7. S4rzen

i

INTERDEPARTMENTAL

M‘A“SACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASS. 02139
iy ¥

Fheefieof Information Processing Center

July 6, 1971

TO: F. J. Corbato J. R. Steinberg
R. Roach N.I. Morris
W. Hayden S. H. Webber
J. W. Gintell J. H. Saltzer
V. Voydock

FROM: T. H. VanVleck, K. A, Willis

The attached is a draft of our MCB on User control.

A
Attachment 1\"‘/< i k S gfﬂ
e G

INTERDEPARTMENTAL

MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASS. 02139

from the oficeof Information Processing Center

TO: Distribution
FROI\[I: Thomas H. VanVleck, Keith A. Willis
SUBJECT: System Control Changes
DATE:
The attached documents describe some of our ideas about
changes to the system control programs. All kinds of changes are

proposed, from big to little and from obvious to not-so-obvious. We
would like additional ideas.

Attachment

Proposed change:

Divide the information in the answer table among 3 tables.
Purpose:

There is currently a restriction that a logged in user be associated
with exactly one process and no fewer than one terminal. (The dial command
allows a process more than one terminal.) The change will free this restriction

allowing the following conveniences.

1. Multiple processes - A user may wish to create additional

""at the same time' as his main process.

processes to execute
2. Absentee users - The proposed implementation of absentee

users keeps a separate list of active processes, mainly because

an answer table entry must currently be associated with a terminal,

The change will allow all information about absentee users to be

managed in the same manner as other users.

3. Disconnect - If a user wishes to leave his terminal but keep his

process running, he will be able to do so with a ""disconnect" command.

Design requirements:

Split the answer table information among 3 tables: login user table,
process table and terminal table, the login user table will contain an entry for
each user with a master process. The process table will contain an entry for
each active process. The terminal table will contain an entry for each existing

terminal line.

Each entry in the terminal table will be associated with an event channel
as entries in the current answer table. Also, each entry in the process table
will be associated with an event channel because a process need no longer be

associated with a terminal and its event charinel.

This will increase the events being listened to by the number of active
processes. The number of processes will continue to increase, of course, as

the load units increase, Currently these events exist:

for each entry in lines file (104)
for updating system tables (up_syctl)
for dial channel

for absentee

_ = e e e

for accounting update

temporary events:

2 for shutdowns

several others, too.

Implementation:

The entries in these tables will be related as follows.

An entry in the login user table will contain:

1. arelative pointer to an entry in the process table if the user

has at least one process,

2. a relative pointer to an entry in the terminal table if the user

has at least one terminal,

If a user has more than one process, each entry in the process table
will contain a relative pointer to the next entry. If a user has more than one
‘terminal, each entry in the terminal table will contain a relative pointer to
the next entry.

Each active entry in the terminal table and process table will contain

a relative pointer to the associated login user table entry

Examples:

A. A logged in user who uses none of the new features will have
1 entry in the login user table which points to 1 entry in the

process table and 1 entry in the terminal table.

B. An absentee user will have 1 entry in the login user table which

points to 1 entry in the process table.

C. A user who has multiple processes will have 1 entry in the login user
table which points to the entry for the master process which points
to a slave process. (If more than 1 slave process, the 2nd will be

pointed to by the first.)

D. A user who dials into another terminal will have no login user
» entry. His terminal will be chained to the terminal entry associated

with the login user he dialed.

The new data bases will save approximately 6 records. The size
of the answer table is currently 15 records in 1 segment. The login user
table will occupy no more than 4 records of a segment until more than
approximately 62 users are logged in. The process table will occupy 1
record of a segment unless more than 63 processes are active. The terminal

table will occupy about 4 records of 1 segment.

Answering service programs to be changed:

The major functional changes are that a new entry point will be added
in dialup to receive event messages from processes and that after an absentee

process has been created it will appear as any other process.

act_ctl

Simple changes that will not alter cpu time or size of program considerably.
$act__ct1_init - It will be passed pointers to all 3 tables.

$open account - minor change - The pointer passed will be to a login user
table entry, so in order to get some information into the accounting card a
reference will be made to the process entry. This assumes that there will

be ‘only 1 accounting card for each user (even though multiple processes).

$dp - It must reference the terminal entry to find login time.

$update - Instead of searching through the answer table to charge Ccpu usage,
it will search the process table. It will also search through the terminal table
to charge connect time. A user will be inactive only if all his processes are

inactive. A reference must be made to the login user table.

admin

Minor changes which will keep éfficiency and size about the same.

$admin_init - It will be passed pointers to all 3 tables.

$bump user - It is passed a pointer to the login user entry to be bumped. It
raust now check if the user has a terminal before informing him he is bumped.
Then it must wake up the master process, so a reference will be made to the

process table.

$bump - When a bump for all users is requested, a search should be made
through the login user table and then the master process for all active entries

will be woke -up.
$remove - It will search through terminal table instead of answer table.

$wvarn - If a user is found in the 1ogin‘user table, then all associated

terminals will be given the message.

Very minor changes.

as_ $init - Initiate all 3 tables and pass pointers to all 3 tables to the
following procs: ‘

dialup $dialup init

" 1g ctl $lg ctl init
dial_ct1_$dia1__init
asu $asu init
admin $admin init
act ctl $act ctl init

pass a ptr to login user to up_sysctl $up sysctl init

asu

Minor changes which decrease size of program.
$asu init - It is passed pointers to all 3 tables

$asu remove - It should signal process event instead of destroying

process and logging out itself.

$asu attach - It will search through the terminal table instead of the

answer table.

$asu_1isten - It will use the terminal table instead of the answer table,

aswa
Minor changes.
All entries will get pointers to a terminal table entry.

$tty new proc - It will also be passed the process id.

dial ctl
Minor changes should increase efficiency.
$dia1_init - It is passed pointers to 3 tables.

$dial term - It is passed a pointer to the terminal table entry. Ty find the
master process, a simple search through the processes corresp;:awjing 1o the
login user entry for terminal is needed instead of a search through the enti}ve

answer table.
$dial req - It will search through the process table to find the process that

signalled it, instead of the answer table. To find if dialok, it must reference

the login user entry.

$dial ctl - It will be passed person, project, account, result as parameters
instead of taking that info from the answer table. It searches through the
login user table instead of the answer table to find if user is ok. If dial is ok,
a link will be made to the master process to get info(procid etc.) to put in

terminal entry for slave.

$dial broom - It is passed a pointer to the process entry and instead of
searching answer table for all slaves, will simply link to all terminal entries

from the login user entry.

up sysctl

Minor changes-simply use login user table instead of answer table.
up_prit_

Minor changes - simply use login user table instead of answer table.
up pdt

Minor changes - Use login user table instead of answer table and when search
is made through login user to find if a user should be bumped, a reference must
be made to the process table if any are found. The bump should be sent over the

process channel.

dialup

Extensive changes which will increase the size of code and may take longer

to execute.

$dialup init - It will be passed pointers to all 3 tables. The procedures
lock and unlock will use login user table instead of answer table. (They may

be eliminated.)

$dialup - It will be signalled by an event channel from a terminal. (as explained
later events from processes are sent to dialup $dialup proc.) If the sender of

a message is not known, then a search must be made through the terminal table.

to login - It will use login user table in place of answer table header information
and will call dial ctl and lg ctl $login with extra arguments (person, project,

acéount', and result).

If login is successful, an entry in the process table will be created and

linked to the lu entry created by 1g ctl . An event channel will be created and

set to signal dialup $dialup proc. The process will then be created by cpg (which

may have to be changed *¥¥¥kdckikkk), act ctl $open account will then be called

(it must wait until after process is created).

dialup8 - executed when terminal hangs up

If a dialed console, then the master will be found and notified and the
terminal entry will be freed. Otherwise, the master process associated with
the login user entry is found and control is passed to dialup proc which treats

it as a logout {except for sending a message to the terminal).
$dialup proc - will be signalled by the following events:

" preempt
bump
system shutdown
process destroyed
inactive too long
legout
logout hold
new pré‘ic

(a hangup will be entered at a slightly different piece of code)

The process associated with the event can be an absentee, a master or

a slave. Therefore, it may have any number of terminals associated with it.

The sequence of actions will be to destroy his process and associated
event channel and then do the same for any slave processes. If the process
is a slave, it will be the only one destroyed. The process table entries will
then be freed. All associated terminals are informed of the action and lg ctl
$logout will be called with a pointer to the login user table. If the event was a
logout hold, the master terminal will be found and a transfer made to login.

All related terminals entries are cleaned up.

absentee - A change will need to be made only to the code after lg ctl $login
absentee is called. It will then build an entry in the process table and create
an event channel which signals dialup $dialup proc when sending a message.
(dialup proc may need a special case to call absentee cleanup after an absentee

process is destroyed.)

lg ctl
Major change which will lengthen code and cpu time slightly.

$lg_ctl init - It will be passed pointers to 3 tables.

14

$login - It will be passed a pointer to the terminal entry and arguments: person,
project, account, result. When it checks if user is already logged in, it will
disregard absentee users. When checking if a user can be bumped, a search
will be made through the login user table and admin$bump will be called with

a ptr to the login user entry.

If the person is validated and there is room, and entry will be built in the
login_user table and linked to the terminal entry (all info that is currently stored

in the answer table must be saved until the login*-user entry is built).

$login_absentee - It can check if a user is already logged in to allow absentee
the option of holding an absentee until its user has logged out. Basically it does
the samé thing as login except that it returns a pointer to the entry created in

the login_user table.

$logout - It is passed a ptr to login user table entry which it will free.

system control

Minor change to replace answer table with login user table.

Proposed Change

Modify accounting system to keep usage limits "on' line' and
delete the acctbl.

PurEos e

1. System usage information is currently recorded in the segment
"acctbl', with an entry for each logged-in user. In order to bill this usage,
these entries must be collected into the hist file which contains one entry for
each user. This change will allow charges to be placed directly in the pdt
(modified structure) thereby eliminating the acctbl. (The increase in size of

each pdt will still conserve records.)

2. The usage limits for each person/ project will be stored in each

pdt, allowing a cutoff for users who have overspent their account.

3. . Billing may be done for any time period without requiring a system
shutdown. The current accounting system is restricted to a monthly billing
period and requires a system shutdown to avoid losing usage figures (following

billings) for any users logged-in at the time of billing.

Design

.The structure of the pdts will be modified to contain project and user
limits and usage totals. The header will contain the project totals and the user

entries will contain the user totals. .

Charges will be made to the user's periodic total, grand total, and the
project's grand total by acct ctl $update. Charges will be made for cpu usage
and terminal connect time with the idea that in the future charges may also be
made for paging, total process time, record use, tape setup, and miscellaneous

charges.

Billing will gather the periodic totals from all pdts into the hist file. Once
the bills have been written from the hist file, a billing-reset program will be
executed to subtract the usage figures in the hist from the periodic totals in the

pdts.

Implementation

The following programs will be altered:
cv_pmf

Several master and normal keywords will be added to allow a project
administrator to enter usage limits. These include ""termination date", "dollar
limit", "epu_limit" and "terminal connect limit". The last two may be split
among shifts if desired. Defaults for all these values will be extracted from the
pdt header (a user's default limit will be identical to the projects).

See program number 1 to be written for description of how header values

are generated.

up pdt

Certain fields of a pdt will not be replaced by a pmf. These are all
usage totals and login times. Furthermore,‘ this program will set the state of
all pdt entries to 0 meaning inactive, or > 0 meaning active. (1 meaning user
may login to pdt, or 2 meaning the user may login or charge to the pdt in
proposed change for uncoupling project and account). This will be done to preserve
the usage figures of an inactive user. This means the check for logged-in users
no lonéer on a project will reference the state. The order of all entries will
remain stable to allow the accounting update to ?gference the user entry without

searching.
ig_ctl $login

When searching for a user entry in a pdt, only pdt entries with state
"active" will be considered. If a match is found, the subscript in the pdt must
be saved so it may be stored in the login-user entry (after successful login). A
pointer to the pdt is also stored in the loginmusér entry and the login time is

stored in the pdt entry.

acct ctl $open account

This will only log the users and accounts. The rest of the code manages
the building of an acctbl "card'" and may be deleted after parallel operation of
old and new schemes for a billing period. It will also keep track of the number
of crashes for a user by inspecting and setting a flag in the pdt indicating the

session is not finished.
acct_ctl $update

For each entry in the login user table, usage figures will be totaled for
all associated processes and terminals. These totals will then be added to the
following three fields in the user's pdt: user's periodic total, user's cumulative
total, project's cumulative total. The location of these fields is obtained with the
pdt pointer and user index stored in the login user entry by lg ctl $login. Users

could be checked here for limit overrun: see below.

The existing code which accumulates totals in the acctbl "card" will be

retained until a checkout of the new accounting system is completed.
acct_ctl $close account

The final usage figures for one login user entry will be totaled as in
acct_ctl $update. It will also set a flag in the pdt indicating that the session is
complete.

acct ctl $daemon_acct_init

The usage figures will be stored in one accounting file for all types of

daemons.

New Programs to be Written

1. New p'roj This program will be used to create a new pdt, and add,
char;—ge, or inactivate its user entries. It will be the only program authorized
to fill in requistion amounts in the pdt header. It will prompt the adminis-
trator for all fields to be completed in the pdt, thoroughly check all input to
the pdt and install it.

2. A command will be written to modify the structure of all existing pdts and

fill in the information needed.

3. A billing command will be written. It will gather the periodic totals from
* all pdts and store them in a Hst file along with the time of billing. The
contents of the pdts will not be altered until after the bills are acceptable

(see number 4).

This command may be activated any time after the reset billing command R
(number 4) is completed. (The billing periods are arbitrary.) If the syétem
crashes before completion then the hist file should be deleted and the billing
command rerun. (The billing will later be improved to provide automatic
restart with protection of data bases.) The bills may then be written with
the existing program "wb". If the bills are not completely written (crash
during the writing) or if they have mistakes, '"wb'' may be rerun if the date
in the current hist file matches the date printed at the start of billing (must
be manually checked.) If not, the hist was lost and the billing program must
be rerun. ey
4. Once the bills have been written correctly, the reset billing program must
be run. This program subtracts the usage amounts just billed and fills in a
rese{. date for the pdt. (The amounts just billed exist in the nist.) If a crash
occurs before the completion of the reset-billing program, it must be rerun.
(Any pdts with a reset date after the date of the hist are not altered.) If a
crash occurs at any time between the start of billing and the completion of |
resetting which destroys the hist file, then billing must be rerun. This insures
that all usage will be accounted for (but may requiree more cpu time for
billing). If a crash occurs at any time which causes a pdt to be lost, then
the best that can be done is to recover the most recent pdt. The result is the

unavoidable loss of some usage figures.

New Programs which do not need to be completed at the same time

acct_ct1_$check

This entry will compare a user's cpu and terminal connect usage with
his limits and deny him permission to login if his account is overspent
or if the projects total dollars exceeds his requisition amount. It will
also see if the time of login is later than a user's termination date.
Another entry in acct ctl may be written to check if any users have

overspent their accounts since the time of login.

- decode_pdt

This program will allow a project administrator to obtain an ascii file
of his online pdt (pmf). Master keywords will be omitted since they would

be impossible to determine.

proj billing
This command will generate a proj list from a project pdt. It will allow
a project administrator to inspect his accounts usage at any time.

Several statistical summaries will be written.

A program will be written which will cleanup the pdts. It will add all deleted
user entries which have been inactive for moge than one billing period to the

free chain. This will allow new users on the project to occupy that entry.

Proposed Change

Uncouple the concept of an account from a project.
Purpose

This proposal eliminates the current restriction that a user must charge
to the project on which he is registered. A user will now charge to a drawing-
account. This may be his project's pdt, another project's pdt or a drawing-
account pdt. The drawing-account may be specified in the user's login line or
as a default in his pdt entry. Some or all of the entries in a project's pdt may
specify a default drawing-account. This proposal is dependent on the implement-

ation of the proposed change to the accounting system.

Design

The user!s pdt entry will contain a default account name which may be
a project pdt or a drawing-account pdt. A drawing-account pdt has the same
structure as a pdt but does not correspond to one unique project. Therefore, a
project administrator may divide the charges of his registered users among

several existing pdts or a drawing-account pdt.

Each pdt entry also contains a state flag which indicates that is is active
or inactive, that a user may or may not login to the pdt, and that it may or may

not charge to the pdt.
oA

Implementation

The following programs must be altered:
cv_pmf

The master keyword Account and normal keyword account are now
meaningful. If specified in the ascii pmf, they must be followed by the name of

another pdt or a drawing-account pdt. The field state will be set to 2 if account

/4

is unspecified or identical to the pdt {(indicates the user may login and charge
to this pdt), or 1 if account specified is different from the pdt (the user may
only login to the pdt). up pdt will be modified in accounting system éhange to
retain an entry and set its state to inactive (set to 0) if a pdt entry does not

exist in the pmf replacing it.
lg_ctl $login

If the user specified an account in his login line or if his pdt default
account i.s not identical to the pdt name, the sat will be searched for a match
with the default account. If no match is found, the user will not be allowed to
login. If a match was found then the pdt will be initiated (unless corresponding
pdt pointer‘ is not null) and the pdt pointer entry in the sat will be replaced. This
pdt will then be searched for a matching user entry with the state indicating the
privilege of charging to the pdt {state=2). If not found, the user will not be
allowed to login. If found, the pointer to this pdt and the index of the matching
entry will be stored in the login user entry when it is built {if login is successful).
Attributes and other pdt information stored in the login user entry will be taken

from this pdt entry (not the project's pdt entry).

The sat will be modified to contain entries for the drawing-account pdts.

This must be done before an attempt to install a drawing-account pdt.

Proposed change:

arguments for "login"
Purpose
It is sometimes desirable to override the default specifications for

user-process initialization. This writeup proposes a syntax.

Description

The login "command' (shouldn't we do something about nomencilature
here?) has the following syntax now:
login PerSon -Project; -Account-
It is proposed to change this to:b
login Person -Person- -Project- -options-

where options may be any or all of the following:

Keyword Argument Comment
-account Accountid
-ac * Accountid
E . &t
-initproc path ° relative to homedir
-ip path
rhomedir path relative to default
-hd path
-attach - _device -usually "tw_"
-at device
-nobump - won't bump even if usually
-nb coudd.
-bf shuts off all messages-if OK S

Proposed change:

Automatic "crank"

Purpose
Certain accounting functions must be performed periodically,
but take too long to sneak them in between logins. This proposal’

describes a plan to create a special process to perform these functions.

Description

A procedure will be added to the initializer process to manage the
crank. One entrypoint will be called at system startup, as follows:
call crank__ctl_$crank__ct1_init ;

This call establishes an event call channel and sets a timer which will . -

cause an event call when the crank is to run next. The data which determine>

crank scheduling are stored in the header of the SAT (or answer table,
or somewhere) and are the folloﬁing: A
decl time next crank fixed bin (71),
[* standard system time %/
crank running bit (1) aligned, -
ﬁ/* 1 if running. | helps crash recovery */
time;between_cranks fixed bin (71),
[* 24 hours, usually */

crank wakeup channel fixed bin (71);

“ More data may be needed.

The ‘timer will eventually go off (right away, if the system crashed ;‘
during a crank or missed one) and the following event call will be made:
call crank_ctl_(ms gptr); |
The cranK ctl procedure will create a pr‘ocess by a call to cpg_, similar
to the way absentee does. . A special entry point may be necessary in cpg .
Thevcrank process will then be started. Care must be taken to count
the CPU time spent in fhe crank process as "'initializer' timg or better,
to keep a separate total, so that the ""discrepancy' error message doesn't

come up.

Termination of the crank process will be signalled to crank ctl - .
over the same event channel, and will cause the "crank running' flag to .

be reset and the ”time_next_crank" to be incremented and the next.

wakeup requested.

There should be a .shared segment which both the initializer and the

crank use to communicate. - Some of the items in this database will be:
B
a) items sent by the initializer to the crank, such as notice that the

crank is being reinvoked after a crash or is late. '

b) responses by the ¢ygnk such as error indications.

o

c) summary statistics calculated by the crank.

The crank process

the o . ”‘v‘*‘:
The crank should execute 1nhuser r1ng as an unpr1v11eged user, No |

o spec1a1 response treatment should be given it, although the 1n1t1a11zer

should wait for it to f1n1sh if a normal shutdown is attempted. = If multlple €rii

' per1ods are requ1red (e & ‘daily, weekly, and monthly) the "exec com

| f11e should use "if" to do s1mp1e cond1t10nals. | , o

: Here is a llst of some things that the crank should do:

7 da11y

: 1.. Check dollar balances and cut off overspent users.

2. Print account status report for user accounts. L el e

3. Print system status repo’rt for administrators.
4 Accumulate spendmg from 1nd1v1dua1 session record decks 1nto

account f11es and produce detalled Journal records for arch1ves : ;

‘;"Process request messages from group superv1sors for quota

7",',_;.jchanges, etc.

‘ :Perform d1sk usage accountmg

. ‘Send usage reports to supervisors. g

‘monthlz

1./,-Produce monthly bills.

2. Produce mailing labels.

3. Produce archival data as necessary (tape for SC4020°?).

4. Produce monthly summary reports for administrators.

5, Cleanlp old files.

- Other functions will, of course, be added as necessary.

- Programs should be written to be ''re-runnable' if they are

-~-used within the crank. Furthermore, if a program runs into a fatal '

error, it should do something to keep the tracks from being covered,'

and then leave a message for the initializer and terminate. The initializer -

will squawk so that operations can nofity the accounting-system

.maintainers.

X
‘e
.

Proposed change: ' AS

eleminate ""communications"

Purpose

. This segment is a problem to maintain and install, It is the

only ALM component of the current answering service,

Description , « R

Some of the items in "communications" belong in the header of

"'whotab', others in the SAT, etc.

Proposed change:

"trap' command on initializer
Purpose
To enable operations to send an emergency message to a user

before he begins working.

Description

The operator types:
trap Name Proj -options-
or |
trap ttyxxx -options-
or |
trap -id Cﬁ:nsole_id -options- | ‘
to set a trap’ on user ID,‘ GIOC channel, or terminal ID, respectively.

options may be any of the following: LA
-nolog forbid login. Normally a trai)ped user is able to log in. -

-msg "text'" send the message given by "text' to the user when trapped.

%tenip cause the trap to be unset after it is sprung once.
—off reset a set trap
or

- -reset : ' ST

Implementation

1. Add entrypoint 'trap" to segment admin.

2. This entrypoint uses a segment called "trap table' or some such

» .

declared like so:

dcl 1 trap table based aligned,

2 uchain fixed bin,

2 cchain fixed bin,

2 ichain fixed bin,

2 fchain fixed bin,

2 arg(100),
3 next fixed bin,
3 wuser char (32),
3 chan char (8), ,
3 idcode char (8),
3 text char (64),
3 temp bit (1),
3 nolog bit (1)

’ w3.uMake ut111ty routine
| PR search__trap_tab_ (1 sPseees);
. which searches the table starting at ' 1 and checks the termmal

ll "t

‘located by against each entry. If a match is found, sends

message to operator, to user if requested, etc.

4, Change dialup to call search trap tab_ for both 'cchain' and ~"‘i¢;11:&inf"-

5. Change 1g ctl to call search _trap tab_on '"'uchain!'.

10

. Proposed change:

Add tape control to initializer.

Purpose‘

.

' There is currently no accounting for tape usage, and no control over

‘how mapy tapes are up. The operator has no way to reply negativélyvtd

a "mount' request.

]jescription

When the system comes up, the initializer will attach all tapes. ‘ When
a process needs a tape, it will send a message to the initializer, using a
message segment. The initializer will request the operator to locate the‘v Lo

tape and mount it. When the operator has completed the mount, he Will -

type a command to the initializer. The initializer will then fdrce the = .

attachment of the tape to the user and send him a wakeup.

*

~ Detachment, runaway tape, automatic logoyt, etc. are easily handled.

Thf:se changes can be made completely invisible to user-ring

programs which call the tape DIM.

11

P

Implementation

| '1' Changes‘t‘o initializer
a) in "as " at startup read a list of tapes
b) new‘~ module, “'tape__ctl_" establishes event channel and
| responds to signals; does aécounting
c) changes to 'fadmin" to allow tape commands
2 Changes to’ the ring-4 tape‘dim in the attach and detaéh area.
~ System-wide datva,ba‘se which has the event channel id. |
: 5,3,3 Possible later changes to simplify the ring zero tape stuff and >
o the ioam, 'Which :now think tapes must be assigned in ring’ 0. -
4, Possible later extensions: |

a) a "tape_who"

b) reserver

o
/

Proposed Change

Reassignment of machine-room consoles.

Purpose

Currently four consoles are required in order to run Multics:

initializer
.10 Daemon
Translator

‘Backup

| Retrieval, complete dump, or other operations activity require a fifth.
All of these consoles must be in a secure area while running, since highly

privileged operations are possible from any of these user identites.

Starting up the system also involves the typing of several "login"
commands on the different consoles. Operations need to know the daemon
passwords, which could lead to trouble if they were accidentally leaked to a
malicious user who was also so speedy a typist that he could login before an

operator.

-Many of the messages typed in the machine room are not directed at
the operator. Instead, they are intended for system programmers attempting
recovery procedures or failure diagnosis. While*this information is sometimes
useful, perhaps we pay too much for it (or at least, maybe other installations |
won't want it).

This proposal suggests that the '"daemon'' processes be recoded to run
without a console optionally, and that they be automatically logged in by the
initializer. This will cut the number of terminals needed for Multics from
4 -5 downto 1 -2, provide quicker startup,-and still allow the use of more

terminals if desired. .

Description

Theé Multics I/ O switch provides most of the necessary flexibility
to accomplish this proposal. Basically, what would be done for each daemon
would be to attach the stream normally connected to the console to a special
program, capable of using the message segment primitives to communicate

with the initializer.

This special DIM would be able to use a console if one were allocated
to it by the initializer, so that, for example, an operator could command the
initializer to hook a console onto the backup daemon if an error message was

received.

Messages written on the daemon's stream "error output' would always
be sent to the initializer, and the daemon would also be given a subroutine for

non-error communication with the initializer.

We can handle input requests in one of two ways. One is to program
the daemons so that all input requests are errors, and then always request input
through a program which signals and gets input from the initializer. The other.
way is to keep a mode switch which says when an error has occurred, and take
input from a file or from the message segment depending on mode. The second
method allows conversion of almost any function to daemon operation, if we can

1

replacé '"com err ' etc. The first one leads to tighter code (do we care?) and

maybe easier operation.
- %‘.,"

Initializer Changes

Adding the module "daemon ctl ' to the initializer, and having it
request the automatic login of the daemons, is pretty easy.

Giving the initializer some extra terminals is almost as easy. A new
configuration-deck card or a modification to the current deck may be required.
I suggest a new card, viz:

OPTTY TTY192 TTY194 TTY196 to tell the 1n1t1allzer about

hard-wired terminals.

Hard-wired consoles can then be given automatically to daemons,
etc. Other terminals can be surrendered to the initializer by some variant

of the ''dial" command. An operator command of the form--
give 10.SysDaemon TTY196

could then give daemon a console. Terminals not hard-wired to the GIOC
should be handled by an adaptation of the "dial" command. Attaching a terminal

to the initializer would require two steps:

1. A '"dial" command executed on the terminal

1

2. A "give'" command executed by the operator on the

initializer console

Further Thoughts

Even fancier I/ O attachment graphs could be constructed to handle
the problem of too much output. Suppose, for example, that the initializer had
a streamname "login messages'' which was used to write the login and logout
messages on the initializer console. If a video terminal were available, it could
be attached to the initializer and the '"login messages' stream put out over it,

leaving the main initializer console for error messages and operator input.

A similar trick could be done for the daembns.

I ,/(5

‘Proposed Change

"dial" command

Purpose

, Some applications arise where a single process wants to use multiple
terminals, CTSS and CP provide such a facility, which has been used for game-
.p}aying, {or simulating multiple -access language systems, and for checkout of
‘systems. A rudimentary facility of this type now exists in Multics, and this
proposal describes the fancying-up necessary to make the facility releasable to
users.

Description
The user who wishes to operate more than one terminal should be able
"to set this up with the answering service by issuing a subroutine call. Connecting'

an additional terminal to a process which has made this preparation should involve

nothing more than the substitution of a ''dial" command instead of login.

The current implementation supports both of these functions. The

'following deficiencies exist, though:
1. The only acceptable form for the dial command is:

dial Name Project
that is, no abbreviations or defaults apply. Ideally, the argu‘ment
of ""dial" should specify a conventionakname not necessarily any
person's; e.g., '"dial housing service'. This suggestion leads to

some sort of registry file for "dial names' and more software.
2.# A user does not pay for dialed consoles, currently.

3. The process with multiple terminals has a problem with
QUITs. Either it does not enable quit for a terminal - in

which case it can't detect them - or it does - and then if

it gets the QUIT IPS, it can't tell which console hit it.

With the current pinch on phone-line access to Multics, allowing
dial consoles would increase the probability of busy signals. This
suggests that we may need some administrative control beyond
the current all-or-nothing switch, to limit the number of consoles

per process and/ or the total number.

Proposed Change

Dynamic load leveling

Purpose

The Multics system's load bears little relation to the number of
logged-in users. Thirty system programmers may need more resources per
minute than fifty students, and the same programmer can represent a very
different load at different times of day. This proposal is for a set of changes
to the system control facility to allow it to regulate Multics access depending

on some function of the system's scheduling parameters.

Description

Whenever an "accounting update'' is performed, the initializer determines
some figures about the system load. Currently, it just notes the values, and

doesn''t take any action.

If a new module called "load ctl " were made up and called by accounting
updates, it could operate like the CTSS load-leveler. Specifically, it could vary
the "maxunits' parameter of the system within preset limits to attempt to fore-

stall overload.

The CTSS load leveler, when properly aﬂfﬁsted, never had to "kill" any
user. The proposed module will not even have this feature, so we will not have
to introduce the bad P.R. aspects of bumping for overload. This makes extra

sense whetn the number of users is large.

The general strategy is to check, every 15 minutes, and whenever
anyone logs out, for overload due to any of several conditions. The first four

suggested are:

_a. Queue length
b. Response
c. Multiprogramming idle

d. Thrashing index

For each of these, overload will be defined to be "having a value
above some threshold, and have#ing been above the threshold last time we

looked too." If an overload is detected, then the "maxunits" will be set to:
max(min(maxunits, cur_units), floor)

if the system is not currently full, to stop further logins. If the system is

already full, '"maxunits" will be allowed to decrease below ''cur_units" to the

value "floor", by steps of 1.0,

When the overload eases, ''maxunits' will be set to 2.0 more than

"cur units" and allowed to increase to some maximum.

Reconfiguration can change system response so drastically that we
might consider having a method of reconfiguring which had a delay (at least
for deleting equipment). Thus, the operator might tell the system to drop a
CPU; the system would be able to stop accepting logins for several minutes

before the module was dropped.

The parameters we can vary are:
R
1. threshold value for each monitored quantity
2. floor on "maxunits" '
3. ceiling on "maxunits"

""value' of configuration elements, in case we remove them

User weight in "load units" would be considered only at login time.
Perhaps we could keep an exponentially smoothed estimate of a user's weight
from one login to the next, but certainly the initial versdon of "'load ctl " can

live with the current method.

In order to start the system off at a stable point, experiments should
be conducted in which the "load ctl " module just types out (and logs) messages
describing what it would have done.

Proposed Change

Edit -only login responder

Description

When Multics is ''full", users are currently turned away. This prevents
the user from working at all, something like locking users out of the keypunch
room when the batch queue is long. In some cases, we turn away system use
which we could support (sale of terminal time) because we are short on some
other resource (CPU). This proposal is for a 'restricted" class of user who
may only edit files.. Users may be permitted to use this service even when the

system is "full" of programmers.

A super-limited-service overseer which locked the user into "edm!'
is very easy to write. When Voydock!s new editor is written we can use it
instead. In any case, ''load ctl " can be modified to have a number of ''slots"
for edit-only users. When a user would normally get the "sorry, system full"
message, we can ask --

"System temporarily full. Do you wish edit-only service?"
instead, and allow the user to login with a special initial procedure if so.

eThe login responder would set-up some event channel such that when
the initializer detected room for the user as a fu]ajl user, the user could be
allowed to do a new_proc. This will require some table giving the ''deferred

weight'" of each edit-only user.

The responder would probably skip the message of the day and just
give a "ready' message. The user could then type any of: '

edm
program interrupt
logout

addname

deletename
* delete
rename
start
print
list
calc
. help
who

(I am a bit worried about "list" consuming lots of resources. One
could quibble with the command table endlessly, though. The point is that

there would be one.)

Proposed Change

Cutoff users on projects with overspent accounts
Purpose

Users on projects which have exceeded their usage limits should not
be allowed to login. This change will be in effect only until the proposed change

to the accounting system has been implemented.

Design

The system administration table (sat) contains an entry for each project
on the system. A previously unused character in each entry will be set to indicate
the status of the project!s account and the action to be taken if a user tries to
login on the project. (see Appendix A). When a user tries to login this code will

be inspected and the appropriate action will be taken.

In order to keep the status of the cutoff indicator up to date, system
usage will be billed daily. The daily billing procedure will be identical to the
monthly except that no individual bills will be written and the usage figures will
not be reset in any of the data bases: hist, disk stat, projfile, reqfile, and misc,
The billing program will also generate each project's cutoff code in a copy of the

sat. Therefore, the sat must be installed after egch daily billing.

Implementation

Programs to be modified

atime

Usage information will only be collected from monthly accounting cards
which were not previously billed and which have a éompleted session. A flag

will be set in the accounting card to indicate the completion of the usage collection.

In case of crashes which leave hist and accounting deck out of step:

wb

If a crash occurs during the accumulation of accounting cards,

the hist will be deleted and a copy of it will be used for rerunning
the billing procedure. In order to start accumulation at the same
accounting card as during the crash any card which has the collected

flag on with a logout time of the previous day will be collected again.

A crash which leaves the hist intact but uses the collected flag

in an accounting card will be recognized if the date the hist was .
written is a day or more after the card's logout time. The procedure
to be taken then will be to restart the billing with the previous day's
hist. '

This program will be copied, renamed daily billing and modified as

follows:

1.

2.

The summary file only will be produced

The usage figures for each project will be compared to the
requisition amount and the appropriate cutoff code inserted

in the sat

The termination date of a project will be inspected and the

appropriate cutoff code will be inserted in the sat

A

act_ctl $check

Tlrlis is currently a dummy entry called by lg ctl $login before allowing

a user to login. It will be changed to locate the user's project in the sat and

print an error message if its cutoff code is non-blank. It will return a non-zero

code if user is not allowed to login.

lg ctl $login

The message printed when act ctl $check returns a non-zero error |

code will be modified.

installatiqn_data

A new segment will be generated to contain installation dependent

messages. act ctl $check will obtain its messages from this segment.

Appendix A

The cutoff code in the sat will be one of the following:

Code
'X
Y.
T
S
W
R

— (blank)

Meaning

Project is out of funds and not allowed to login

Project is out of funds but allowed to login

Project has past termination date and not allowed to login
Project has past termination date but allowed to login
Project is within x dollars of limit

Project is within x days of termination date

Ok

