‘e

Transcript of a talk:
PL/I AS A TOOL FOR SYSTEM PROGRAMMING

by F. J. Corbatd

Presented at a PL/I Seminar-for the Air Force Systems Command

at Hanscom Field, Bedford, Massachusetts, March 5, 1968 for

-inclusion in the summary report of the symposium.

C
3,K 1%
\‘c;‘.') , \
I‘()
1=,
A
N A»ﬁj"o
le"\ X

'‘Revised Draft ’ . 3/27/68

PL/I As A Tool For System Programming

F. J. Corbatd

First I have to give some background, because T don't téink'you
can discuss or evaluate a language like PL/T unless you know the background
of the speaker. To some extent, PL/I is like getting too close to an
elephant. All you can see is the pores and what you see depends on which
side of the elephant you're on. For présent purposes, I have the advantage
of not being a language expert, Instead, my vantage point is that of a
systeﬁ designer-implementer concerned with the overall system pérformance
and the degree that the system meets the goals that it was designed for.
This gives me a little more detachment from the issue of whether the
language is just right or not. For that reason some of my remarks will
not be completely unequivocal but rather-will be shaded. The basis of the
PL/I experience that I wish to talk about'is.mostly on the Multics project,
which is a cooperative project being done with the Bell Laboratories, the
General Electric Company and Project MAC of M.I.T. using the GE 645 com-
puter which is derived.frgm the GE 635. However, I am not giving an
official Multics view but rather only my own opinion as.a member of the
design team. In fact, it's a pre%iminary view because things.are too cén—

——
fused at this point to really be certain that we have analyzed what is
—
happening. (A bit like asking for comment on a battle while it is still
in progress; it's too early to know all the answers,) Further, one has

to be cautious in forming final ~idgments on a language even though it is

already a de facto standard, since there still is a need for a great deal

Revised Draft -2 - 3/27/68

of diversity in the computing ffeld so that different techniques can be
evaluated. |

To understand the context in which our systems programming was
done, I first have to give you a brief revie& of what the Multics project's
goals are. A set of papers are in the 1965 Fall Joint Computer Conference
'Proceedings if you wish more detail. Briefly, we are trying to create
a4 computer service utility. In particular, we want continuous operation
of pools of identical units. We want to combine in a single complex the
goals of interactive time sharing and noninteractive batch processing. We'
want to combine the goals of remote and local use in one system. The system
programming problem is to develop a framework which multiplexes all this
equipment at once and yet also allows controlled interaction énd sharing
between users working in concert on various problems in real time. 1In
short, it's a fairly ambitious project, not because of any single idea
but because we're trying to tie together all these ideas at once. Tt
was.our judgment that we required new hardware to meet these goals squarely
and'that, of course, meant that we had to write almost all of our software
for ourselves, including, it turned out, even the assembler. We were
aEle fo borrow a little, but not as much as we had hoped. Thus, the
project began basically at a research and development leVél, where flexi-
bility is needed. In our view we wanted a émall team of people, because
the hardest thing to do when you're groping in an unknown area is to
coordinate people. We felt strongly that we had to have maximum flexibility
in our implementation.

To give you a little bit of the scale of the project, I will
discuss briefly theimplémentation. The project began in earnest in fhe

fall of 1964 and should develop a usable pilot system about the end of this

Revised Draft -3 - . 3/27/68

year. This means it will take approximately four years to create g

useful system. That's a long time, and I think one has to appreciate the
investment of effort that goes into such a venture. If you spend four
years developing something,yéu probably try to exploit it for a period of
timé greater than that; thus, there is clearly an underlying goal here of
wanting to see the project evolve as conditions change. The system itself
is described quite tersely at the level suitable for é senior system pro-
grammer in about 4,000 single-space typewritten pages in the Multics |
System-Programmers' Manual. The Systeﬁ in final form seems to project

out to about eight hundred to one thousand modules of maybe four pages of
source code each on the average, or in other words, between three to four
thousand pages of source code. (It's interesfing that the amdunt of
description approximates the amount of code, but they're of course written
at different levels.)' The amount of system program that's in machine code
is less than 10% at the source code level; it would be even less except
that the compiler did not come along early enough, so some things had to
be written in machine code right away. - The system projects out to between
one and one and a half million 36-bit words which loosely is the éupefvisor
program. In operation, most of it, of course, pages out and is not
resident in core, but it is expected to be there, and it is exclusive of
all the languages and facilities of that sort, such as COBOL, FORTRAN,

and even PL/I itself. The manpower to create the system has ranged from
approxiﬁately zero to 50 people over a four-year period with rOughly an
increasing number as time went on. When I say zero to 50 people, I mean
effeétive persons who are involved and working full time. That isn't much
for the size of the job that.I've described, and there is clearly the

need to have maximum leverage at the fingertips of each person.

Revised Draft - 4 - 3/27/68

The next question I want to address myself to is why onc uses a
compiler at all to do system programmiﬂg. (I'l1l take up next the question
of why PL/I in particular, but fifst: why a compiler?) First, there
is the ability to describe programs briefly and lucidly. One can clearly
obfuscate one's ideas with a compiler language but it's harder. To some
extent one is talking about what one wants rather than how oﬁe wants to do
it. The trouble with machine code, of course, is that when you look at a
random section of machine code you dpn't know what properties of tﬁe
instructions the programmer really wanted to exploit. On the 7094, for
example, the fact that the P-bit got cleared by an instruction may or may
not be germane to what the program is trying to accomplish. With a compiler.
language, especially the later ones, one tends to describe what one wants
tg accomplish in terms of a goal and let the compiler work out the specific
detail. This contributes to lucidity, of course. It aisb gives one the
chance for change and redesign, because onva system as large as the.one‘

I have just described, the only sensible attitude is to assume thaﬁ the
system is never finishgd. Although the system obviously goes through phases,
one is continually improving and evolving it. We have had this experience
on CISS, our previous time-sharing system and we know it is true. What
happens is that users Eeep having expanding needs and goals as they‘exploit
the facilities and they continually come up with wanted improvements.
Certainly, the other extreme -- of assuming that a computer software

system is like hardware and can be designed once and for all on a one-shot
basis and then left to the hénds of some maintainers -- I think has been

shown to be a failure.

Revised Draft . -5- 3/27/68

Another issue, too, i% a system of the ambition that we are talking
about, the software is at least three-quarters of the design w rk and fet
it usually doesn't get started'until the hardware is already firm. Thus,
there is a desire to speed up the implementation effort and using a compile;
allows each programmer to do more per day. It's our experience that it
doesn't matter too much if one is-dealiﬁg with assembly 1ang;age or com-

of source code
piler language; the number of debugged lines/per day is similar. Another
poinﬁ, too, is that the superviéor is the host of the user services so
that the computer time spent in the supervisor is between 10% in some well
worked out systems to maybe an extreme of 50% of the total time. Thus,
the possibility that the compiler isn't generating the most efficient
code isn't a disaster. Iﬁ other words, one is dealing withlcode that
isn't being exercised all the time. It has to be there?fit has to be

i

right, but there is room for some clumsiness. Further,/the system is well
designed, the production job will run efficiently and the supervisor will
remain out of the picture.

Finally, there is the issue of technical management of programming
projects: the problem of trying to maintain a system in the face of
personnel turnover and in the face of varying standards of documentation.
Personnel turnover is expected on a four-year project. (We didn't think
(it was a four-year project to begin with; we estimated two.) One has to
assume in most organizations somewhere between ten and twenty per cent
turnover per year even if everybody is relatively happy. People get
married, husbands are transferred, and for a variety of personal reasons,
people must leave, carrying with them key knowhow. Training a new person

involves a minimum period of six to nine months, even starting with good

Revised Draft - -6 - . 3/27/68

people, especially if you're faced with a system which has 4,000 pdges of
description in it. You don't casually sit down and read that, even in a
weekend, 1In fact, it;s fair to say that the system is large enough that
no single person can reﬁain abreast of all parts at once. Thus, there is
a reasonable case for a compilér in developing large systems.

In developing CTSS wé used the MAD compiler slightly and if was
quite effective. The only problem was that we were cramped for core memory
space for the supervisor. The compiler generated object code was somewhat:
bulkier than hand code, and this was unfortunately a burden wé couldn't
carry too well, but where we used it, it was very effective. |

So the question was: What compiler to use when developing Multics?
We chose PL/I. The reasons go somewhat like this. One of the key reasons
that we picked the language was thé fact that the ohject code is moduLar,
that is one can compile each subsection of the final program separately,
clean up the syntax, and test it on an individual basis, Tﬁis seems
obvious, perhaps because it's in several languages, like JOVIAL, FORTRAN,
or MAD, but it isn't in some of the ALGOL implementations and it blocked
us from considering the ALGOL implementation we had available. The
second reason.for picking PL/I was the richness of the cénstructs, especially
the data structures and data types which we considered to be very powerfui
and important features. We had an unknown task on our hands with .fairly
strong requirements. We viewed the richness as a mixed blessing, however,
because we certainly were a little wary of the possible consequences,

But it certainly seemed the right direction to start and maybe to err on
and to cut back. As I'll get to later, it was a little too rich. But

I'll come back to that. A fifth reason for choosing PL/I was that it was
approximately machine independent. Our object iﬁ doing the system has not
been to compete with normal manufécturing. Instead, our object has been

to explore the frontier and see how to put together effectively a system

Revised Draft -7 - : . 3/27/68

that reaches and satisfies the éogls that were set out. We are trying to
find out the key design ideas and communicate these to others regardless
of What’system they are familiar with. Hence, a language that gets above
the specific details of the hardware is certainly desirable, and PL/I does
a very effective job of that. 1In other‘words, it forces one to design,
not to bit-twiddle. And, this hd§ turned out to be one of its strong
points.

Another reason that we considered PL/I was that we thought the
language would have wide support. To date it has had the supbort of one
ma jor manufacturer., And, the final key reason for PL/I was that two persons
associated with the project, specifically Doug McIlroy and Robert Mbrris
at Bell Labs, offered to make it work on a subset basis; they also offered
to'try to arrange for a follow-on contract with a vendor for a more polished
version of the compiler, That is basically
why we chose PL/I. We certainly debated, somewhat casually, other choices

| but these were the essential reasons why we
picked the language.

The subset that was implemented iﬁitially as a quick-and—dirty‘
job was called EPL for Early PL/I. Its design characteristics wenf briefly,
as follows., It had no ;/O; after all, this is a system programming language
and we use the system subroutinés. It ﬁad no macros except the INCLUDE - |
macro, which worked in very‘smoothly with the time-sharing system, CTSS,
that we were using. It.had no PICTURE attributes or things of that éort
which represented the COBOL influence, except for structures of course.

It had no multi-tasking; we found this to be a defective id ea in the scnse

that it wasn't thought through well enough, and we certainly didn't need

Revised Draft -8 -) 3/27/68

it for a system programming 1anéuage. It had vafious minor restrictions

like requiring structure names to be fully qualified. No complex arithmetic,
no controlled storage (you can simulate that easily), and, more importantly,.
no attributes such as IRREDUCIBLE,‘REDUCIBLE, ABNORMAL, NORMAL, USES, -or
SETS -- those things whiqh allow the compiler to do an optimum job of
compiling the code with advice from the program; these are sophisticated

and tricky attributes, incidentally -- but the reason they're nét there is
that the compiler didn't intend to optimize anyway, so it would have ignored
advice.

To emphasize the positive, the things that EPL did have were ON=-
conditions and signals; it did have recursive procedpres -- in‘fact, the
system doesn't allow any other kind easily; (if you want to work at it,
you can program a nonrecursive procedure). It did have based storage and
pointer variables, and it had ALLOCATE and FREE. It had Structures, as
-I've mentioned, it had block structuref; and it had varying strings, which
we regret to some extent because of implemenfation difficulties. In other
words, it was a pretty potent subset from the point of view of language
facilities.

The implementation, as i said earlier, was deliberately a quick-
and-dirty job. It was expected to be mergly a temporary tool to be soon
replaced by a polished compiler from the vendor. The team consisted of
McIl%oy and Morris and two to four helpers. I am going to give a detailed
and candid account of the events surrounding the EPL implementation because
the nature of the events together with the very gigh qualifications of the
people involved points out clearly that the difficulties encountered were

quite unusual. The original optimistic estimate for making EPL work was

Revised Draft -9 - 3/27/68

that it was only going to take them about six months. In spite of the
dedication of the people involved, it fook them over 15 or 16 months to get
a compiler that was barely usable., A lot of workﬁggne into upgrading it

, ’ of the vendor
in the last 18 months, since the polished compiler/never materialized
and the upgrading process has not yet ended, Moreover, the EPL effort
like a gruelling relay race has worn out nearly everyone who.has worked on
it. But to everyone's credit, the compiler works and is useful.

The language that was used to implement EPL was TMG, shoft for
"transmogrifier”, which is a language system developed elsewhere by Bob
McClure. It's a clever, interpretive system specifically designed for
experimental language writing or syntax analysis. However, it is not
easy to learn and use and, therefore, it is hard to pick up the work of
somebody else written in the language. The EPL translator was initially
designed as two passes, the first one being principally a syntax analyzer
and the second one basically a macro expan&er. The output of the sécond
pass in turn led into an assembler which handled the specific formétting
for the machine. Late? a third pass was added intermediate between the
first two in an attempt to optiﬁize thé object code. . The quick-and-dirtiness
came through when the original language subset specs had only a single
diagnostic, namely, ERROR. That has been expanded so that maybe noﬁ there
are half a dozen, but the only help you get is that the message appears in
the neighborhood of the statement that caused the trouble. The compile rate,
which was never a major issue,turned out to be a few statements per second.
It has been improved a littlé with time, but more critically the object code
that is generated has improved to a respectable ten instructions per

executable statement. (There's obviously a large variance attached to these

figures.)

Revised Draft - 10 - ' 3/27/68

The environment that fhe EPL compiler had to fit into is signi-
ficant. First of ail, we had adopted as a machine standard the full ASCIT
character set of 95 graphics plus control characters, so one of our first
projects was trying to map a relationship with EBCDIC.-j the IBM standard.
We also intended to use the language in a machine with program segmentation
hardware in which programs can refer to other sections of programs by
name, Fortuﬁately, we could use the $ sign as a delimiter to allow us
to have two-component names. We also expected the compiler to generate
pure procedure code which was capable of being shared‘by several users éach
with their own data section who might be simultaneously trying to execute
the same procedure, Wevalso wanted to establish.as a normal standard,
although not a required one, the use of recursive procedures by means of
a stack for the call, save, and return sequence linkage information -and
automatic temporary storage. We also wanted to allow the machine to have
a feature which we've called "dynamic loading" in the sense that én eﬁtire
program isn't loaded per se; the first procedure is started and as it calls
on other procedures, these proceduresin turn are automatically fetched
by the supervisor on an as-needed basis rather than on a pre-request basis,
This, oﬁ course, is in conflict with any language which allows storage to

. be pre-declared by the INITIAL specification within any possible module that
2

is ever used by the program. (This problem also comes up in FORTRAN.) ; a
: v\’(w‘r} .

We also had a feature in the machine which we called segment addressing,
which is such that when you want to talk about a data segment you don't
Eave to read it in through input/output; rather, you merely reference it
and the supervisor gets it for you through the file system. In éther

words, we were trying to design a host system capable of supporting software

Revised Draft v - 11 - . 3/27/68

constructs whiéh make it easier for people to write software subsystems.

In this rather sophisticated environment, one of the problems was that

much of the time was spent finishing the design of the compiler so as

to implement the mating of the language constructs with the environment.

The things that caused trouble were the SIGNAL and ON conditions, wﬁich

are relatively tricky ideas and which clash head on with faults aﬂd inter-
rupts. The call, save, and return conventioné had to be mated into the
standards of the system. Problems of non-local GO TO's and the releasing
of tempofary storage which has been invoked had to be licked. Most of
these problems are implications of the language if one thinks it through,
for the language has a lot of assumptions in it about what kind of an
environment it is going to be in.. There are also little subtleties, like
when you're talking about strings ;f characters and operators, what is

the role of control characters, i.e,, codes without graphic representation
such as backspace, when encountered in strings. There are also obvious
difficulties in that the language doesn't discuss any protection mechanisms,
a feature that every system must have to implement a supervisor—usef relation-
ship. Thus, there needed to be some additional modifications made to the
compiler to make that work out. And then there are strategy problems
within the implementation, such as how you're going tq implement internal

blocks and internal functions. These also took some time to work out and
wefe oﬁe of the principal reasons why the compiler implementation was slow
going. Further, it was done simultaneously and in parallel with the system
design. I would say with hindsight that we didn't put enough effort '

into trying to coordinate the two. The reason we did not was that to a

first approximation we felt that the language was a decoupleable project.

Revised Draft .- 12 - T 3/27/68

That was a useful thing in the éarly days, but as we came home toward the
finish line in the design, it began to haunt us that we hadn't worked out'
some of these interface ideas more carefully, and we had to pay the price
of redesign in various parts.

| One preliminary conclﬁsion we draw from the above experience is
that PL/I went too far in specifying the exact enviromment. There are a
lot of ideas that should be subroﬁtines and not part of the language. I
don't mean they shouldn't be thought through, but to think them through is
not the same as putting them in the syntax of the compiler. In particular,
things like SIGNAL and ON conditions could indeed be implementea as sub-
routine calls and be part of the environment of the host system. I
don't think they belong in the language per se, although if one makes
the language embrace a standard subroutine library, then I, of course,
agree.

I'l1l say very little about thevendor's compiler. They estimated
it would take 12 to 18 months. After approximately 24 months, we stopped
expecting anything useful to appear. One of the prinéipal reasons they
failed was that there was a gross underestimation of the work, by a factor
of three to fivejand it was impossible to mount a larger effort by the
time the underestimation became evident. Thus, the pioneering EPﬁ has
become the standard system-programming compiler.

Let me next talk about the use we made of the PL/I language.

A strong point, we felt, is the ability to use long names which were
more descriptive. People still get cryptic, but they're not nearly as
crypﬁic as they were. The full ASCII character set is a strong point

because we wanted to deal wi th a well engineered human interface. ‘ The

»

Revised Draft - 13 - \ 3727768

structures and the data types, as I mentionea earlier, we consider to
be one of the strongest assets (this perhaps comes as no surprise to
' COBOL uéers butkthis feature is véry importgnt when you're trying to
design data bases), The POINTER variable and based storage concept,
along with ALLOCATE and FREE, have beeﬁ pivotal and crucial and have
been used extensively. Some of the features like SIGNAL and ON conditions,
which have cost us a lot of grief, at least in principle have been very
graceful ways of smoothly and uniformly handling the overflow conditions
and the like, which suddenly trap you down into the guts of ﬁhe supervisor,
In previous systems we have always had the quandary of how to allow -
the user to supply his own condition»handlers in a convenient Way.. We're
not sure that the price is perhaps too high, but the.mechanism does look
good. The SIGNAL mechanism also is an elegant way of handling error
messages. One of the problems with an error, when it is detected at a
given subroutine level, is that it's significance isn't always understood.
Fér example, the square root routine may encounter a negative argument but
only the subroutine that called it knows the significance; Maybe it means
that the cubic equation solver has three rﬁots that are not all reai,
but that again isn't the true significance. In fact, it may mean that
the experimental data ;hat was being analyzed was merely noisy and incorrect
and that this data point should‘be abanﬁoned; The signal mechanism allowé
each subroutine in the line to insert a message if it is wanted and allows
the square root routiné, that didn't know who called it, let controi gb
back in the right way.

Finally, a last point about PL/I that is perhaps obvious, is that

the conditional statements that are straight out of ALGOL are very valuable.

Revised Draft - 14 - 3/27/68

Overall, the general result thaé we got fran'using PL/I was a rather small
number of programming errors (after a programmer le%és the ropés),.in

fact, a sufficiently small number that one of our major sources of trouble.
is that a lot of bugs have been caused by miématched declarations, getting

parameters in a calling sequence inverted, getting argument types in

‘calls mixed up, all clerical errors in which the language gives you no

help and our implementation doesn't either. 1In fact, this is a defect

in the language in the sense that the fndependence of the separate compi-
lations has left a gap in the checking of types. (Sometimes programmers
have' used mismatched.declarations for gimmicky convenience or efficiency
although we have tried to avoid it because it obviously destroys machine
independence.) We also found that skillful system programmefs who know the

machine well an't want to work in machine language because they make too

many mistakes.Z‘This condition is aggravated because in modifying the

machine we retrofitted a lot of involved ideas onto a somewhat ornate

order code, Regardless of the reason, however, we find that programmers
would rather get things done than twiddle bits.,

) so far

Another major effect of the use of PL/I has been that/we have

béen éble'to make three major strategy changes which are really vast
redesigns. One of them in the management of the high-speed drum that did
most of the paging. It was reworked, quité a while ago, when some insigﬁt
developed which allowed a tremendous amount of bookkeeping to be eiiminated,
The amount of code that was involved dropped from 50,000 words to 10,000
words. This total rework was dbne in‘léss than a month (although not
completely checked out because the person wasn't working full time on it).

A second redesign occurred in the area of a special high-strung I/O controller

which has all kinds of conventions and specialized aspects., The first cut

Revised Draft - 15 - | . 3/27/68

s

of the control program design wés a little rich; it ended up involving
around 65,000 words of code, After.pe0p1é finished debugging it and
recovered their breath, they took a closer look at it and saw that by
cutting out maybe 10% of the features and changing some of the inter-
faces and épecifications they could streamline it. Two good men working
very hard did the reworking in less than two months. The two montﬁs were
peak effort, but they did do'it. The program basically shrunk in half, down
to 30,000 words and it runs about five or ten times faster in key places.
This kind of redesignis invaluable. It gives one the mobility that one is
after. It may be true for the use of nearly any compiler -- I'm not trying
to argue that this is exclusively a PL/I attribute -- bﬁt this is the
experience we're getting. Finally, weiﬁade another major change in the
system strategy of handling own data sections, which we call linkage
sections. We were keeping them as individual segments but we reorganized
things so that they were all combined into a‘single segment because some
of our initial design assumﬁtions had not been correct. This reworking
was done in the perioﬁ gf a month, The change was serial to the main |
line of the project deVelopment, so that it was a rather important
period of time to minimize.

Now, there's‘another side of the coin, namely, object code
performance. This aspect is illustrated in Figure 1. Remember, ﬁoo,

these figures represent only a preliminary view.

Revised Draft - 16 - : 3/27/68

L | i
| | |

Optimum hand code Best EPL today Typical good system
programmer on his first
try with EPL

Figure 1

Figure 1 illustrates the object code execution time in the horizontal
direction. (It could also be object‘code spéce since roughly speaking‘
they are similar.) Thg unit 1 represents optimum machine code or hgnd
code, where one uses.all the features of the machine but stays within the
specificatiéns. The next point on the figure represents the best results
obtained to date by careful juggling and tuning of EPL written programs.
At the moment the comparison.to hand code seems in the vicinity of 2 to 3
times worse and is largely because the compiler cannot optimize &ery'
well. A lot of redundant expressions are being calculated; tﬁis isi
especially true with based storage and pointers where it is easy to build
up fairly elaborate expressions to access a variable and then at the next
occurence repeat the calculation. Finally, and this is perhaps the one
shockiﬁg note that should be taken with some caution, we find that a
typical good system programmer produces on his first try, EPL generated
objéct code which is perhaps 5 to 10 times as poor as hand code. I think
this is the main problem with PL/I, because a factor of 5 or 10 at the
.wrong places can sink the system. The reason for the factor of 5 or 10
seems to be principally that programmers don't always realize the mechanisms
they areltriggering off when they write something down. The usual pattern

when one writes a program, is to think of four or five ways that one can

Revised Draft - 17 - 3/27/68

write out a part of an algorithm and to pick one of them on the basis of
knowing which way works out best. What has happéned is that people are

too detached. For example, if'you use a l-bit string for a Boolean
variable, it turns out in our particular im-
plementation you-generafe a lot more machinery than if you'd used a

fixed integer. Similarly, varying strings carry a fairly stiff price

tag in our present implementation,_(although ways are known to improve matters
a little), and they must be used with caution. Occasionally too we've

héd mishaps where the machine inde#endence'works‘against us in the sense
that a man declares an array of repeating 37-bit elements and the compiler
dutifully does it, straddling work boundaries mercilessly. The best

we've been able to do so far is to get the compiler to at least remark

on tﬁe objeét code listing the word "IDIOTIC." There may be other reasons
for the factor of 5 to 10 such as the language learning,timg but we do

not consider them important."oéher issues such as. the 10 to 1 variation
in ability among programmers of similar experience discﬁssed in an article

by Sackman, Erickson and Grant in the January 1968 Communications, I thipk'

can be discounted in our case. Our technical management has been thin,
but we have kept careful track of the individual programmers so that
mismatches with work assignments have been minimized.
for upgrading the system

With regard to remedial measures/one must remember that most of
the code in the supervisor doesn't matter; it's not being used most of the
time so the key thing is program strategy. I don't have time to diséuss
here how we localize the parts of the code which are the functiénally
important parts, but a segmented machine pays off handsomely. . Mean-

while we are learning tradeoffs between the different supervisor mechanisms.

In addition we are trying to develop checklists of things to avoid in the

Revised Draft - 18 - . " 3/27/68

language. It turns out to be féther hard té get people to generalize
so it is slow going. On a long-range basis GE is developing plans for
" an optimizing éompiler, but it isn't going to help us right away. We

are also studying on a preliminary basis smaller subsets of PL/I with
perhaps modifications and changes to tﬁe language so that the imple-
mentation is more uniformly potent--or impotent, depending on how you
look at it. That is the user would be constrained to a language which
would implement well regardless of whether he takes one choice or another.
And, finally, there are some coding tricks that might have hélped if we
had thought of them sooner.

Oﬁe of the key problems in our use of PL/I has been thaf the
programmer ‘doesn't have feedback. If he had, say, a time and space
esfimate on each statement that he writes, given back by the compiler,
and if he were in an interactive environment developing the program (i.e., he
could get quick return on his compilations), he might be able to form some
intuition about what he's doing. To implement such estimates is not
a trivial problem, because a lot of the mechanisms thatvére invoked are
shared, so that there needs to be a way of'designating the shared méchaﬁisms
and showing why they are included.

Finally as a last resort in improving supervisor performance we
can always go to machine languége on aﬁy supercritical module. But
this isn't a panacea, because it is easy to be swamped if one tries to.
put too much in machine language and moreover one has lost mobility; (Going
to machine language should be compared to parachuting out of an airplane.)

I have a few general conclusions. I think that in the language
area there has considerable leap-frogging. FORTRAN was the first ;ompiler

with any widespread use and it suffered because it wasn't systematic: to

Revised Draft - 19 - 3/27/68
and .
implement/was somewhat clumsy.to use. It was however a practical language.
‘ ALGOL was in a sense a reaction, but it suffered because it left out the
environment and didn't comé to grips very squarely with the implementation.
' PL/I in'effect is a reaction against ALGOL's not having considered the
environment, but it suffers from being designed without well-formed plans
for a systematic implementation. The notion of "systematic" is important
because without it the cost of implementation, the speed of the comp?lerA
and the quality of the object code may be off by factors of ten or a
hundred. Nevertheless, I admire the PL/I design effort and consider it
valuable because it has inspired language experts to try harder; in effeét
it has set‘as goals what is wanted. The fact that the language has not
by anyone
been implemented well/ I consider to be an object.lesson. Neverthe less
 techniques for mastering the problems are being found. In addition
people are beginning to'think of ways of accomplishing the same functional
characteristics without the same internal problems. Onerf the ways is |
to try to minimize the language syntax and to think through more carefully
what is thé subroutine library. |
Fuﬁure languages will come aﬁd they'll be beneficial, too. But
PL/I is here now and the alternatives are still untested. Furthe;more,
I think it is clear that our'EPL implementation is going to squeak by, and
in the long run the Multics project will be ahead because of having used
it rather than one of the older languages. Now, finall&, the last question,
which I think is a tough ome: If we had to do it all over again would
we have done the same thing? .I'm not totally sure of my'anéwer; I just
don't know. We certainly would have designed the language more carefully
as éart of the.system; that was something we didn't bay'enough attention

to. If it was EPL or a PL/I again we would have tried to strip it down

Revised Draft - 20 - 3/27/68

more, With hindsight we would have modified it to some extent to make sure

that it could have been impleﬁented well. 1If it were another language
we would have tried to beef it uﬁ with things such as are in ?L/I, and
maybe modified it. Either course of action takes a lot of design time,
and that's the dilemma: in effect, one wants one's cake and one wants to
. eat it, too. I think the décision probably hinges on whether or not one
is trying to meet a deadline. I would probably use FORTRAN to meet a firm
" deadline. But if I'm trying to solve a problem with a future, I think
I would ﬁse either PL/I or its functional eéuivalent--and the choice

will have to be answered in the future.

Questions and Answers

Q: You tglked about redesign as being a major part of your development,
where you gdt a big payoff.....Could you comﬁent on this
maybe your opinion on how well you should design to start with and
‘how much emphasis you should place on redesign? 4

A: We consider our deéign documents in absolute terms to be mediocre,

- but in reiative terms to be good compared to other programming efforts
we know about. We worked hard on this, and we did it for a reason:
one of our principal goals was to be understood. It has also saved
the'project over and over agaiﬁ because peopie can see what is going
on, and new people can join the project. 1In general these :design
documents just werﬁn't written and accepted; they were usually

the '
‘bounced around and/first proposal wasn't usually the final one. There
was a deliberate self-criticism in the design with a goal being sought

of functional isolation of different ideas. We felt strongly that

one should try to design~és carefully as possible before writing

Revised Draft - 21 - : ., 3/27/68

programs. Debugging incorrect ideas ié a very expensive waste of
both time and resources. Nevertheless it is almost impossible

tbday to‘correctly fog%ee all the implications of a large system
design. Thus some redesign is inevitable and it is here that the
compiler language speeds the process. In particular: 1) you

don't get distracted by bit-twiddling, and 2) you can see what
you're doing and don't get lost in a sea of details. That is it
allows you to keep focused on what you're trying to accomplish rather
than getting caught in tedium.

Q: I have a question to ask about your comments regarding systematic.
implementation. Do you feel that as PL/I is implemented by a
variety of manufacturers, the implementation will.effectively
reduce the effectiveness of standardization?

A Are you worried about the question of whether the different manu-
facturers will create different languages--is that what you're
saying?

Q: Well, I'm suggesting that wheg the language is implemented by some-

one that his implementation will vary'sufficiently from someone elée's imple-
mentation to céuse_one to lose the advantages of having standard
syntax.

A: I don't think so. Even FORIRANs-aren't the same in most machines.
.The minute you change the word length underneath FORTRAN you normally
change many of ‘the subtleties, including precision and the like.' I
think the best one ever ought to expect out of the present view of
so-called language standards is a kind of a first cut at having an

approximate version of the program that will work on another machine.

You still have to audié and edit accordingly, and this is, 'I think,

Revised Draft - 22 - | 3/27/68

’

N

the best we could hope fof out of PL/I. However in the case of PL/I

I would expect there to be a larger class'of programs for which

one would be indifferent té.the subtle variations and only worry

about cases of drastic differences in behavior.

Does that apply also to, say, a program's dependency on an operating
system?

I think that in this area the descrepancies between PL/I implemenfatioqs
will.be large. If you get totally wrapped up with an operating system
which is peculiar to a particular set of ﬁardware you're traéped.‘
You're just going to héve to rework it on another machine. It

is a long-range goal, as yet unachieved, to minimize this problem.

.We've considered the problem some because one of the obvious questions

thaﬁ arises when you have a system which has beén’lgrgely implemented
in PL/I is: Could you put it .on another machine?. The answer.is
"Yes," although I think it's stiil at the level of a '"technical
challenge" even with similar hardware. To do it one would have to
go through and modify and edit all the programs to make it come

out just right. There are also some strategy changes required prbb-

‘ably unless one actually built an identical machine. Nevertheless

such a task is still preferable to having to start all over, writing

off as a total loss the ideas and efforts of several years; this is

the alternative.to working in a compiler language for system programming..

I don't really see how there'é going to be any progress in the field
. ' system

until we stpp killing off our/children.

In light of the fact that you bemoan the lack of systemization and

I get the impression perhaps it's not quite time to standardize and

so forth with PL/I as it is, at the same time it strikes me from your

Revised Draft- - 23-- _ . 3/27/68

comments that you probabl&, you in your project, know something
more about machine characteristics that are suitable for or unsuitable
for a language iiké PL/I if not PL/I itself. Do you have any
comments to make there? That is, rather than carrying PL/I to
another machine which ié again incompatible, what about designing
a machine which would make PL/I a useful tool, a more useful tooi?
At Well, I think it's useful now. I don't think one has to apologize
| for the language.
Q: I mean more useful, I mean more 1éea1.
A: The fact that we've gotten down to a level of only two or three times
" clumsier than hand code is'perfectly good enough for many applications.
The problem at the moment is that you can stray off the path; it's
like skiing down a mountain and going off the trail into the woods
unexpectedly. Some of the problems are intrinsic complications of
the language, and to some extent it has to be streamlined to do a -
much better job. At present this issue exceeds in effect'any hard-
ware improvements to favor PL/I. As far as being accepted as an in-
dustry standard, I guess I'm a little more laissez-faire about
this than mosf people. My own reaction is that one can judge for
himself when one has a de facto standard, and treat it accordingly.
It already is a de facto standard of some sort; and there will be
future language standards. But they obviously will have to compete
with PL/I and show that they do, at least in some sense, a better
job.
Q: You indicated that the project started out as a two-year plan. I
was wondering whether you'd comment on whether much of your échedule

was perhaps influenced by hardware problems in addition, say, to the

Revised Draft .24 - ' " 3/27/68

compiler implementation p;oblems? Whag were your principal problems?
And, talking about doing it over again, do you expect that you could,
160king béck and starting fresh and assuming no uncontrollable
factors, have done it in the two-year period? 1Is it just this
typical problem of underestimatiﬁg the complexity of developing a

major software system? -

years
A: I don't think we're embarrased that it went from two to fourf that's

sort of par for the course for a research project, and that's what
it turned out ot be. If one really wanted to predict berformance
or schedules one would have to do something one

haslalready done before. That's just what we didn't want to.do.

If we wanted to meet a two-year deadline, we would have had to say,
"Imitate CTSS. Copy it slavishly." If we had done this though,

_we wouldn't have increased our understanding of computer utilities
and we would have propagated many system design 1imitétions. I
think one really has to face up to the fact that if you're going to
try something new whether it be a language or a sysﬁem, you had better
leave yourself some slack. A factor.of two is pretty routine‘on
research programming projects. We were facing three major pfoblems
all at once: a new language, new hardware, and new operating system,
not to mention the fact tﬁat«we h;d ' : . three

in
organizations involved/three geographical locations.

