&

.\ii'g'

GENERAL

COMPANY

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS

TO: R. C. Daley
F. J. Corbato
J. M. Saltzer .~

FROM: R. A. Freiburghouse

%) ELECTRIC

. TELEPHONE 491-6300

March 25, 1969

. CAMBRIDGE

INFORMATION
SYSTEMS
LABORATORY

The attached document is a draft of a paper which | plan to present

at the Fall Joint Computer Conference.

in that the accompanying diagrams are not included.

and opinions are welcomed.

/me

attachment

Tl

It is somewhat incomplete
Your comments

A AT 4

Robert A. Freiburghouse

THE MULTICS PL/| COWPILER N W (A-J‘,u-\'m._

. | _ 5 v%} . -
1. INTRODUCT ION o o/ IV "
S {54
: , ‘ A
The Multics PL/| compiler is in many respects a "second genération" >
PL/I compiler. It was built at a time when the language was considerably
more stable and well defined than it had been when the first compllers i
~ were built. It has benefited from the experlence of the first compllers
and avoids some of the difficulties which they encountered. The Multics

compiler is the only full PL/I compiler wr1tten in PL/I and is the first

PL/I compller to produce highly efficient object code.

1.1 The Language
The Multics PL/I language is the language defined by [BM publication
Y33-6003-0 dated March, 1968. At the {ime {his'paper'w;s written

most language features were implemented by the compiler but the run

time library did not include supﬁort for input and output, as well as s |
several lesser Featﬁres.. Since the Multics operating sys{em provides' YkpffFﬁ
. . , . C N .
a form of tasking whichi;oes not permit the data sharinggrequired by fswru,ﬁk”\
| - - | = O
PL/| tasking, PL/| tasking was not implemehted Interprocess communica- My\“%\:*k
e O
tion (Multics. tasking) may be performed through calls to operatlng «”»¢§%g¢vws

system facilities.

1.2 The Svgtem Environment

The compiler and its-object programs operate within the Multics
operéting system. The environment prq?ided by this system includes

a virtual two dimensional address space consisting of a large number

. L] ' -2-)

qf_éegmeng;.. Each segment is a lineaf address space whose addrésses
range from O to 64K. The enti?e virtual storé.is'supported by a

paging mechanism which is invisible to the program. Each program
opérating in this environmen{ consists of two segments: a text segment
c§ntaining a pure re-entrant procedure, and a linkage segment cohtaining
out-references (links); deFinitionéA(entry names), and- static storage
local to'the'progfam. The text’segment'of each'prog:ém is sharable

by all other usérs 66 the system. Lfnking to a called program is

normally done dynamically during program execution.

1.3 lmglemgntgtigp Technigues

| ‘ S |
The entire compileg&g&s written in a subset of PL/I called EPL.

vk T\ : ‘, _ .
Fh+s-mmmr!n*nnﬁrgee—ueod—%e—émplgkﬁka the Multics operating systemJ .
\}wlj et L’/

. : uv
EPL is a large subset containing most of the complex features of B - rk
PL/I." The Multics PL/| compiler can compile itself and the operating L

system. : _ ' - : _,;//”’;’f’.
The compiler was built and de-bugged by four. experienced system

programmers in 18 months. All program preparation was done on-line

using the CTSS time-sharing system at MIT. Most de-bugging was done

in a batch mode on the GE645, but final de-bugging was done on-line

using Multicé;

Tﬁe extremely short development time of 18 months was made possible
by these powerful tools. The same desigh.prdgfammed in a macro-
assembly lahguage'using cérdviﬁput andfbatched runs would have required

twice as much time, and the result would have been extremely unmanageable.

i
1.4 Design Objectives
The project'; desigh decisions and cho}celbf techhiques were influenced
by the Follg&ing ob jectives: ‘
1. A correct implemenfation.of a_reasoﬁably complete PL/|
language. | | .
2. A cohpiler whose object coae was ag efficieg@ as that pfqduced

by most Fortan compilérs;

3. Object program compatibility with EPL ob ject programs

-and other Multics languages._A
4e An extensive compile time diagnostic facility.

~ 5. A machine independent compiler cépable of bootstrapping

itself onto other hardware. .

2. AN OVERVIEW OF THE COMPILER

A phase is a set of procedures which perform a major logical function |
of compilation such as syntactic analysis. A phase is not necessarily
a memory load or a pass over some data base although it may, in some

cases, bé either or both of these things.

The notion of a phase -is particularly useful When discussing the
organization of the Mult{cs PL/I compiler. The dynamic iinking ;nd

. paging facilities of the Multics environment have théveffect of making -
available in virtual storage only tﬁose specific pages of those
particular procedureS'which.are rééerepced'dﬁring’an exebutiép.ﬁf

the compiler. A phase of the.Multips PL/I COmpilér is therefore

\ .:

| ==

|

only a logkcal grouping of procedures which may call each other. The
PL/| compiler. is organized into five phases: Syntactic Transiation,
Declaration Processing, Semantic Translation, Optimfzétion, and Code

Generation. '

2.1 The Internal Representation

The internal FepresentaiionAoF the progrém being compiled serves as

the interface between phases of.the coﬁpiler._ The iééérnal répreéenta—
tion is organized into a modified tree structure (the prograﬁ tree)
consisting of nodes which represent the componéﬁt parts of the program -
such as blocks, groups, statements, operators, operands, and declarations.
Each node méy‘be logically connected to any number of other nodes by

the use of pointers.'

Each source program block is represented in the program tree by.a
block node which has two iists connected to it: a statement list

and a declaration list. The elemen{s of the declarétion list are
symb§1 table nodes representing declarations of idehtifiers'Within
that block. The elements of the statement list are nodes representing
the source statements of that block. .Each statement node contains

the root of a computation treé which représents the ope}ations‘£o

- be performed by that statement. This computation {ree consists of

operator nodes and operand nodes.

The operators of the internal representation are nAoperand operators
:whose'méaning closely parallels thaf of ‘the PL/"SOUFCG 6pefators.

The form of an operand is changed by -certain phases, but operéﬁdg

-5=

|
!

generally refer to a declaration of some variable or ‘constant. Each
operand also serves as the root of a computatlon tree which describes

the computations necessary to locate the item at run time.

This intérﬁal representation is ﬁachine independent in that it does

not reflect the 1nstructlon set, the addre551ng propertles, or the

_ register arrangement of the 645. The first four pha$es of the compller~
are also machine independent since they deal only with this machine
indepgndent.internal representétion. Figure 11-1 shéws the in{efnal

repreéentation of a simple program.

3. SYNTACTIC TRANSLATION .

Syntactic analysié,of PL/I'prograﬁslié basically no more difficult
than syntactic analysis of other languages such as Fortran. PL/I is
a lafgef language containihg more syntactic constructs, but it does
ﬁot present any significantly new problems. The syntactic tfanglator

consists of two modules célled.the lexical analyzer and the parse.

3.1 Lekical Analysis

The lexical analyzer organlzes the 1np§t text into groups of tokens
which represent a statement. It also creates the source llstlng file
 §nd builds a token table which contains the source representatlon of

all tokens in the source prdgrém. A token is an identifier, a constant,
an operator or a délimiter' The lexical analyzer is called by the parse

each time the parse wants a new statement.»

- The lexical analyzer is an approximation to a finite state machine.

" Since the lexical analyier mus{’ﬁrbduce dytput as well as recognize

l‘ e

tokens, action codes are attached to the state transitions of the
finite state machine. These action codes result in the concatenation
of individual characters from the output until a recognized'token is

1

formed.

The token table produced by the lexical analyzer contains avsingle
entry for each unique token in the éogrce prgéfam.'_§§;rching of the
token table is donevutilizing a hash coded scheme which provides
quick access to the table. Each token table entfy contains a po}nter'
. which may eventually point to a declaration of the token. For-each
statement, the lexical analyzer builds a vector of pointers to the
tokens which were Fognd in the sta{ement. This Vec&or serves as fhe
input to the parse. Figure I11-1 showéla simple example of’lexical.

analysis.

3.2 The Parse

The parse consists of a set of possibly recursive procedures, each
’ ’ ’

of which corresponds to a syntactic unit of the language. These

>

| . N |
procedures are organized to perform a, top down,analysis of the source
_ L A , .

program. As each component of the prog;ém is recognized, it is
transformed into an appropriate internal representation. The completed
internal Eepresentatibn is.a program tree which reflects the relgtionshipsb
between all of the components of the original source‘program. Figure

Qeiw\’ts 0‘9 Yot

I11-2 shows theVparse of a simple program.

Syntactic contexts which yield declarative inférmation are recognized

by the parse, and this.information is passed to a module called the

W

|

context recorder which constructs a data base .containing this
information. Declare statements are parsed into partial Symbbl table

nodes which represent declarations.

1

3.3 The Préblem of Backup

 The top dowh’method of syntactic analysis’is used because of its
simplicity and flexibility. The use of a simple statement recognition

algorithm made it possible to elimiqgte all backuyp. THe statement
fecognizer identifies tHevtype of each statement before the parse ‘
of that statement is attempted. The algorithm used by this procedure
first attempts to recognize assignment statements using a leFt‘io |

right scan which looks for token patterns which are roughly analogous

to X=or X () =. If a statement is.hot recognized as an assighment,

its leading.token is matched against a keyword list to determine the
statement type. This algdfithm is very efficient and is able to .
positively identify all legalistatements without requiring keywords to

be reserved.

4. DECLARATION PROCESSING

PL/1 declaration proceséing is complicated by thé.great variety of
‘data attributes and by the context sensitive manner in which they are
 derived. Two modules, the contexf'processor and the declaration

processor, process declarative information gathered‘by fheAparse.

4.1 The Context Procéssor

The context processor scans the data base containing contextually
derived attributes produced du%ing'the_parse by the context recorder.

It either augments the partial symbol table created from declare

w¢A“”;*i.

. 8-

sta{ementsjor creates new declara{ions‘haVing the same format as
those derived from declare statements. This activity creates contextual

and implicit declarations.

4.2 THe Déclaration'PrOCessbr

The declaration processor develops sufficient information about the
variables of the.program so that tﬁey'may be éllpcat§d¥$torage;
initialized and accessed by the program's opeyatoré. It is organized
to perform three major Fantions: the preparation'QF‘accessing éode,
the computation of each variable's storage requirements; and {he

creation of initialization code.

<—

All machine independent-characteristics, such as the number of bits

per word and the alignment requirements of data types;_are contained

in a table. [?Ee declaration processor is relatively machiﬁe'independengzs

All computations or sfatements produbéd Ey the declaration processor
have the same internal représentatibn as source language expressioﬁé
or statementé. Later phases of the compiler will not distihguish

between them.

4.2.1 The Uée of Based Reférences by the Declaration Prdcessor

The concept of a based reference is uséFUl to the understanding of

PL/| data accessing and to tEe implementation of a number of laﬁguage
features. A basedrdeclara{ion of the form DCL_A BASED is referenced
A by a based reference of the forﬁ P> A, where P is a pointer.to the

storage occupied by a value whose descriptioniis'given'by the declara-

tion of A. Multiplé instances of data having-the characteristics of

-9--
! :

A can be referenced through the use of uniqué-bointers,‘i.e., Q> A,
B => A, etc. -

The declaration processor implements a number .of language features by |
transforming them into suitable based declarations. Automatic data
whose size is variable is transformed into a based declaration.

For example the declaration:

e

DCL A(N) AUTO;

-

becomes
"DCL A(N) BASED(P);
where: P is a compiler produced pointer which is set upon entry to the

declaring block.

Based declarations are also used to implement defined data and -

parameters. For example:

- DCL A(N) DEFINED B;

becomes
DGL A(N) BASED‘(ADDR(B));
and |
X: PROC (C); DCL Cj-
becomes , ‘
X: PROC (C); DCL C BASED(P);

‘where: - P is a pointef which points to_thelakgument corresponding to

the parameter C.

4.2.2 Data Accessing

The address of an item oF,PL/IAdatalcqnsists of three basic‘parts:

a pointer to some storage location,:é wqrd'offset from that location

i 0- - - -
| o | |
and a bit offset from the word offset. Either or both the offsets '

may be zero. The term "word" is understood to refer to the addressable

' unif of a computer's storage. o : '4-, o ' \ VJ&J'in:;’J

Example 1 s CyaE
» - N
DCL A AUTO; . S , §°H§ ,»&**'3“NMj;
The ada}ess gf A consists of a pointer to the declaring block's \ gk,mé”;j% wh.
~automatic storage, a Qord of fset within that automatfclstofage and a
zero bit offset. - |
Exémple 2 . | ‘ 'A,L
ool x

2 A BIT(5),

2°B BIT(N);
When .referenced by P_=> B, the address of B is a pointer B, a "zero word
offset, and a bit offset of 5. The WOEd offset may include the distance
from the origin of the item's storage class, as was the case with the, .~Q
first example, or it may be only the distance from the ledgzzggg QV*
containing structure, as it was in the.last example. Subscripted . ,
array element reférences, A\lrﬁ; or substring references, SUBSTR(X(fiJX, ‘:iw)“S‘A

may also be expressed as offsets. The term "le el-o e" refers to all XN»I \wdo

x"

variables which are not contained within structures.

4.2.2.1 Offset Expressions

The declaration processor constructs offset expressions which represent
the distance between an element of a structure and the data origin of its

level one containing structure.

-11- .

Given a de%laraiioh of the form:

DL 1 S,
2 A BIT(N),
2 B BIT(5),
2 C FLOAT;

~

The offset of A is zero, the offset of B is N bits, and the offset of

C is N+5%oun e%fto the nearest word Boundary. : R

In general, the offset of the nth item in a structure is:

bn(cn-1(5nf1)+bn-1(Cn-2(sn—2)+bn-2(“‘
| (02(52)%2(C1 (51)))-.-))) o |
~where: by is a rounding function which expresses the boundary

requirement of the kth item.
‘s is the size of the kth item.

c), is the conversion factor necessary to convert the s,

to some common units such as bits.

The declaration processor suppresses the creation of unnecessary
conversion Fuhqtioné (ck) and boundéry Func{ioﬁs (bk)'by keeping
track of the current units and boundary as.it bﬁilds the ekpreésion.»
As a result, the offset expressions'of.tﬁe previous example do not

contain conversion functions and boundary functions for A and B.

Buring the construction of the offset egpression; the declaration
processor separates the constant aﬁd'varféslé terms so that the

addition of constant terms.iS'dpne by the compiler rather than by

N

|

1 o in

accessing;code in the object prdgram. THe following example demonstrates’

- the improvement gained by this technique.

DCL 1 S
2 A BIT(S),
2 B BIT(K),
) 2vc BIT(6),
2 » BITCO); -~ A
The offset of D

is K+11 1nstead of 5+K+6.

The word offset and the bit oFFsetlaré developed_separately. Within

each offset, the constant and variable parts are séparated.> Thesé

separations result in the‘minimizat%on of addjtions and unit cénversioq{i)ér Q*Q“XQ”
Af the declaration contains only constant sizes, the resulting‘offse{s 'T;%?;
are éonstant.; If the declaration contains expressions, thenithe

offsets are expressions containing the minimum number of terms and

conversion factors.

The development of size and offset expressions at complle time

ellmlnates the need for run txme data descriptors or dope vectors.

In general, the offset expressions constructed by the declaration

processor remain dnchanged uniil'céde generation. Two cases are ()28 =
' N

‘¥~ﬂil exceptions tdvthis rule: subscripted array references, AIIAJZ, and
U‘u’ . / . .

‘sub-string references, SUBSTR(X{IMJ). In both cases, the offsets
are made unique to each reference by the actions of the semantic

translator.

-13-

 4.2.3 Allocation

_ The declaration processor creates statements in the prologue of the

The declaration processor does not allocate storage for most classes

of data, but it does determine the amount of ‘storage ﬁeeded by each
e

«\leueLAHELvarfable LevePEc%varlables are allocated within some

segment of storage by the code generator Storage allocatlon is

_ delayed because, durxng semant1c translatlon and optlmlzatlon,

additional declarations of constants and compller created variables

are made.
4.2.4 Initialization

M,,

declaring block which will initialize automatic data. It generates

assignment statemqug;g) patterns of do loops,\ﬁf statementerand V”KUJVQW”“
: : T ! - " ZM

assignment statements to accomplish the required initialization. L}(‘& ok wssigpe e
. ‘ ‘ S " .

- The expansion of the initial attribute for based and controlledAdata

is identical to that for automatic data excépt that the required
statements are inserted'into the program at the point of ellecation

rather than in the prologue.

Since array bounds and‘stfing sizes of static data are required by
the language to be constant, and since all values of the initial

a{tribute of static data must be cons{ant, the compiler is able to
initialize the staiic‘data at bompile time. The initialization is.

done by the code generator at the time.it allocates the static data.

1

5. SEMANTIC TRANSLATION

Tﬁe seman{ie translato} transforms the internal representation se tﬁat
it reFlectsr£he.attrieutes (semantics) of the declared variabies
without refiecting the properties of tHe object machine. It makes

a single scan over the internal representatlon of the program A
complleqf;;h+eh-had no equ1va1ent of the opt1mlzer phase and which did
not separate the machine dependenc1es into a- separate phase§feould

conceivably produce ob ject code during this scan.

5.1 Organization of the Semantic Translator .

The semantic translator consists of a set of recursive procedures which

walk through the program tree. The actions taken by these procedures

are descffbed by the general terms: dperand process}e;\\nd<ebefate}5'
transformation.” Operand processing determines the attributee,wsize
and offsets of each operator's operands."Operator'transformatien
includes the creation of an explicit representation of each operator's
result and the genera{ion of' conversion operators for those epefands

. which require conversion.

5.2 Operator Transformation

The meaning of an operator is defined by {He attributes of its operands.

This meaning determines which conversions must be performed on its

operands, and it determines the at{ribptes of the operator's result.

An operator's result is represented in the program tree by a temporary
node. Temporary nodes are a further qualification of the original

operator. For example, an add'operator whose result .is fixed-point

-15-

is a dlstlnot operatlon From an add operator whose output lS tloat1ng~p01nt
There is no storage assoc1ated with temporarxes - they wxll be allocated
either core or register ‘storage by the code generator. A temporary s

size is a édnctton of the operator's meaning and the sties of the
operator's operands. ‘A'temporary,_representing the intermediate

result of a strlng operatxon, requires an express1on to represent its

length if any of the string operator's operands have\varlable lengths

&kW&J <:_f:f;>0perand Processing

s Operands consist of sub-expressions, references to variables, constants,

L and references to procedore.names or built—intfunctions. Subeexpression
operands are processed by recursive use of operator transformation |
and operand processing. -Operand processing conrerts constants to a

qM’b;k 1§:’ETR;;;—?;;BA which depends on the context in which .the constant was

“ﬁﬁﬂ used. References to variables or procedure names are associated with

. their appropriate declaration by the search function. Atter the

search function has found the appropriate declaration,’the referenceA

may be further processed by the subscriptor or function processor.

5.2.1 The‘Search Function

During the4parse, it }s not possible for reFerences'to source program
variables to know the declared attributes of the variable because’

the PL/I language allows declarations to follow thelr use. ThereFore,
reFerences to source program variables are parsed into a Form which
contains a pointer to a token table entry rather than to a declaration
of the variable.- Figure I11-2 shows the'output of the parse. The

search function finds the proper declaration for each reférence to a

S

source proéram variablé. ‘The algorifhh employed by the search depends

heavily on tﬁe‘stfucture of the token ‘table and the symBol_table;

After declaration processing, the token table-éh{ry representing
an identifier contains a list of all the declarations of that

identifier. See Figure V-1.

The search function first tries to find a declaration Sélonging to

the block in which thé reference occurred.v lf it fails to find one,

it looks for a declaration in the néxt containing block. THis procesg
is repeated until a declarat1on is found. Since the number of
declarations on the list is usually one, the search is qu1te fast

In its attempt to find the appropriate declaration, the search Functlon
iobeys the language rules regardlng structure quallflcatlon 1t also

© collects any subscripts used in the reference and places them into

a subscript list..lDepénding on»the attributes of the referenced

item, the subscript list serves as input}to the Fuﬁciion proceséor

or subscriptor.

The declaration processor creates‘oFfse{~expreésions and size expressions
for.éll vérfébles. These expressfops; known asAaccessing expressions,
are rootedvin.a reFerence'hodé which is attaqhéd to a symbol table

node. -The referenqe‘node contains all information neéesséry'to access
the data at run time. The search fuﬁctiph translates a source’

reference into a pointer to this reference. See Figure V-2.

i -17-
i

- 5.2.2 Sébscfipting
Since each subscripted reference is unique, its offset expression
is unique. To reflect thisAin‘the internal representation,.thé
subscriptor,crea{es a unique reference node for each subscripted
réferenée. The following discussion shows the relgtibnshﬁg between
the declaredﬁarray bounds, the eleﬁent éize, the array offset'and

-“
“

subscripts.

Let us consider the case of an array declared:

| o | i .
~ BA)
L}G'th:j_— _.G(l.‘.u1,12.u2,....,ln.un) :)<’\/ W%VH’\» ‘
' W;F“ » Its element size is g and its offset is b. _ B p¢¢¢ % o X/&J\ T
uﬂ&;x<*" The multipliers for the array are defined as:) Lﬁxﬁgﬂéngik |
My = s
=1 = (unzlnf1)s

Mp-2 = (up_q=1_1+1)m,_4

m1 '= (U2-12+1)mz

The offset of a reference a(i1,i2,...;in) is computed as:

on 5 S 1\”}5&5”&)%
V+Z iJmJ ' | V\VJ(S\\//(’//

. J=1 . : ' ‘, - - \V/qdiék;a¢ uéug
where: ‘v is the virtual origin. The virtual 6rigin is the offset o o V&
. . : N
obtained by setting the subscripts equal to 0. It serves as a V*m'vj‘&%fwww'

‘convenient base from which to compdte the offset of any arréy element. 9;,

During the construction of all expressions, the constaht térms'ére
separated from the variable terms and all constant operations are

performed by the compiler. Since the virtual origin and the multipliers

i

i . -18-

are common to all references, they are constructed by the deélaration

procéssor and are repeatedly used by the subscriptor. .

Arrays of PL/| structures which contain arrays may result in a set of

multipliers whose units differ. The decléraﬁion:

bl

DcL 1 S(10),
2 A PTR,

;

2 B(10) BIT(2);
yields two multipliers of different units. The first multiplier is
the size of an element of $ in wqfds, while the second multipliér is
_4the size of an element of B in bits. Array pafameters which may
correspond to an array cross section argument must receive their
multipliers from the argument, since the arraagement QF the crosé

section elements in storage is not known to the called program.

5.2.3 The Function Processor

An operand which 'is a reference to a procedufe is expanded by the function
. el . A :

processor into a o¥f operator and possible conversion operators.

Built-in function references result in new operators or are translated

into expressions consisting of operators and operands.

5.2.3.1 Generic Procedure References

A generic entry name represents a family of procedures whose members

require different types of arguments.

DCL ALPHA GENERIC (BETA ENTRY(FIXED),
GAVMA _ ENTRY(FLOAT));

A reference to ALPHA (X) will result in a call to BETA or GAMMA

depending on the attributes of X.

| | C 19
tho declaration processor chains together all members of a generlc

~family, and the function processor selects the approprlate member of

tho family by matching the arguments used in the reFerence with the

/

declared argument requirements oF each member. When the appropriate

s a reference

»ember is found, the original reference i rewrltten

v the eelec{ed member .

:,2.3.2 Arpument Processing o ‘ s

Tne function processor matches arguments to user—declared procedures
asalnst the argument types required for the procedure. |t inserts
-anversxon operators into the program tree where approprlate, and 1{

tssues diA poshes
PO E

when it detects 111ega1 cases.

“ae return value of a function is processed as if it were the nt+1th
argument to the procedure, eliminating the distinction between

:ubroutines and functions.

Tﬁe.Function~processor determines which argumeo{s may possibly -
wzrrespond to a parameter whose size or array bounds are not specified
i the called procedure. In this case, the‘argument list is augmented
"~ include the missing size inFormetioo. Avmore detailed description

»* this issue is given later in the discoseioh of object code strategies.

2+%2.3.3 The Built-in Function Processor.
o built-in function processor is basically a table driven device.
e driving table describes the number and kind of arguments required

'/ sach function and is used to force the necessary conversions and

.

diagnostics for each argument. Most functions require processing

-20-

which is unique to that function, but the table driven device minimizes

the amount of this prooessing.

The SUBSTR Euilt-in‘Function‘is of particular importance'since‘it is
a basic PL/l‘string operator. It is a three argument function which

allows a reference to be made to a portion of a string variable,

i.e., SUBSTR (X,1.J) is a reference to the ith through i+j-Tth

~ character (or bit) in the string X.

This function is similar to.an array element'reference in the sense
that they both determlne the offsets of the reference. The processing
of the SUBSTR Functlon 1nvolves adJustlng the offset and length
expressions contained in the reference node of X. As is the case in
all compiler operatfons on the oFFeet expressions, the constant and
variable terms are separated to minimize the ob ject code necessary

to acces the data.

6. THE OPTIMIZER

The compiler is desiéned to produce eFFioient ob ject code withoot.the
~aid of an optimizing phaae. Normai execution of the compiler will
by-pass the optimizer, but if exten51ve1y optimized obJect code 1s
desired, the user may set a compiler command option whlch w111 execute
the optlmlzer.’ The optimizer consists of a set of procedures which
perform two major optimizations: ‘common sub-expression removal and

removal of computations from loops.

o BT R
i

The data bases necessary for these optimizations are constructed by.
thedparse and the éemantic‘translafor. These data bases coneist of

a cross-reference structure of statement labels and a tree structure

- representing the DO groups of each block. Both optimizations are done

on-a block basis usidg these two data bases.

The optlmlzer is the only phase of the compxler wh1ch is not 1mp1emented
:at the time this paperbﬁ§ written. The compxler does construct all
of the data bases required by the optzmxzer and does determine the

. . xeessipe Comple dimes |
abnormality of all variables. ‘may requ1re
that general sub-expression optimization be restricted to accessing
computations. These computations are generally not under therontrol

of the .source programmer and are often redundant;'par{icularly when

they result from PL/| based data references:—::j\

(:: Experience may show that specialized optimizations are more proFiteble

than the geheral optimizations described here. If this proves to be

the case, the design of the optimizer will be modified.ﬂg?he optimization

i

of PL/| programs is not significantly more difficult than the optimization
of Fortran programs. The concept of abnormali{y applies to both
languagee and is discussed in more detail in the next section.. The

condition prefix of PL/I consfrains the circumstances in which

v computatlons may be removed from loops. This pre?ix specifies a state

in which a computation must be performed (i.e., divide by zero xnhxblted
etc.). A computatlon cannot be moved to a region oF the program whose

state differs from the state oF the orlgxnal reglon.

| N
N '

6.1 Abnormal ity

-
!

Abnormal variables and values whlch depend on abnormal verlables
cannot becone candidates for optxmlzatlon. A variable is abnormal to
some block if its value cen be altered during the execution of the
block without an expllcxt 1nd1cat10n of that fact present. 1n that
block. The number of 51tuat10ns which cause abnormality’ depend on
i&&fﬁgsz the properties of the language and the: ‘range over which
the optimizer expects.the values to'hold. lf values are not'expected '
to hold across a call or functionureference, the number of situations
which constitute abnofmality in the PL/Il language is greatly redueed.
Table 1 shows the conditiens which cause ennormality in PL/1 without
tasking. The compiler does not depend on the programmer to correctly
use the source langlage attributes pormal and gbnermal. It determines .

this attribute by examining the usage of the variables.

7. THE CODE GENERATOR

The code_generatof is the machine dependent portion of the eompiler.
It performs two major functions: it allocates data into Multics
segments and it generates 645 machine instructions from the internal

representation.

7.1 Storage.Allocation

A moddleibf the code generator called the etorage aliocator scans the
symbol'{éble allocating stack sterage“For constant size automatic da{a,
and linkage segment sterage for internel static data. For eacn
external name the storage allocator creates a link (an out-reference)
or a definition_(an entry pdin{) in the'linkage segment..'All internal

static data is initialized as its storege is allocated.

.
| -23-
'\ |
Due to the éynamic linking and loading charactéristics of" the Muitics}
environment, the allocation and initialization of éxte;nal static
sto}age is réther unusual. The compiler creates a special type of
link which causes the linker module of the operating system to create
and initialize the external data upon_%irst referencé._ Therefore, if

two programs contain references to the same item of external data,

the first one to reference that data will allocate_aqd‘initiaiize it.

7.2 Code ngeraiiog

Thevcode generator scans the internal fepresentation transforming
it into 645 machine instructions which i{ outéuts into the text
segmént. During this scar, the code generator allocates stofage
for temporaries, and maintains a history of the contents of index

registers to prevent excessive loading and storing of index values.

Code generation qonsisté of three distinct activities: 'address
computa{ibﬁ,loperator selection add macro‘expansion; Address -
computation is the prbcess of transforming the offset expressions of a
reference node into a machine address or an instruction sequence which
leads to a machiné address. Operator selection is the translation

of operators into n-operand macros which reflect the properties of

the 645 machine.

A one-to-one‘relaijonShip often exists between the macros and 645
instructions but many operations (load long string, etc.)“have no
machine counterpart. All macros a?e expanded in gctua1.645 codé
By the.macro expander whicH uses a céde pattern‘table (macro skeletons)

.to select the specific instruction sequences for each macro.

Mothes

8. OBJECT CODE STRATEGIES

8.1 The Ob ject Code Desion

The design of the object code is a compromise between the speed
obtainable by straight in-line code and the necessity to minimize the

number of page faults caused by large object programs.

The length of the object program is minimized by the?extensive use

of out-of-line code sequences. These out-of-line code sequences
Malhes

represent invariant code which is common to allVPL/| obJect programs,

. ouhot- Lt Sequeyees

are not in any respect interpretive. The obJect code produced for
each operator is very hxghly {%;faﬁyj to the spec1f1c attributes of

that operator.

All out-of-line sequences are contained in a single "operator" segment
which is shared by all users. The in-line code reaches on out-of-line

sequence through a transfer instruction and return is effected by

another transfer. The time overhead associated with the transFers is

more than redeemed by the reduction in the number of page Faults'
caused by shorter object programs. System éefFormance isﬁimproved by
insuring that the pages of the operator segment are‘fgjffizs Eetained
in storage. Figure VI1-1 shows the relationsbip of tHe operator segment

to several object programs.-

8.2 The Stack

PL/I object programs utilize a stack segment for the allocation'ef
all automatic data, temporarig d data aesocia{ed with on#conditions.

The stack is extended (pushed) upon en{ry to block and is freed (popped)

Mvt 15

: 525_

- upon return from a bldck. Prior to the'executiontofteach statement

- it is extended to create sufficient space For any variable length

string temporaries used in that statement Constant size temporarles
are allocated at compile time and do not cause the stack to be extended

for each statement.

8.3 Prologue and‘Epilodue
: ' .

The term prologue describes the cbnputations which aretperformed after
block entry and prior to the execution of the first sOutce statement.
Thesé actions include the establishment of tne conditton prefix, the
computation of the size of variable size autamatic data,.extenston of
the stack to allocate automatic data, and the initialization of autbmatis)
data. Epilogues are-not needed becauss all actions which nust be

undone upon exit from the block are accomplished by popping the stack.

The stack is popped for each return or non-local goto statement.

‘8.4 Acqsssing of Data

PL/1 object code addresses all data, includtng members of variable
sized structures and arrays, directly through the use of in-line code.

If the address of the data is constant, it is computed at compile time.

‘If it is a mixture of constant and variable_terms,-the constant terms

are combined at compile time. Descriptors are never used to address or

allocate data.

8.5 $String Operations

All strlng operations are done by 1n—1xne code or by’ Mtransfer"

typa subroutinized code. No descrlptors or calls are produced for

26—

- string opérations. The SUBSTR built-in function is implemented as a
part of the normal addressing code and is therefore as efficient as a .

subscripted array reference.

8.6 String Temporaries

A string temporary or dummy is‘desfgned in such a way that it appears

to be both a varying and non-varying string. This means that the

~ programmer does not need to be concerned with whether a string expression

is varying or non-varying when he uses such an expression as an argument.

8.7 VMarying Strings

The PL/| implementation of varying strings uses a data format which
consists of an.integer followed by a non-varying string whose length
is the declared maximum of the varying striné. The integer is used to
hold the current size of the string in bits or characters. Using this
data format, operations on varying strings a?e just as efficient as

operations on non-varying strings.

8.8 On-Conditions

The design of the condition machinery‘minimizes the overhead associated
with enabling and reverting on-units and transfers most of the cost:to
the signal statement. All data associated with on-éonditidns, iﬁcluding
the condition preFig, is allocated in the stack. The normal popping

of the stack reverts ail enabled on—unité and restores the proper
condition prefix. Stack storage associated with each block is threaded
backward to the previous block. The signal statement usés this thread

to search back through the stack looking for the first enabled unit for

-27-

the condition being signalled. Figure VI1-2 shows the organfzetion.

of enabled on-units in the stack.

8.9 Argumenﬁ Paseiho
The PL/I language permits parame{ers to be declared wi{h'unknown

' array bounds or strlng lengths In these Cases,.the missing eize
information is) to be supplled by the argument which correspOnds
to the parameter. This m1551ng size information is not explicitly
supplied by the programmer as is the case in Fortran, rather. it must

be supplied by the compiler as shown in the following example

SUB: PROC(A); MAIN: PROC;
DCL A(*) FLOAT; DCL SUB ENTRY
: DCL B(10) FLOAT;

Wﬁd,,ﬁi CCALL SUB(B);

‘ bomcob O'F'H« Avea 13_ WG
W ™ diu AvqLirewt Ligk of e crll o Suid

<=~ The declaration of a called procedure may or may not include a

descrlptlon is not supplied, then the calllng program must assume thal h55uiues

Bounds of\
‘H& Rvi uuw('
qum%?u .
Colrvesfs A‘S
wit,

argument descrlptors are needed, and mus nclude them 1n all calls to

the procedure. If the complete argument description is supplled to

the calllng program, the compiler can determlne if the descrlptors

are needed. ﬁ_‘_’_,,——”}

Since descriptors are often created by the calling'procedure but not

used by the called procedure, it is desirable to separate them from

the argumenf‘information which is always osed by the called procedure.

‘ | TS

Commuﬁication between prééedures written in PL/I and other languages

is facilitated if the other laﬁguages do not Eéed to concern’{hemselves
with PL/I é(gument deécriptors. The Multics'PL/l implementation of the
argument li%l is shown in Figure VI1-3. Note that the argument pointers
point direc{ly to the data (facilitatjng'communication between languages)
and that the desqfiptors'are optional; Since descriptors contain no
addressiﬁg‘information, they afe quite often constanﬁ_and.éan be

R

prepared at compile time.

9. CONCLUSIONS

Several insights and opinions were formed by the Multics PL/I project

which are of general interest.

1. It is feasible, but difficult, to produce efficient objeét

code for the PL/I language as it is preseﬁtly defined.

2. The difficulty of building a compiler for the current
languagéAhas been sefiously underestimated by most implementors.
Unless the language is-markedly improved and simplified, this
problem will continue to restricﬁ‘the aQailability and

' LA

- acceptance of the language andvlead to the implementation

of incompatible dialects.

| il
3. Simplification of the existing language.é2$$d_make it more

suitable to users and implemehioré. The language ‘can be

simplified and still retain its "universal" character and N %& ‘
: ’ XV

g
- \};%jk'fwz§§yi .

o~

capabilities.

-29-

e The language contains a number of concepts whlch make it an
extremely power ful system programming language An efflcxently
1mp1emented language contalnlng these concepts is markedly

superior to macro-assembly languagQSFor system programming.

10. ACKNOWLEDGEMENTS |

The author wishes to express recognition to member s gf\fhe Multics
- PL/I Projedt for their contrinutions to the design andtimplementatkon
of the-compiier. J. D. Mills was responsible for ‘the de31gn and
1mp1ementat10n of the syntactlc analyzer and the PL/I command‘ﬁ\
B. L. Wolman designed and built the code generator and operator segment,
and G. D. Chang implemented the semantic translator. Valuable advice
and ldeas were p{OV%ded by A. H. Kvilekval of General Electrlc The
com ad oy

earlier work oFPDr M. Mcllroy and R. Morris of Bell Telephone Laboratories

provided a useful guide and foundation for our efforts.

