, and maintenance of the arguments. This includes the

contents of the argument window, and all argument segments

passed to the called domain.

A program that calls an operating system primitive is

responsible for the effects and the side effects of the call.

For example, a program that exercises the authority of an

office is responsible for proper use of that authority.

A program that returns to its caller is responsible for

releasing control of the executing process, and it is respon-

sible for the release of results to the calling program. It

is responsible for the content of the results only to the

extent that it computed them. The program to which control

is returned becomes responsible for the proper distribution,



use, and maintenance of the results it receives, and for the

proper control of the executing process. If the program

returned to is in another domain, all the programs in that

domain become responsible for the proper distribution, use,

and maintenance of the results.

This enumeration of responsibilities is included here

because it is necessary to be able to say who is responsible

for potentially harmful events (see section 2.7). But the

reader should not jump to the conclusion that this enumera-

tion makes possible the analysis of all harmful events.

System crashes, for example, are difficult to analyze because

of the complex patterns in which the simple events described

above are combined.
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