L4

25772 MJA, Padlipsky
L

AUBLTICS ARPR UETWORK IMPLEMEETATION STATUS

As nas% been observed in all other areas of Hultics, the initial
implemantation of the Nultics ARPA Netvork software has proven to
be largely a "first draft”, with attendant problems of both known
ané unknosn nature, Currently, both the cost of the <Yetwork on
Muitics "in terms of charges and resource consumption, and the
Subjective "feel" of Multics Network usage are far too heavy.
Consequently, the Multics Network/GraphicS Group hasS becone
engaged in & concerted effort to improve the performance of the
exlsting implementation considerably, It should he noted at the
outset that considerations of pride of craftemanship==-although
certainly not absent--are far from being the primary motivation
for these efforts, The tvo madjor considerations vhich
necessitate extreme measures in the area o©0f performance
iaprovement actually are the fact that Multics is considered to
bz & major service offering of the Network to its user community,
and the fact that the appearance Multics bpresents over the
Network potentially has a strong impact on future general Multics
davelopment., :

Kno¥n Brokblams .

Ignoring certain interrelationships to facilitate presentation,
thie known problems of the current implementatiocn may be Saparated
into tvo areas, those involving the "Network Daemon" process ana
those dnvolving VNetwork~sense "server" and "user" processes,
Metering and a priori analysis have been performed in hoth aress.

The . Network Daemon process is currently a separate Multics
process which exists primarily to furnish a guaranteed responder
to PNetwork control messages (such as requests fer connecticn).
Presently, the Deamon is explicitly looged in by Operations, and
after an initializing start-tp exec=com the Daemon blocks,
waiting for wvakeups from the device interface module which
manages the IHP (the "IMP DIM"), We have distinguished several
aspects of the Daemon’s operation vwhich bear heavily on its
performance:s . _ ‘ N
1, Cost of Wakeups, A counter is maintained in the Daemon which
causes a cumulative ready mesSace to0 he printed out on the
Daemon*s conscle every 100 wakeups, Under typical system
loads, the average transaction seems to require some 259 ms.
of Daemon time, Paging is quite high compared to cpu time,
although nc arithmetic has been done on L%, {(Page=tracing has
been, hovwever,) It should be noted that metering has also
been performed on the Interprocess Communication Ficility
block/vwakeur primitives, and that with paging time dincluded
each block/wakeur cycle appears to cost some 100 ms,.~=about
k0% of the Daemon’s transaction time
2, Number of Wakeurs, ¥%ith the cost o¢f each Daemon wakeup’s
being high, concern naturally focused on the number of wakeups
the Daemon takes, The current strategy requires a wakeup £or

il
MUI%LS

~

e

! ,‘(g .
\ 5\,\{7,4"7

P

S,

2 - NETWORK STATUS
: “\» !

. .
each "RFNH" (the Netverk-defined request for next message) and

‘a Wakeup on the arrival of an allocate mesSage for a

particular socket, Indirect evidence suggests that more that
half of the Daemon‘'s wakeups are to process RFNM's, As
allocates depend on the idiosyncrasies of the foreign host,
they are less easy to quantify. It is of 4interest, thouah,
that 4in both the RINM and the allocate cases the Daemon wakes
up essentially only to in turn wake up another process and
allov it to proceed, .

Superfluous Paging, There are three known areas in which
Paemon paging activity is greater than need be, a) Page
tracing revealed that about half the page faults taken in the
Daemon were on the ring 4 environment which is present only
because it was initially more convenient to block in that ring
rather than in ring 1, vhere the Network Control Program (NCP)
primitives reside, An experiment was periormed wherein the
Daemon was run from the ring 1 "Repair" system daemon which
showed a per-~transaction time decrease c¢f some 25% stemming
from the elimination of the third ring £from the environment,
b) Less quantifiable, but still significant, it is knoewn that

‘the binding order of the NCp primiitves needs tuninag, «c¢) Also

unquantifiable, and a much deeper issue, it is known that the
NCp primitives and the IHp DIM could be made to decrease the
working sets of both the Daemon and all non=Daemon Network
processes by sharing data bases rather than maintaining
§aparate ones as at present, ' _ ,

Foreign Site-Induced Extra overhead, It should be noted that
the Daemon must respond to such activities of foreian sites as
periodic surveys, echo commands, and the like, This is a fact
of Network life, and not much can be done about it other than
wvorking out a scheme for charging for such activities=-=which
would be rather difficult both politically and practically.
More can be done about a second kind of eXxtra overhead,
however. That is, in cases where the foreign system, 'y means
of the allocate mechanism, 1limits Multics ¢to send..:g very
small messages out, otherwise avoidable Daemon wakeups are
engenjered at great rate, This problem can be dealt with
elither by education or, possibly, by protocol changes, '
Unnecessary Charges, Two sources of charges exist which make
Network bills more expensive than they need be., First, the
Daemon runs with a congole largely for debuging convenience’
vere connect time costs (which are based in part on the the
port which is tied up) to be reduced for consoleleSs processes
(such as absentee) charges could be decreased noticeably by
making the Netowrk Daemon a consoless process. (AS the Daemon
is meant to be running whenever Multics is, its conrect time
is high.,) Second, there currently exists a deficiency in the
Multics charging apraratus such that a process which remains
logged in across a shift change is charged at the rate for the
initial shift for the entire "console session" rather than at
the appropriate rate for the actual time spent on each shift,
As the Daemon is normally logged in during first shift, it is
charged at the highest rate for all its time unless the system

NETWORK STATUS p. 3

er the Daemon goes down and is brought ub again auring second
“or third shift, (Note that as overhead decreases and Network
Use increases it is quite possible that the Information
Processing Center will assume the Daemon‘'s costs directly;
however, this factor should not diminish our concern with
charges in the abstract,) 5

Turning to non=Daemon processes, it should be noted that there
are two types under consideration; "server" processesS (which are
created by Multics in response to a login over the Network), and
‘"user" processes (which allov a MNultics user to login to a
foreign system, under the management of the "network®" command),
Note also that the "third ring" problem mentioned in regard to
the Daemon 1s also quite significant in these other VNetwork
processes, In this instance, page faults on the ring 1
eavironment when invoking NCp primitives are 4in some sense
superfluous, and the fact that wall crossings from ring 4 to ring
1 have been measured at scme 12 ms, (as opposed to 4 ms, or so
for crossings into ring O0) takes on added significance as it
represents a larger fraction of the per-transaction time, The
following considerations also apply to the performance of Network
processes:

1, I0 Transaction Times, As a simple measure of the ~difference
between 1local typewriter processing times and their Network
counterparts, repeated "nothing" commands were performed both
directly 1logged 4in to Multics and in a server process, The
¢pu times (from ready messages) averaged about 2,5 to 1 higher
for the Network process on similarly loaded system} page
faults (also from ready messages) were about 3 to 1, (When
the same experiment was performed by a friend at SRI, it
turned out that when he was transmitting a character at a time

- the situation was nearly twice as bad as when he was sending
dine at a time,) A slightly more elaborate experiment involved
direct (hcs_Susage_values) metering of ios_$write calls; the
Network process was worse by about 4,5 to 1 4in this case,
Ready messages for non~I0 bound commands are also typically
higher in server processes, but no concerted «collation has
been performed, } i

2, "network"” Command Times, The experiments described above
involved £frequent Multics~to~Multics logins over the Network,
using the "network" command, Typically. the ready meSsages
vhen the command vas terminated were quite close to the totals
in the server process, As the command is, after performing
the initial connection protocol (say 5=6 seconds), simply
doing local/Network reads/vwrites, this suggests that
per-transaction IO costs are indeed high, A special metering
version of the command (using usage_values) showed reads and
writes running around 80~90 ms, This result agreed closely
with the metering of ios_$write calls mentioned above, (It
must also be observed that use of the "network" command also
generates greater Daemon activity,) ,

-3, Character processing, In both user and server processes,

p, & : NETWORK STATUS

conversion must be performed hetveen the B8e-bit Network ASCIIT
character set and. the 9%pit Multics sety; Telnet Protocol
control characters must also be processed; further, for server
processges canonicalization, erase and kill processing, and
software escape processing must also be performed, Direct
metering of the "telnet_" subroutine (which in the current
implementation managses code conversion and control character
processing) showed averages of 3~4 characters per mS.,
Similar metering of "cancnicalize_*" (vhich is currently called
each time the server process receives an 4input 1line) showed
averages of about 1 character per ms, _

4, Response Time, The "feel"™ prohlem showS up most clearly 4in
Sarver processes, W¥When 50 or 100 single character write calls
vere made in a tight loop during the ios_$write experiment,
there was rarely a sSingle perceptible prause when directly
logged in, whereas when logged in over the Network there vwere
3 to 7 pauses of several seconds each, The pauses, of course,
happened because the server process had used up its gquantum
and had to be re-scheduled (without any "interaction switch"
Bet), Another frequently noted waiting problem occurs vhen
logging in on a heavily 1loaded Multics system: pauses of
several minutes have been experienced during the printing of
the messade of the day,

5, Foreign-Site Induced Extra Overhead. Many foreign sites,
TIp’s 4in particular, can transmit to Multics on a character at
a time basis, This o¢generates extra overhead in terms of
vakeups for the associated Multics Server or usSer process,
particularly for the server process, which must be given a
wakeup by the Daemon to inspect each message (for end of 1line)
{n the current implementation., also, for bhoth server and user
processes if the foreign site gives small allocations the
process Mmay also have to be awakened when the allocate messagqge
arrives (in addition to the wakeup of the Daemon Process); on
this point, see also the "write_force" discussion below,

short- and Medium~Range Solutions

The primary ecriterion aprplied to the choice of immediate
solutions for the above problems was that of high., quick pavoff.
That is, major strategy changes which would involve considerable
redesign and reprogramming have been deferred in favor of vorking
first on those less fundamental 4issues which hold promise of
large performance improvement in a short time, The broader
issues are discussed below, The decision to Jdefer their
implementation was motivated by a desire to avoid having Multics
Network use remain in its current, unpleasant state for a matter
of months when significant improvements could be effected in a
matter of weeks,

The following tasks are either currently bpeing worked on or have
baen recently completed: :

NETWORK STATUS T P, 5

Te

5,

RFNM's at Interrupt “ime, ¢he IMP LIM is being altered to

"process RFNM messages when it receives the interrupt from the

IWNP, rather than wake up the Network Daemon %o handle then,
When finished, this change should haive the number of Daemon
vakeups,

Ring 1 Daemon, The Hetwork Daemon now blocks in ring 1 rather
than ring 4, The elimination of page faults on the ring U
environment results in a per-~transaction time decrease of
about 25%. .

Ring 0 N¥CP, The NCP primitives are being altered to operate
in ring 0 rather than ring 1, 'This change will allow the user
and server Network processes to avoild taking page faults on a
third ring environment, and will eliminate the long (about 12
ms,) ring 4 to ring 1 wall crossing which currently occurs on
each IO transaction, If the ring elimination savings are as
similar to those in the Daemon as expected, transactions
Should cost a third less. (Other implications of this change
include the ability to re¥urn the Daemon to blocking 4in ring
4, the elimination of wall <crossings whehever the NCP
primitives or the Daemor call the IMP DIM, and two rather

-{mportant philosophical points: it facilitates the inteoration

of the NCP and the IMP DIM, particularly 4in regard to data
bases, and it makes possible the major strategy change
regarliing Daemon blocking discussed below,)

"write_force”, In order to improve user and Server process
response time, the following tactic has been adopted: The
formerly=prrivileged NCP “"write_force" primitive has been
opened up to all Network processes) this allows the Daemon to
accept (up to the limit of its available buffers) all the
characters the other process wishes to write irrespective of
the current allocation for the socket, Thus, the other
process need not be awakened when allocates arrive, and the
Daemon simply sends the next portion of the meSsage when it
processes the allocate, [As this change dealt vith "“rel®, it
is not really quantifiable; however, the day after it rent it
ve Treceived an unsolicited compliment about the improved feel
of Multics from an ITS user,))
Canonicalization, Work is in progress on the problem of server
process input stream canonicalization, Although the design is
complicated by considerations involving Telnet Protocol
control character processing and the packing of 8=bhit
characters into 9-bit fields, we hope to come up with a scheme
vhich decreases the per=transaction costs appreciably by
avoliding full-fledged <canonicalization bprocessing in those
cases where it is unnecessary. i
Message Size, In an attempt to alleviate the surerfluous
vakeups problem brought about by a foreign site’s sendina a
Multics server process messages on a character at a time
basis, the login responder for the "CNet" project now prints a
message asking TIP users to go to line at a time mode, An
update to the Network Resource Notebook which also stresses
this point will be prepared,

i T e S LR

Pe 6 ' NETWORK STAZUS

The following tasks are pending, avaiting either personnel

availability or decisicns on their desirapbilityl)

1, "Speedy Wakeups",Once the NCP is in ring O, it would be
straightforvard €or the Daemon to Send vakeups to server and
user processes with the same pxss_$wvakeup_int "speedy wakeup"
mechanism currently used by the IMp DIM %o vake up the Daemon,
There is a policy decision reauired here, but it would seen
that the improved response to be gained is
worthwhile--especially in vievw of the cocnfusion as to whether
the "interaction switch™ exists anymore for IT7Y DIM use, and
vhether the Network could use it even if it does,

2, Shift Charges, A system~wide solution to the per~shift

charging problem which the Daemon in particular encounters
apparently involves arduous design and implementation
consijerations, A sStop~gaP solution <could he introduce by
instructing Operations to log the Daemon cut and in when the
"shift changes, This might create more confusion than it‘s
vorth--but it’s probably worth several hundred dollars a
month,

3, Deconsolizing/Automating, Daemon costs might also bhe cut by
making it a consoleless process as discussed earlier, A
further argument for deconsolizing 4is that it would be
desirable to have the Network dinjtialized automatically
(during system initialization) to eliminate the possibility of
not having the Network up due to operator oversight, (This
"automating” could also be applied to the shift charge
problem,) ’

4, Accounting, Another aprroach which <could be taken to the
problem of Daemon costs is to introduce accounting callsfor
the process in whose belhalf the Daemon is operatina, in 1like
manner to standard "SysDzemons", This tactic would metely
shift, not solve, the overhead problem, but it may be a more

- equitable approach than writing the Daemon entirely off to
overhzad, L

. Allccates, As alluded to above, the problem of *"supertluous"
wakeups to saervice allocate messages could could possibly be
attackted on the protocol level, That is, we could formally
propose that the Telnet Protocol be amended to legislate a
*reasSonable"” minimun allocation for the receive socket on the
user side of a Telnet connection, 80~120 characters seems to
be a reasSonable range to shoot for, on the premise that one
should be able to send a whole typical line at one write,
There might be strongish resistance to this vievw from the TIP
people, however, so vwe do not intend to go ahead with any such
proposal without a strong MpAC=wide consensus in its favor.

wm

bador Sktrategy Issues

s noted, the previous section dealt with solutions which coulad
he produced on a time scale of days or weeks, rather than months,
We turn here to issues which either may 4involve a longer time
sicale to implement or at least involve decisions on major voints
of strategy. : '

YLTHORK STATUS p. 7

1. Paemon :ransaction Cycle N

To take the item with the highest potential payoff £first, the
following section was prepared by E& MHeyer as a preliminary
- Proposals
Network Daemon Efficiency

Blocking vs, Waiting

Through metering experiments, it has been discovered that a call
to ipc-Sblock which actually give up the Processor costs about
100 ms.,, about 1/2=2/3 the expected cost of the entire Network
Daemon event processing cycle, If some means of aveiding vrart of
the cycle vwere available, the savings might be large,

There 1s an alternate method of giving up the processor that is
available in ring 0, "waiting", Typically, it is used to give up
the processor for short periods of time while wvaiting for a
faulted page ¢to come 3into core, Its cost is assumed to be no
more than a few milliseconds. A scheme for employing the "wait"
rather than the "block" mechanism has two advantages: 1) "wait"
is presumed to be several tens of times as efficlient as "block";
2) the Daemon will operate mostly in a single ring environment,
avolding the costs of ring crossing and faults on the vring 4
environment, -

Under this scheme, the Network Daemon would operate as follows:
the Daemon process, which 4is brought up in ring 4 (after the NCP
goes to ring 0), enters the NCP in ring 0 and calls pxss to wait
on the Network event id, The interrupt side of the INP DIM calls
pxss to "notify"” the Daemon of an event, Upon returning from the
call to pxss_svait the Deamon performs processsing in the NCP =
INP pIM complex, then calls wait once more, This is similar to
the current scheme except that "wait" and "notify" calls are
substituted for "block" and "walktup" calls,

R possible additional feature is for the Daemon to return to ring
4 and Dblock conventionally in the c¢ase of extended Deamon
inactivity (perhaps on the ofrder of a minute),

The advantages and disadvantages of this scheme relativa to the
current mechanism seem as follows:

pisadvantages: 1) It ties 0up certain system resources vwhile
vaiting in ring 0, A vwaiting prcess remains eligible, and this
costs perhaps two pages in core plus a few system table entries,
(Tt also requires that the system tuning paremeters be suitably
modified,) 2) A scheme is required to force the Network Daemon
out of ring 0 at critical times, such as at system shutdown,

Advantages: 1) There are obvious response and efficiency
improvements for the Netwvork, There is at least a 50% processing

reduction merely due to not calling block, bu%t prcpbably also a
significant reduction through not constantly tracing through a

. & ., NETWORK STATUS

. _

ring 4 environment, 2) It can be argued that there is also a
corresponding improvement in overall system performance. because
the Daemon 4is giving back to the Sysgeﬁgﬁabout 100 ms, of
processor time per transaction and thejﬂﬁt paging on the ring 4
environment, which amounts to at least 9 pages, Considering that
the Daemon currently wakes up every 20 seconds. on the averaae,
this is by no means insionificant, 3) To implement this scheme
involves a minor reprogramming effort, In essence, calls to
"wait" and "notify" must be substituted for calls to "block" and
"wakeup"., ,

Other considerations! It have been previously proposed that more
processing be done at interrupt time, specifically that the ALL

"data allocation and RFNM "ready for next message” messaoes be

intercepted at interrrupt time b¥ the IMP DIM and processed
there, This scheme and the "wait in vring 0" scheme are not
exclusive alternatives, Each 4is independently desirable and
provides benefits not available with the other,

The processing of ALL and RFNM messages at interrupt time rather
than by the Daemon can eliminate many wakeups of the Daemon,
However, it is infeasible to do all types of processing at
interrupt time, and the Network Daemon must still Dbe
independently invoked, Therefore, it is still desirable to
improve the efficiency of the Daemon, ' :

While "processing at interrupt time"™ seems to be a large
reprogramming effort of uncertain dimensions and impact on the
system, "waiting in ring 0" is comparatively simple, vwith system
implications more limjted in scope, Moreover, it can be vrapidly
implemented, Therefore, it would seem that "walting" ought to be
accomplished first,

2, INP DIM ~ NCP Interface

pS implied bY the "waiting" oproposal, the division of labor
between the IMp DIM and the NCp is currently rather onu=sided,
with the NCP (and/or- the VNetwork Daemon) handling even such
functions as allocations, This separation historically stemmed
from a viev that the IMP DIM should be concerned only with ¢the
IMP as a device (or, with the IMNP - Host Protocol), while the NCP
and Daemon should be concerned with the Host = Host Protocol and
the whole Multics process side of the street, At the very least,
further experience suggests that it would be quite desirabhle to
avoid waking up the Daemon on receipt of allocate messages, and
allow the IMP DIM to handle them--preferabply at dinterrupt time,
In turn, this suggest that an intearated viev of data bases
should be taken, (Working set size considerations also support
merger of data bases,) With more integration between INP DIM and
NCP it might also become possible to revise buffering strategies
along the 1lines recently suggested by Bob Daley: take the view
that there are two kinds of sockets (Telnet and "other") and
adopt a Multics TTY DIM=like posture tovard the Telnet

NETWORK STATUS p. Y

sockets~-i,e.,, knowing that they are foy interactive messages, go
to many small buffers and arrange their management to lend itself
to greater dinterrupt~time work, (Note that even if this
particular apprcach is not adopted, bpuffering strategies are
suspect from the efficiency point of view if only because they
are also an initial implementation-= and not widely understood,)

None of the above npoints has gone much beyond the interesting
idea stage, although it is clear that some alterations of the
interface along thesa lines Wwill be necessary to improve
efficiency, Another point at issSue in. this area, hovever, is
that of certainiy <functional deficiencies, In particular, the
current setur does noet allow the aborting of queued writes in the
IMp DIM when the Daemon or a server process detects a "quit",
Also, inconsistencies should be resolved on such issues as the
byte size associated with a socket and the handling of multiple
INP messageS when reading, Fairly firm plans have been in hand
for some time on the "reinterfacing" topic for some, but not a1il,
of the functional deficienciegi dimplementation has, however,
continually been pushed bacszowinq to the existence of more

pressing problems, . theTid DIM £ ’
3, Server Process IO

R topic which merits further investigation (even though 4it‘s
carrently quite "blue sky") is the possibility of using the
standard ring 4 TTY DIM code in the server process in order to
banefit from rage=-sharing, and appropriately cause calls to ring
0 to be jirected to Network software, As this depends on the
NCP’s being 4in ring O and on the TTY DIM‘s (reportedly planned)
move of canonjicalization to ring 4, the tobric is not of immediate
inpact, but <could pay off strongly in the 1long run, AnD
interesting implication which should also ke noted is that such
an employment of standard system code would be a useful step
towvard making the Network more a part of Multics and not merely a
"wart", as Corby so aptly phrased it,

4, Daemon Elimination

As a final, 1long~range topic, it should be noted that Jerry
Saltzer argues that in principle the Network Daemon could be
eliminated entirely, with its connection~initiating and other
control functions shifted to the Ansvering Service, Whether this
would be workable in practice is moot,

