A New Remote-Accessed
Man-Machine System

Reprints of the papers on the MULTICS system presented at the
Fall Joint Computer Conference, Las Vegas, Nevada, November
30, 1965.

Work reported herein was supported in part by Projeét
MAC, an M.LT. research project sponsored by the
advanced Research Projects Agency, Department of
Defense, under Office of Naval Research Contract
Nonr-4102(01). Reproduction of this report, in
whole or in part, is permitted for any purpose of the
United States Government.

Reproduction in whole or in part is permitted for any
purpose of the United States Government.

CONTENTS
SESSION 6: A NEW REMOTE ACCESSED MAN-MACHINE SYSTEM

Introduction and Overview of the Multics System . J. Corbatd 185

System Design of a Computer for E. L. Glaser 197
Time-Sharing Applications J. F. Couleur
G. A. Oliver
Structure of the Multics Supervisor - V. A. Vyssotsky 203
: ' F.J. Corbatd -
R. M. Graham
A General-Purpose File System for Secondary Storage R. C. Daley 213
P. G. Neumann
Communications and Input-Output Switching in a J. F. Ossanna 231
Multiplex Computing System L. Mikus
S. D. Dunten

Some Thoughts About the Social Implications of E. E. David, Jr. 243
Accessible Computing R. M. Fano

1A

/‘\

INTRODUCTION AND OVERVIEW OF THE MULTICS SYSTEM*

F. J. Corbaté
Massachusetts Institute of Technology
Cambridge, Massachusetts

and

V. A. Vyssotsky
Bell Telephone Laboratories, Inc.
Murray Hill, New Jersey

Multics (Multiplexed Information and Comput-
ing Service) is a comprehensive, general-purpose
programming system which is being developed as
a research project. The initial Multics system will
be implemented on the GE 645 computer. One
of the overall design goals is to create a com-
puting system which is capable of meeting almost
all of the present and near-future requirements of
a large computer utility. Such systems must run
continuously and reliably 7 days a week, 24 hours a
day in a way similar to telephone or power systems,
and must be capable of meeting wide service de-
mands: from multiple man-machine interaction to
the sequential processing of absentee-user jobs;
from the use of the system with dedicated languages
and subsystems to the programming of the system
itself; and from centralized bulk card, tape, and
printer facilities to remotely located terminals. Such
information processing and communication systems

*Work reported herein was supported (in part) by Project
MAC, an M.LT. research program sponsored by the Ad-
vanced Research Projects Agency, Department of Defense,
:‘nlxggl(-o(l))ffice of Naval Research Contract Number Nonr-

185

are believed to be essential for the future growth of
computer use in business, in industry, in govern-
ment and in scientific laboratories as well as stimu-
lating applications which would be otherwise un-
done.

Because the system must ultimately be compre-
hensive and able to adapt to unknown future re-
quirements, its framework must be general, and ca-
pable of evolving with time. As brought out in the
companion papers,'® this need for an evolutionary
framework influences and contributes to much of
the system design and is a major reason why most
of the programming of the system will be done in
the PL/I language.® Because the PL/I language is
largely machine-independent (e.g. data descrip-
tions refer to logical items, not physical words), the
system should also be. Specifically, it is hoped that
future hardware improvements will not make sys-
tem and user programs obsolete and that implemen-
tation of the entire system on other suitable com-
puters will require only a moderate amount of addi-
tional programming.

The present paper attempts to give a detailed dis-

186 PROCEEDINGS — FALL JOINT COMPUTER CONFERENCE, 1965

cussion of the design objectives as they relate to the
major areas of the system. Some of the highlights of
the subsequent papers are: a virtual memory system
for each user involving two-dimensional address-
ing with segmentation and paging; the dynamic
linking of program segment cross-references at
execution time to minimize system overhead; the
_routine use of sharable, recursive, pure procedure
programming within the system as the normal mode
of operation; the pooled use of multiple processors,
memory modules, and input-output controllers;
and multiprogramming of all resources and of mul-
tiple users. Automatic management of the complex
of secondary storage media along with backup, re-
trieval, and maintenance procedures for the stored
information will be provided by a file system. Fur-
ther, it is expected that most of the software of the
system will be almost identical in form to user pro-
grams. The system will incorporate automatic
page-turning for both user and system programs
alike.

INTRODUCTION

As computers have matured during the last two
decades from curiosities to calculating machines to
information processors, access to them by users has
not improved and in the case of most large ma-
chines has retrogressed. Principally for economic
reasons, batch processing of computer jobs has been
developed and is currently practiced by most large
computer installations, and the concomitant isola-
tion of the user from elementary cause-and-ef-
fect relationships has been either reluctantly en-
dured or rationalized. For several years a solution
has been proposed to the access problem.™® This
solution, usually called time-sharing, is basically
the rapid time-division multiplexing of a central
processor unit among the jobs of several users, each
of which is on-line at a typewriter-like console.
The rapid switching of the processor unit among
user programs is, of course, nothing but a particular
form of multiprogramming,.

It is now abundantly clear that it is possible to
create a general-purpose time-shared multiaccess sys-
tem on many contemporary computers (especially
after minor but basic modifications are made). Al-
ready two major and extensive systems have been
created, one on the IBM 7094!%11 and one on the
Q-32 computer.!? In addition, there have been nu-
merous smaller scale systems, the most notable being

on the DEC PDP-1,'!* the IBM 7094,'% the GE-
235,'¢ the DEC PDP-6,'7 and the SDS 930,!® as well
as somewhat more limited versions of time-sharing on
the RW-400,'%2° and the CDC G21,2! the Johnniac,22
and the IBM 7040.2 As time goes on, surveys of
implemented systems are being made*>2* and “score
cards” are being kept.?

The impetus for time-sharing first arose from
professional programmers because of their con-
stant frustration in debugging programs at batch
processing installations. Thus, the original goal was
to time-share computers to allow simultaneous
access by several persons while giving to each of
them the illusion of having the whole machine at
his disposal. However, at Project MAC it has
turned out that simultaneous access to the machine,
while obviously necessary to the objective, has not
been the major ensuing benefit.2® Rather, it is the
availability at one’s fingertips of facilities for edit-
ing, compiling, debugging, and running in one con-
tinuous interactive session that has had the greatest
effect on programming. Professional programmers
are encouraged to be more imaginative in their
work and to investigate new programming tech-
niques and new problem approaches because of the
much smaller penalty for failure. But, the most sig-
nificant effect that the MAC system has had on the
MIT community is seen in the achievements of per-
sons for whom computers are tools for other objec-
tives. The availability of the MAC system has not
only. changed the way problems are attacked, but
also important research has been done that would
not have been undertaken otherwise. As a conse-
quence the objective of the current and future de-
velopment of time-sharing should extend way be-
yond the improvement of computational facilities
with respect to traditional computer applications.
Rather, it is the on-line use of computers for new
purposes and in new fields which should provide
the challenge "and the motivation to the system de-
signer. In other words, the major goal is to provide
suitable tools for what is currently being called ma-
chine-aided cognition.

More specifically, the importance of a multiple-
access system operated as a computer utility is that
it allows a vast enlargement of the scope of comput-
er-based activities, which should in turn stimulate
a corresponding enrichment of many areas of our
society. Over two years of experience indicates that
continuous operation in a utility-like manner,

/‘\

INTRODUCTION AND OVERVIEW OF THE MULTICS SYSTEM 187

with flexible remote access, encourages users to
view the system as a thinking tool in their daily in-
tellectual work. Mechanistically, the qualitative
change from the past results from the drastic im-
provement in access time and convenience. Subjec-
tively, the change lies in the user’s ability to control
and affect interactively the course of a process
whether it involves numerical computation or ma-
nipulation of symbols. Thus, parameter studies are
more intelligently guided; new problem-oriented
languages and subsystems are developed to exploit
the interactive capability; many complex analytical
problems, as in magnetohydrodynamics, which have
been too cumbersome to be tackled in the past are
now being successfully pursued; even more, new,
imaginative approaches to basic research have been
developed as in the decoding of protein structures.
These are examples taken from an academic envi-
ronment; the effect of a multiple-access system on
business and industrial organizations can be expect-
ed to be equally dramatic but experience in this
area is still very limited. It is with such new appli-
cations in mind that the Multics system has been
developed. Not that the traditional uses of comput-
ers are being disregarded. Rather, these needs are
viewed as a subset of the broader more demanding
requirements of the former.

To meet the above objectives, issues such as re-
sponse time, convenience of manipulating data and
program files, ease of controlling processes during
execution and above all, protection of private files
and isolation of independent processes become of
critical importance. These issues demand departures
from traditional computer systems. While these de-
partures are deemed to be desirable with respect to
traditional computer applications, they are essential
for rapid man-machine interaction.

SYSTEM REQUIREMENTS

In the early days of computer design, there was
the concept of a single program on which a single
processor computed for long periods of time with
almost no interaction with the outside world. Today
such a view is considered incomplete; for the effec-
tive boundaries of an information processing system
extend beyond the processor, beyond the card read-
er and printer and even beyond the typing of input
and the reading of output. In fact they encompass
as well what several hundred persons are trying to
accomplish. To better understand the effect of this

broadened design scope, it is helpful to examine
several phenomena characteristic of large service-
oriented computer installations.

First, there are incentives for any organization to
have the biggest possible computer system that it
can afford. It is usually only on the biggest comput-
ers that there are the elaborate programming sys-
tems, compilers and features which make a comput-
er “powerful.” This comes about partly because it is
more difficult to prepare system programs for
smaller computers when limited by speed or memo-
ry size and partly because the larger systems involve
more persons as manufacturers, managers, and users
and hence permit more attention to be given to the
system programs. Moreover, by combining re-
sources in a single computer system, rather than in
several, bulk economies and therefore lower com-
puting costs can be achieved. Finally, as a practical
matter, considerations of floor space, management
efficiency and operating personnel provide a strong
incentive for centralizing computer facilities in a
single large installation.

Second, the capacity of a contemporary computer
installation, regardless of the sector of applications
it serves, must be capable of growing to meet a con-
tinuously increasing demand. A doubling of de-
mand every two years is not uncommon.?’ Multi-
ple-access computers promise to accelerate this
growth further since they allow a man-machine
interaction rate which is faster by at least two or-
ders of magnitude. Present indications are that mul-
tiple-access systems for only a few hundred simul-
taneous users can generate a demand for computa-
tion exceeding the capacity of the fastest existing
single-processor system. Since the speed of -light,
the physical sizes of computer components, and the
speeds of memories are intrinsic limitations on the
speed of any single processor, it is clear that sys-
tems with multiple processors and multiple memory
units are needed to provide greater capacity. This is
not to say that fast processor units are undesirable,
but that extreme system complexity to enhance this
single parameter among many appears neither wise
nor economic.

Third, computers are no longer a luxury used
when and if available, but primary working tools in
business, government, and research laboratories.
The more reliable computers become, the more
their availability is depended upon. A system struc-
ture including pools of functionally identical units

188 PROCEEDINGS — FALL JOINT COMPUTER CONFERENCE, 1965

(processors, memory modules, input/output con-
trollers, etc.) can provide continuous service with-
out significant interruption for equipment mainte-
nance, as well as provide growth capability through
the addition of appropriate units.

Fourth, user programs, especially in a time-
- sharing system, interact frequently with secondary
storage devices and terminals. This communication
traffic produces a need for multiprogramming to
avoid wasting main processor time while an in-
put/output request is being completed. It is impor-
tant to note that an individual user is ordinarily in-
capable of doing an adequate job of multiprogram-
ming since his program lacks proper balance, and
he probably lacks the necessary dynamic informa-
tion, ingenuity or patience.

Finally, as noted earlier, the value of a time-
sharing system lies not only in providing, in effect,
a private computer to a number of people simulta-
neously, but, above all, in the services that the sys-
tem places at the fingertips of the users. Moreover,
the effectiveness of a system increases as user-de-
veloped facilities are shared by other users. This
increased effectiveness because of sharing is due not
only to the reduced demands for core and secondary
memory but also to the cross-fertilization of user
ideas. Thus a major goal of the present effort is to
provide multiple access to a growing and potentially
vast structure of shared data and shared program
procedures. In fact, the achievement of multiple ac-
cess to the computer processors should be viewed as
but a necessary subgoal of this broader objective.
Thus the primary and secondary memories where
programs reside play a central role in the hardware
organization and the presence of independent com-
munication paths between memories, processors and
terminals is of critical importance.

From the above it can be seen that the system
requirements of a computer installation are not for
a single program on a single computer, but rather
for a large system of many components serving a
community of users. Moreover, each user of the sys-
tem asynchronously initiates jobs of arbitrary and
indeterminate duration which subdivide into se-
quences of processor and input/output tasks, It is
out of this seemingly chaotic, random environment
that one arrives at a utility-like view. For instead
of chaos, one can average over the different user
requests to achieve high utilization of all resources.
The task of multiprogramming required to do this

need only be organized once in a central supervisor
program. Each user thus enjoys the benefit of effi-
ciency without having to average the demands of his
own particular program.

With the above view of computer use, where
tasks start and stop every few milliseconds and
where the memory requirements of tasks grow and
shrink, it is apparent that one of the major jobs of
the supervisor program (i.e., “monitor,” “execu-
tive,” etc.) is the allocation and scheduling of com-
puter resources. The general strategy is clear. Each
user’s job is subdivided into tasks, usually as the
job proceeds, each of which is placed in an appro-
priate queue (i.e., for a processor or an input/output
controller). Processors or input/output controllers
are in turn assigned new tasks as they either com-
plete or are removed from old tasks. All processors
are treated equivalently in an anonymous pool and
are assigned to tasks as needed; in particular, the
supervisor does not have a special processor. Fur-
ther, processors can be added or deleted without
significant change in either the user or system pro-
grams. Similarly, input/output controllers are di-
rected from queues independently of any particular
processor. Again, as with the processors, one can
add or delete input/output capacity according to
system load without significant reprogramming
required.

THE MULTICS SYSTEM

The overall design goal of the Multics system is
to create a computing system which is capable of
comprehensively meeting almost all of the present
and near-future requirements of a large computer
service installation. It is not expected that the ini-
tial system, although useful, will reach the objec-
tive; rather the system will evolve with time in a
general framework which permits continual growth
to meet unknown future requirements. The use of
the PL/I language will allow major system software
changes to be developed on a schedule separate
from that of hardware changes. Since most organi-
zations can no longer afford to overlap old and new
equipment during changes, and since software de-
velopment is at best difficult to schedule, this rela-
tive machine-independence should be a major as-
set.

It is expected that the Multics system will be
published when it is operating substantially and will
therefore be available for implementation on any

Y

INTRODUCTION AND OVERVIEW OF THE MULTICS SYSTEM 189

equipment with suitable characteristics. Such publi-
cation is desirable for two reasons: First, the sys-
tem should withstand public scrutiny and criticism
volunteered by interested readers; second, in an age
of increasing complexity, it is an obligation to pres-
ent and future system designers to make the inner
operating system as lucid as possible so as to reveal
the basic system issues.

The accompanying papers describe in some detail
how the Multics system will meet its objectives.
However, it is useful, in establishing an overview, to
touch on the highlights and especially on the design
motivation.

DESIGN FEATURES OF THE HARDWARE

The Multics system objectives required equip-
ment features that were not present in any existing
computer. Consequently it was necessary to develop
for the Multics system the GE 645 computer. The
GE 635 computer was selected for modification to
the GE 645 inasmuch as it already satisfied many
of the crucial requirements. In particular, it was de-
signed to have multiprocessors, multiple memory
modules, and multiple input/output controllers.
Thus, the requirements of modular construction for
reliability and for ease of growth were amply met.
The communication pattern is particularly straight-
forward since there are no physical paths between
the processors and the input/output equipment;
rather all communication is done by means of
“mailboxes” in the memory modules and by corre-
sponding interrupts. Furthermore, major modules of
the system communicate on an asynchronous basis;
thus, any single module can be upgraded without
any changes to the other modules. This latter prop-
erty is useful in that one of the ways in which sys-
tem capacity (and cost) may be regulated is by
changing either the speed or number of memory
modules. Of course further adjustment of system
capacity is possible by varying the number of proc-
essor units or the configuration of drum and disk
equipment. In any case, one obtains the important
simplification that a single supervisor program can
operate without substantial change on any config-
uration of equipment.

Figure 1 illustrates the equipment configuration
of a typical Multics system. All central processors
(CPU) and Generalized Input/Output Controllers
(GIOC) have communication paths with each of
the memory modules. When necessary for mainte-

CPU CPU

NS

MEMORY MEMORY MEMORY MEMORY

—

SYSTEM SYSTEM
CONSOLE CON- CONSOLE
PRINTER TROLLER PRINTER
READER READER
PUNCH PUNCH

TTTTTTTTITT | con- || TTTTTTTTT

TO REMOTE TROLLER TO REMOTE
TERMINALS TERMINALS

TO MAGNETIC TAPES

Figure 1. Example of Multics system configuration.

nance or test purposes, the system can be parti-
tioned into two independent systems (although each
of the drum, disk and tapes must belong to one of
the two systems). The remote terminals can dial
either of the two GIOC through the private branch
exchange, which is not shown in the figure.

The most novel feature in the GE 645 is in the
instruction addressing. A two-dimensional addressing
system has been incorporated which allows each user
to write programs as though there is a virtual memory
system of large size. This system is organized into
program segments (i.e., regions) each of which con-
tains an ordered sequence of words with a conven-
tional linear address. These segments, which can vary
in length during execution, are paged at the discre-
tion of the supervisor program with either 64- or
1,024-word pages. This dual page size allows the
supervisor program to use more effective strategies
in the handling of multiple users. Paging, first intro-
duced on the Atlas computer,? allows flexible dy-
namic memory allocation techniques as well as the
sensible implementation of a one-level store system.
To the user in the Multics system, page addressing
is invisible; rather, it is the segments which are ex-
plicitly known to him and to which he is able to refer
symbolically in his programs. These notions were
first suggested by Holt,?® further developed by Den-

190 PROCEEDINGS — FALL JOINT COMPUTER CONFERENCE, 1965

nis, 3% Dennis and Glaser,? Forgie,®® and oth-
ers.3*3 The value of segmentation and paging has
since been widely discussed during the past year and
has gained broader acceptance.®-3? The explicit hard-
ware implementation details of segmentation and pag-
ing for the Multics system are discussed in the com-
panion paper by Glaser, Couleur and Oliver.!

Because two-dimensional addressing is rather
new, it is useful to clarify the reasons for it.

The major reasons for segments are:

1. The user is able to program in a two-di-
mensional virtual memory system. Thus,
any single segment can grow (or shrink)
during execution (e.g., in the GE 645,
each user may have up to a quarter million
segments, each including up to a quarter
million words).

2. The user can, by merely specifying a start-
ing point in a segment, operate a program
implicitly without prior planning of the
segments needed or of the storage require-
ments. For example, if an error diagnostic
segment is unexpectedly called for, it is
brought in automatically by the supervisor;
it is never brought in unless needed. Simi-
larly, elaborate computations which branch
into many different segments in a data-
dependent way use segments only as needed.

3. The largest amount of code which must be
bound together as a solid block is a single
segment. Since binding pieces of code to-
gether (sometimes called “loading”) is a
process similar to assembling or compiling,
the advantage of being able to prepare an
arbitrarily large program as a series of lim-
ited-overhead segment bindings is signif-
icant. The saving in overhead is compara-
ble to that in FORTRAN when one uses
multiple subprograms instead of a single
large combined block of statements. I the
combined block is used, not only does the
compilation process become particularly
cumbersome but the eradication of pro-
gramming errors in all the different sec-
tions requires more compilation time.

4. Program segments appear to be the only
reasonable way to permit pure procedures
and data bases to be shared among several
users simultaneously. Pure procedure pro-
grams, by definition, do not modify them-

selves. Therefore a supervisor program can
minimize the core memory requirements of
a collection of user programs by supplying
only one copy of a jointly used pure proce-
dure. Nearly all of the Multics system as
well as most of the user programs will be
written in this form. One consequence is
that there will be no clearcut demarcation
between user programs and system pro-
grams; instead the demarcation will depend
largely on the responsibility for mainte-
nance.

Pages are a separate feature from segments and
have further and distinct advantages.

1. The use of paged memory allows flexible
techniques for dynamic storage manage-
ment without the overhead of moving pro-
grams back and forth in the primary mem-
ory. This reduced overhead is important in
responsive time-shared systems where there
is heavy traffic between primary and sec-
ondary memories.

2. The mechanism of paging, when properly
implemented, allows the operation of in-
completely loaded programs; the supervisor
need only retain in main memory the more
active pages, thus making more effective
use of high-speed storage. Whenever a
reference to a missing page occurs, the su-
pervisor must interrupt the program, fetch

the missing page, and reinitiate the pro-

gram without loss of information.

A critical feature in the segment and paging
hardware is the descriptor bit mechanism which
controls the access of processors to the memory.
These bits essentially allow hardware “fire-walls”
to be established within the programming system
which assist the isolation of hardware or software
difficulties. Besides controlling the usual properties
such as read-only, data-only, etc., one descriptor
bit allows a segment to be declared ‘execute-
only.” The presence of this bit allows procedures to
be transferred to and executed but never read by
user programs. This feature will be of interest to
commercial service bureaus, and in application
areas where privacy of program procedure is essen-
tial (e.g., a class-room grading program). Anoth-
er property of the descriptors is that they allow
most of the supervisor modules to be written with

Yy

INTRODUCTION AND OVERVIEW OF THE MULTICS SYSTEM 191

the same descriptors as user programs; most system
programs thereby do not have access’ to privileged
instructions, the inadvertent use of which can cause
drastic machine misbehavior. This feature is espe-
cially pertinent when it is recognized that time-
sharing systems are real-time systems with beha-
vior which it is difficult to duplicate or repeat.
Consequently, all possible compartments and pro-
tection mechanisms that one can have are of value.

For effective operation of the Multics system, a
drum with a high transfer rate is needed. The drum
provided with the GE 645 meets the requirement
and allows convenient and efficient management of
a high rate of input/output requests. In particular,
requests are organized by the supervisor program
into queues in core memory and are fetched from
these queues by the drum controller asynchronously
of the processors. Because of the queues and be-
cause drum record sizes are commensurate with
core memory page sizes, it is straightforward to
program for continuous input/output transmission
without latency delays.

Disk input/output requests are also organized
into queues and are fetched from core memory by
the generalized input/output controller. This con-
troller is discussed in more detail in the paper by
Ossanna et al.* Again, because the supervisor is
contending with a statistical mix of user and super-
visor requests for information to and from disk, it
is expected that latency delays between requests will
be negligible. Because the transmission capacity to
the disk is large, system performance is expected to
be unhampered by input/output bottlenecks.

Since the Multics system will be used as an infor-
mation processor in a wide range of applications, it
is important that a readable character set be used.
The standard character set will be the recently pro-
posed ASCII code which has 128 codes and in-
cludes upper and lower case letters.* This set,
which contains 95 printing graphics, can be reason-
ably represented on contemporary input/output
consoles. Line printers capable of printing the 95
graphics will be standard equipment.

DESIGN FEATURES OF THE SOFTWARE

An important aspect of the software is the sub-
routine and linkage conventions which are associat-
ed with the use of the segment and paging hard-
ware. The following features are incorporated.

1. Any segment has to know another segment
only by symbolic name. Intersegment bind-
ing occurs dynamically as needed during
program execuiion. Intersegment binding is
automatic (i.e., not explicitly programmed
by the user) and the mechanism operates
at high efficiency after the first binding
occurs.

2. Similarly, a segment is able to reference
symbolically a location within another seg-
ment. This reference binds dynamically and
automatically; after binding occurs the first
time, program cxecution is at full speed.

3. It is straightforward for procedures to be
pure procedures, capable of being shared
by several users.

4. Similarly, it is straightforward to write re-
cursive procedures (i.e., subroutines capable
of calling on themselves either directly or
indirectly by a circular chain of calls).

5. The general conventions are such that the
call, save, and return macros used to link
one independently compiled procedure to
another do not depend on whether or not
the two procedures are in the same seg-
ment.

6. Each user is provided with a private soft-
ware “‘stack” for temporary storage within
each subroutine. Of course, any user can
choose to ignore this sterage mechanism,
but it is available and does not have to be
added as an afterthought by a subsystem
designer.

In addition, there is basically only one kind of
calling sequence, thus avoiding much confusion.
System programming is done with the same facili-
ties, tools, etc., available to the ordinary user, and
system programs do not have to be written with
special forethought. It is anticipated that the system
will be open-ended and will be largely created by
the users themselves; many of the useful languages
and subsystems will undoubtedly be contributed
without solicitation. For this reason supervisor and
user programs are constructed with similar form,
and processes such as paging do not distinguish be-
tween user and supervisor programs. (Of course, a
few key pieces of the supervisor are locked in core
memory.) Thus there is no intrinsic limit on the
size of the supervisor program nor on the complexi-
ty or the features which it may have. The avoidance

192 PROCEEDINGS — FALL JOINT COMPUTER CONFERENCE, 1965

of a size limitation will be of major value as the
system services grow.

It is important to recognize that the average user
of the system will see no part of the segmentation
and paging complexity described in the paper by
Glaser et al. Instead he will see a virtual machine
with many system characteristics which are conven-
ient to him for writing either single programs or
whole subsystems. As a subsystem writer he must
be able to make the computer appear to have any
particular form ranging from an airline reservations
system, to an inventory control system, from a man-
agement gaming machine, to even a “FORTRAN
machine” if so desired. There are no particular re-
strictions on the kinds of new systems or languages
which can be imbedded.

Further features which should ultimately appear
in the system are:

1. the ability to have one process spawn other
processes which run asynchronously on
several processors (thus improving the
real-time response of the overall process);

2. the ability for data bases to be shared
among simultaneously operating programs.

In addition the system will include all the major
features of the present Project MAC system such
as interconsole messages and macro-commands.
The latter allow users to concatenate sequences of
console-issued commands as short programs there-
by forming more elaborate commands which can be
used with a single name and parameter call.

Another feature of the system is that it will include
batch processing facilities as a subset. In particular,
users will start processes which may have n terminals
attached, with n=1 for individual man-machine inter-
action, and n=0 for running an absentee-user pro-
gram, the latter case corresponding to batch process-
ing. A user will be able to transform conveniently
a process back and forth between the zero and one
terminal states. In addition, for the purposes of teach-
ing machines and gaming experiments, it will be pos-
sible to attach to a process an arbitrary number of
additional terminals.

The supervisor will, of course, do scheduling and
charging for the use of resources. Scheduling poli-
cies will be similar but more general than those cur-
rently in the MAC system; for batch processing,
jobs should be scheduled so that a user will be able
to obtain a quotation of maximum completion time.

The time accounting done by the system will be ac-
curate to a few microseconds. In particular, the sys-
tem will “fight back” by charging for exactly what
equipment is used (or others are prevented from
using). In this way, orderly system expansion will
be possible since the particular equipment charges
which are collected will always allow further acqui-
sition of equipment. In addition the system will in-
corporate hierarchal control of resource allocations
and accounting authorizations. A project manager
will be able to give computing budgets to group
leaders who in turn will be able to delegate flexibly
and straightforwardly sub-budgets to team leaders,
etc. An important aspect of this resource allocation
and budgeting is the ability of any member of the
hierarchy to reallocate flexibly those resources over
which he has control. With control of the resource
allocation and administrative accounting decentral-
ized, the operation of systems which serve hundreds
of persons becomes manageable.

In a similar way, system programming is decen-
tralized. For example, the maintenance of the sys-
tem might not be entirely under the control of a
single group; instead particular translators might be
delegated to independent subgroups of system pro-
grammers. This isolation and distribution of
responsibility is considered mandatory for the
growth of large, effective systems. Hierarchal and
decentralized accounting and system programming
is made possible by a highly organized file system
which controls the access rights to the secondary
memory of the system and thus to the file copies of
the vital procedures and data of the system.

DESIGN CONSIDERATIONS IN THE
FILE SYSTEM

The file system is a key part of a time-sharing or
multiplexed system. It is a memory system which
gives the users and the supervisor alike the illusion
of maintaining a private set of segments or files of
information for an indefinite period of time. This
retention is handled by automatic mechanisms op-
erated by the supervisor and is independent of the
complex of secondary storage devices of different
capacity and access. A scheme, such as is described
in the paper by Daley and Neumann,® where all files
of information are referred to by symbolic name
and not by address, allows changes in the secondary
storage complex for reasons either of reliability or
capacity. In particular, the user is never responsible

oy

INTRODUCTION AND OVERVIEW OF THE MULTICS SYSTEM 193

for having to organize the movement of information
within the secondary storage complex. Instead the
file system has a strategy for arranging for high-
speed access to recently used material.

Of considerable concern is the issue of privacy.
Experience has shown that privacy and security are
sensitive issues in a multi-user system where termi-
nals are anonymously remote. For this reason, each
user’s files can be arranged to be completely private
to him. In addition, a user may arrange to allow
others to access his files selectively on a linking ba-
sis. The linking mechanism permits control over the
degree of access one allows (e.g., a user may wish a
file to be read but not written). The file system al-
lows files to be simultaneously read but automati-
cally interlocks file writing.

The file system is designed with the presumption
that there will be mishaps, so that an automatic file
backup mechanism is provided. The backup proce-
dures must be prepared for contingencies ranging
from a dropped bit on a magnetic tape to a fire in
the computer room.

Specifically, the following contingencics are pro-
vided for:

1. A user may discover that he has acciden-
tally deleted a recent file and may wish to
recover it.

2. There may be a specific system mishap
which causes a particular file to be no
longer readable for some “inexplicable”
reason.

3. There may be a total mishap. For example,
the disk-memory read heads may irrever-
sibly score the magnetic surfaces so that all
disk-stored information is destroyed.

The general backup mechanism is provided by
the system rather than the individual user, for the
more reliable the system becomes, the more the user
is unable to justify the overhead (or bother) of
trying to arrange for the unlikely contingency of a
mishap. Thus an individual user needs insurance,
and, in fact, this is what is provided.

DESIGN CONSIDERATIONS IN THE
COMMUNICATION AND INPUT/OUTPUT
EQUIPMENT

A design feature of the system is that users can
view most input/output devices uniformly. Thus a
program can read from either a terminal or a disk

file, or output can be sent either to a file or to a
punch, a typewriter, or a printer. In particular, the
user of the system does not have to rewrite his pro-
gram to change these assignments from day to day
or from use to use. The symmetric use of equip-
ment is, of course, highly desirable and makes for
greater simplicity and flexibility.

A typical configuration of the Multics system
will contain batch processing input/output devices
such as card readers, punches and printers and these
normally will be centrally located at the main com-
puting installation. For remote users there will be
terminals such as the Model 37 Teletype which uses
the revised ASCII code with upper and lower case
letters. The Model 37 Teletype also can operate on
the TWX network of the Bell System. It will there-
fore be possible for many of the 60,000 TWX sub-
scribers to be, if authorized, users of a Multics in-
stallation. An additional standard terminal for the
Multics system will be a modified version of the
IBM 1052 console. This unit (and all other termi-
nal devices which do not have the ASCII character
set) will have software escape conventions, defined
to allow unambiguous input or output of the com-
plete ASCTI character set. The escape conventions
are general and allow even primitive devices (in a
graphic sense) to communicate with the system.
The IBM 1052 terminals, which basically use the
Selectric typewriter mechanism, are operated with a
special typeball, prepared for Project MAC as a
compromise subset of the ASCII graphics.

For those users who wish to have remotely locat-
ed satellite substations capable of punching and
reading cards and line printing, there are a variety
of options available. Because the design of the Gen-
eral Input/Output Controller is relatively flexible, it
is possible to use the GE 115, the Univac 1004, or
virtually any other similar subcomputer as a termi-
nal, provided one is prepared to implement the
necessary interface program modules within a Mul-
tics system. At present none of these terminals are
completely satisfactory since the full 128-code re-
vised ASCII character set is not standard and exces-
sive use of the software escape mechanism is re-
quired for printing.

In general, the area of remote terminal equip-
ment is considered to be in an early state of devel-
opment. Equipment innovations are expected, as it
becomes evident that systems are capable of sup-
porting their use. Terminals with graphical in-

194 PROCEEDINGS — FALL JOINT COMPUTER CONFERENCE, 1965

put/output are highly desirable although at present
costly. The initial approach of the Multics system
will be such that there will be no standard graphical
input/output terminal although several special proj-
ects are being attempted. The system viewpoint ini-
tially will be that all graphical input/output will be
with small, dedicated computers capable of han-
dling the immediate interrupts. These small com-
puters may multiplex a few terminals and in turn
appear to be not too demanding to the main system.
Thus the main system interrupt load will not be-
come excessive. In a similar way the need for
real-time instrumentation such as in monitoring
experimental apparatus is expected to be handled
initially on a nonstandard basis. The philosophy is
the same as with graphical input/output, namely, to
employ small, dedicated computers for handling the
real-time interrupts so as to draw upon the main
system for major processing of information in a
more leisurely way.

GENERAL CONSIDERATIONS

It is expected that the ultimate limitation on the
exploitation of the Multics system will be the
knowledge which the user has of it. As a conse-
quence, documentation of what the system contains
is considered to be one of the most important as-
pects of the system. For this purpose a technique
has been developed wherein the main system ref-
erence manual is to be maintained on-line in a
fashion similar to what is currently being done at
Project MAC. This allows any user of the system to
obtain a current table of contents with changes list-
ed in reverse chronological order. Thereby he can
keep abreast of all system changes. Because the
manual text is on-line, one is able to obtain im-
mediate access to the latest changes at any hour or
at any terminal. The on-line storage of the text
also lets the system documentation group, by using
appropriate editing programs, make global revisions
whenever necessary. Of course, the distribution of
manual revisions will still be handled in the ordi-
nary way in that revised manual sections will be
available at document rooms. Furthermore, it
should be clear that there is no substitute for a good
editor maintaining discipline over the documenta-
tion and for intelligent selectivity in the reference
material. A documentation technique such as the
one given here is believed to be an absolute necessi-
ty when users of the system no longer visit a com-

putation center in the course of their daily activi-
ties. The user who is 200 miles away from the com-
puter installation should have nearly the same
knowledge about the system as the one who is 20
feet away.

Another area of consideration is that of compati-
bility with batch processing. In the Multics system
for the GE 645, it will be possible to use simulta-
neously, but independently, the GECOS batch-
processing system; user jobs operating under GE-
COS should behave exactly as they do on the GE
625 or GE 635 computers. Effort will be made to
allow the GECOS user to change conveniently to
the Multics frame of operation but there will be no
particular attempt made for compatibility between
the two systems of basically different design. A user
of the GECOS system may continue to use the GE-
COS system until he is prepared to make a change
to the Multics system at his own place, time, and
choosing. This, of course, relieves a manager in-
stalling a Multics system of the transient effect of
several hundred persons changing their computing
habits in one day and thus allows distribution of
the normal dissatisfaction that arises under such
circumstances.

One of the inevitable questions asked of a multi-
ple-access system is what capacity it will have for
simultaneous on-line users. The answer, of course,
is highly dependent upon what the users are doing.
Clearly, if they are requesting virtually nothing, one
can -have a nearly infinite number of terminals.
Conversely, if one person wishes, for a single prob-
lem, system resources which equal the entire com-
puting system, it is conceivable, if the scheduling
policy allows it, that there can be only one terminal
attached to the system. If one assumes that the ser-
vice requirements are similar to those which have

.been experienced at Project MAC, then on the basis

of simple scaling of processor and memory speed it
is expected that the system will be able to serve
simultaneously a few hundred users. But it is hazard-
ous to predict any firm numbers; rather the per-
tinent parameters in a system of this type will al-
ways be the cost-performance figures. Perform-
ance, of course, is somewhat subjective, but the is-
sues are not those of memory speed, processor
speed or input/output speed. Instead the user
should judge a system by the quality and variety of
services, the response times, the reliability, the
overall ease of understanding the system, and the

"

INTRODUCTION AND OVERVIEW OF THE MULTICS SYSTEM 195

performance with respect to the interface of the sys-
tem which he uses. For example, pertinent ques-
tions for a PL/I user to ask are how costly, on the
average, the translator is per statement, how easy it
is to debug the language, and how efficiently the
object code produced by the translator runs. Here,
the object code referred to is that for an entire prob-
lem and not just for isolated “kernels”; the efficiency
refers to the total resource drain required to execute
the problem. and thereby includes the input/output
demands as well.

CONCLUSIONS

The present plans for the Multics system are not
unattainable. However, it is presumptuous to think
that the initial system can successfully meet all the
requirements that have been set. The system will
evolve under the influence of the users and their
activities for a long time and in directions which
are hard to predict at this time. Experience indi-
cates that the availability of on-line terminals
drastically changes user habits and these changes in
turn suggest changes and additions to the system
itself.

It is expected that most of the system additions
will come from the users themselves and the system
will eventually become the repository of the proce-
dure and data knowledge of the community. The
Multics system will undoubtedly also open up large
classes of new uses not only in science and engi-
neering but also in other areas such as business and
education. Just as introduction of higher-level
programming languages, such as FORTRAN, in-
creased by an order of magnitude the number of
persons using computers, multiple-access systems
operated as a utility will substantially extend the
exploitation of information processing systems to
the point of having significant social consequences.
Such social issues are explored in a companion pa-
per by David and Fano.®

REFERENCES

1. E. L. Glaser, J. F. Couleur and G. A. Oliver,
“System Design of a Computer for Time-Sharing
Applications,” this volume.

2. V. A. Vyssotsky, F. J. Corbaté6 and R. M.
Graham, “Structure of the Multics Supervisor,” this
volume. :

3. R. C. Daley and P. G. Neumann, “A Gen-

eral Purpose File System for Secondary Storage,”
this volume.

4. J. F. Ossanna, L. E. Mikus and S. D. Dun-
ten, “Communications and Input/Output Switching
in a Multiplex Computing System,” this volume.

5. E. E. David, Jr.,, and R. M. Fano, “Some
Thoughts About the Social Implications of Accessi-
ble Computing,” this volume.

6. “IBM Operating System/360, PL/I: Lan-
guage Specifications,” File No. S$360-29, Form
C28-6571-1, 1.B.M. Corp.

7. C. Strachey, “Time Sharing in Large Fast
Computers,” Proceedings of the International Con-
ference on Information Processing, UNESCO, June
1959, paper B. 2. 19.

8. J. C. R. Licklider, “Man-Computer Sym-
biosis,” IRE Transactions on Human Factors in
Electronics, vol. HFE-1, no. 1, pp. 4-11 (Mar.
1960),

9. J. McCarthy, “Time-Sharing Computer
Systems,” Management and the Computer of the
Future (M. Greenberger, ed.), M.L.T. Press, Cam-
bridge, Mass, 1962, pp. 221-236.

10. F. J. Corbat6, M. M. Daggett and R. C. Dal-
ey, “An Experimental Time-Sharing System,” Pro-
ceedings of the Spring Joint Computer Conference,
21, Spartan Books, Baltimore, 1962, pp. 335-344.

11. F. J. Corbaté et al, The Compatible Time-
Sharing System: A Programmer’s Guide, 1st ed.,
M.LT. Press, Cambridge, Mass., 4963.

12. J. Schwartz, A General Purpose Time-
Sharing System, Proceedings of the Spring Joint
Computer Conference, 25, Spartan Books, Wash-
ington, D.C., 1964, pp. 397-411.

13. J. B. Dennis, “A Multiuser Computation Fa-
cility for Education and Research,” Comm. ACM,
vol. 7, pp. 521-529 (Sept. 1964). '

14. S. Boilen et al, “A Time-Sharing Debug-
ging System for a Small Computer,” Proceedings of
the Spring Joint Computer Conference, 23, Spartan
Books, Baltimore, 1963, pp. 51-58.

15. H. A. Kinslow, “The Time-Sharing Moni-
tor System,” Proceedings of the Fall Joint Comput-
er Conference, 26, Spartan Books, Washington, D.C.,
1964, pp. 443-454.

16. “The Dartmouth Time-Sharing System,”
Computation Center, Dartmouth Cellege, Oct. 19,
1964,

17. “PDP-6 Time-Sharing Software,” Form
F-61B, Digital Equipment Corp., Maynard, Mass.

196 PROCEEDINGS — FALL JOINT COMPUTER CONFERENCE, 1965

18. W. W. Lichtenberger and M. W. Pirtle, “A
Facility for Experimentation in Man-Machine In-
teraction,” this volume.

19. G. J. Culler and R. ‘W. Huff, “Solution of
Nonlinear Integral Equations Using On-line Com-
puter Control,” Proceedings of the Spring Joint
Computer Conference, 21, Spartan Books, Balti-
more, 1962, pp. 129-138.

20. G. J. Culler and B. D. Fried, “The TRW
Two-Station, On-Line Scientific = Computer:
General Description,” Computer Augmentation of
Human Reasoning, Washington, D. C., June 1964,
Spartan Books, Washington, D.C., 1965.

21. “Carnegie Institute of Technology Computa-
tion Center User’s Manual.”

22. J. C. Shaw, “JOSS: A Designer’s View of an
Experimental On-Line Computing System,” Pro-
ceedings of the Fall Joint Computer Conference,
26, Spartan Books, Washington, D.C., 1964, pp.
455-464.

23. T. M. Dunn and J. H. Morrissey, “Remote
Computing—An Experimental System,” Part 1; J. M.
Keller, E. C. Strum and G. H. Yang, Part 2, Pro-
ceedings of the Spring Joint Computer Conference,
25, Spartan Books, Washington, D.C., 1964, pp.
413-443.

24. J. 1. Schwartz, “Observations on Time-
Shared Systems,” ACM Proceedings of the 20th
National Conference, p. 525 (1965).

25. “Time-Sharing System Scorecard, No. 1
(Spring 1965),” Computer Research Corp., 747
Pleasant St., Belmont, Mass.

26. R. M. Fano, “The MAC System: The Com-
puter Utility Approach,” IEEE Spectrum, vol. 2,
pPp- 56-64 (Jan. 1965).

27. P. M. Morse, “Computers and Electronic
Data Processing,” Industrial Research, vol. 6, no.
6, p. 62 (June 1964).

28. T. Kilburn, “One-Level Storage System,”
IRE Transactions on Electronic Computers, vol.
EC-11, no. 2 (Apr. 1962).

29. A. W. Holt, “Program Organization and
Record Keeping for Dynamic Storage Allocation,”
Comm. ACM, vol. 4, pp. 422-431 (Oct. 1961).

30. J. B. Dennis, “Program Structure in a Mul-
ti-Access Computer,” Tech. Rep. No. MAC-
TR-11, Project MAC, M.L.T., Cambridge, Mass.
(1964).

31. J. B. Dennis, “Segmentation and the Design
of Multiprogrammed Computer Systems,” IEEE In-
ternational Convention Record, Institute of Electrical
and Electronic Engineers, New York, 1965, Part 3,
pp. 214-225.

32. J. B. Dennis and E. L. Glaser, “The Struc-
ture of On-Line Information Processing Systems,”
Information Systems Sciences: Proceedings of the
Second Congress, Spartan Books, Washington, D.C.,
1965, pp. 1-11.

33. J. W. Forgie, “A Time- and Memory-
Sharing Executive Program for Quick-Response
On-Line Applications,” this volume.

34. M. N. Greenfield, “Fact Segmentation,” Pro-
ceedings of the Spring Joint Computer Conference,
21, Spartan Books, Baltimore, 1962, pp. 307-315.

35. “The Descriptor,” Burroughs Corp., 1961.

36. “Univ. of Mich. Orders IBM Sharing Sys-
tem,” EDP Weekly, vol. 6, no. 5, p. 9 (May 24,
1965).

37. B. W. Arden et al, “Program and Addressing
Structure in a Time-Sharing Environment” (sub-
mitted for publication). _

38. Computing Report for the Scientist and En-
gineer, Data Processing Division, I.B.M. Corp., vol.
1, no. 1, p. 8 (May 1965).

39. W. T. Comfort, “A Computing System De-
sign for User Service,” this volume,

40. “Proposed Revised American Standard Code
for Information Interchange,” Comm. ACM, vol. 8,
no. 4, pp. 207-214 (Apr. 1965).

41. P. A. Crisman, ed., The Compatible Time-
Sharing System: A Programmer’s Guide, 2nd ed.,
M.LT. Press, Cambridge, Mass., 1965.

42. A. L. Samuel, Time-Sharing on a Computer,
New Scientist 26, 445 (May 27, 1965) 583-587.

e}

(8]

o

SYSTEM DESIGN OF A COMPUTER FOR TIME SHARING APPLICATIONS*

E. L. Glaser
Massachusetts Institute of Technology
Cambridge, Massachusetts

and

J. F. Couleur and G. A. Oliver
General Electric Computer Division
Phoenix, Arizona

INTRODUCTION

In the late spring and early summer of 1964 it
became obvious that greater facility in the comput-
ing system was required if time-sharing techniques
were to move from the state of an interesting pilot
experiment into that of a useful prototype for re-
mote access computer systems. Investigation proved
computers that were immediately available could
not be adapted readily to meet the difficult set
of requirements time-sharing places on any ma-
chine. However, there was one system that appeared
to be extendible into what was desired. This ma-
chine was the General Electric 635. The 635 is a
single address stored program computer with a
word length of 36 bits. It possessed many of the
characteristics that were deemed necessary for the
application of a computer to time-sharing. The
three most important characteristics are:

*Work reported herein was supported (in part) by Proj-
ect MAC, an M.L.T. research program sponsored by the Ad-
vanced Research Projects Agency, Department of Defense,
under Office of Naval Research Contract Number Nonr-
4102(01).

197

1. A clean and comprehensive order code,
2. a multiprocessor capability, and
3. nonsynchronous design.

The first of these requirements stems from the
quantity of software to be written for the machine.
The size of the operating system demands it be
written in some higher level language. An orderly
instruction set is essential to permit the use of good
code selection algorithms in the compiler. The multi-
processor characteristic was desired to permit a
feasible fail-soft characteristic in the system and to
allow system growth without major increments
equivalent to entire system duplication. The third
characteristic, non-synchronous communication be-
tween major components, was deemed desirable be-
cause of the flexibility afforded in the significant
modification needed to achieve the time-sharing
system that we had in mind. The nonsynchronous
characteristic allows a system to become large with-
out suffering measurable degradation. These modi-
fications in a fully synchronous system could result
in degradation of performance. (Degradation of

198 PROCEEDINGS — FALL JOINT COMPUTER CONFERENCE, 1965

course will take place in any system if the delay
time of a signal through a cable is a significant part
of a basic operating time. However the nonsynchro-
nous approach permits this time to be minimized.)

THE SCOPE OF EXTENSION

The design of the extensions to the 635 began in
early May 1964 and the end result is what is now
known as the GE 645. The changes are in several
areas. First, a totally new I1/O control unit has been
designed to integrate the control of standard periph-
eral devices and various types of communications
lines. The latter are necessary in the time-sharing
environment. A large movable head disc, the DS
25, was available as a standard 635 peripheral. This
unit appeared suited for the type of use we envi-
sioned. A high-speed drum (DS 300) was also
available, but its performance was not sufficient for
the purposes of the highest speed secondary store in
the projected time-sharing system. Therefore, a
new high-speed drum system was designed for this
function (MS 32). The introduction of a new form
of addressing logic incorporating segments and
pages is a significant change to the system. This,
with its concomitant changes in interrupt logic and
related portions of the machine affected by it, was
by far the major change to the system.

THE SEGMENTS AND PAGES

The concept of the paged memory has appeared
in the literature for the past several years and has
been implemented on at least- one machine!:2. The
purpose of paging is to make the allocation of phys-
ical memory easier. One gan think of paging as the
intermediate ground between a fully associative
memory, having each word addressed by means of
some part of its contents, and a normal memory,
having each memory location addressed by a spe-
cific integer forever fixed to that physical location. In
paging, blocks of memory are assigned differing
base addresses. Addressing within a block is rela-
tive to the beginning of the block. Thus if associa-
tion and relative addressing are handled with a
break occuring within a normal break of the word
(viz. in a binary machine block size is a power of
2), then a number of noncontiguous blocks of
memory can be made to look contiguous through
proper association. The association between a block
and a specific base address can be dynamically

changed by program during the execution of ap-
propriate parts of the executive routine.

Segments on the other hand are used not for the
allocation of physical memory, but for the alloca-
tion of address space. The concept of segments has
received little attention in the literature until
recently.®5% A segment defines some object such
as a data area, a procedure (program) or the
like. In a sense, each segment corresponds to a vir-
tual memory whose size is whatever size, up to a
maximum limit, that is required. In theory, as many
such segments can be available to a programmer as
necessary. In the case of the 645, the practical limit
is 2'8 segments, each one of which can obtain up to
218 words. Observe that although segments and
pages are two distinctly different entities, they work
together to facilitate the allocation of physical
memory and virtual memory. Although a large
number of segments may be defined, each one hav-
ing a large number of words, only the currently ref-
erenced pages of pertinent segments need to be in
memory at any time. A very limited concept of seg-
ments has been used in computers previously.” Re-
cently other system designs have employed a similar
segment and paging technique.®

DESCRIPTORS

A descriptor is a word that is used to define and
locate in physical memory either a page or a seg-
ment. Hence there are two kinds of descriptors:
page descriptors and segment descriptors. The dif-
ference between them is the table in which they are
found. Each has slightly different functions as will
become obvious.

A segment descriptor contains among other
things the location of either the segment itself or, if
the segment is paged, the location of the table in
which its pages are defined. Each page descriptor
corresponds to one of the pages of the segment. A
page descriptor contains the location of the base of
the block of memory in which this page is to be
found. All of the page descriptors for a given seg-
ment must lie in contiguous locations of the page
table for that segment.

Both segment and page descriptors also contain
certain access control information known as the
descriptor control field. These fields define the na-
ture of access permitted to a particular piece of in-
formation. An example of such a control might be
the Write Permit Bit. This bit determines whether

)

SYSTEM DESIGN OF A COMPUTER FOR TIME-SHARING APPLICATION* 199

this segment or this particular page of a segment
can be written into or only read. Alternatively, we
may think of the segment descriptor as defining a
certain set of restrictions on accessing the entire
segment. Specific page descriptors may add addi-
tional restrictions; however, they may not take any
away. For example, the segment is defined as being
a data segment with writing permitted. The result is
that control can not be transferred to this segment,
but the words of the segment can be used as data
with either reading or writing possible. If for some
reason there is one specific page of data that we
wish to protect, that page can be marked as “Read
Only” (the write permit bit is set to zero). As a
consequence, this page is defined not only as data
but it is now “Read Only” data. The page descrip-
tor has applied an additional constraint above and
beyond those constraints contained in the segment
descriptor. In addition to the control and address
information the segment descriptor contains a
bounds field. This bounds field defines the number
of pages that the segment contains. In the case of
unpaged segments this bounds field defines the total
number of words in the segment.

THE DESCRIPTOR SEGMENT AND BASE
REGISTERS

The segment descriptors associated with a given
process are all contained in a single segment known
as the descriptor segment. The descriptor segment
has a distinguished role in the operation of the sys-
tem in that the processor uses this segment as the
sole means of relating program references to memo-
ry location. The descriptor segment may be paged
in the same manner as any other segment. Its loca-
tion in memory is defined by a special processor
register known as the descriptor base register. This
register defines either the base of an unpaged de-
scriptor segment or the base of the segment page ta-
ble of a paged descriptor segment. This register can
only be loaded or stored by privileged instructions
not available to slave mode programs. Note that all
user programs and most of the executive system are
written in slave mode.

A segment can now be identified by an ordinal
number which locates its descriptor relative to the
base of the descriptor segment. This number is
known as the segment number. The address of a lo-
cation in memory is specified in terms of a segment
number and a location within that segment. In the

645 both quantities are expressed as 18 bit numbers.
During all addressing in the 645 both parts are nec-
essary except under very unusual circumstances.
Both parts are usually supplied explicitly. In some
cases they are implied by certain conditions of the
machine.

There are several provisions for forming these
two-part addresses. The first is by means of the in-
struction word. An address may refer to a location
within the current procedure segment or alternative-
ly to some other segment. A control field in the in-
struction specifies the choice. If the reference is
within the current procedure segment the segment
number is found in the procedure base register.
This is an internal processor register and not direct-
ly accessible to the user. If a reference is to some
other segment the segment number is located in one
of eight address base registers. The three most sig-
nificant bits of the instruction address field are
used to specify this selection.

A set of commands is available to load, store and
modify the contents of the address base registers.
Additional flexibility is provided by allowing these
base registers to operate as index registers (internal
bases). When employed in this manner the indexing
base register is coupled with a base register that
holds a segment number. This base pair in effect
defines a base location internal to the segment. The
association of bases, together with marking bases as
internal, and “locking” certain bases so that they
cannot be changed except in a privileged “master”
mode, are all contained in a control register for the
bases.

For high-speed storing and reestablishing of sta-
tus, it is possible to store or load the eight base reg-
isters with a single command. Any bases which are
locked, on a load bases command are passed over
and remain unchanged. The use of these various
forms of addressing would be difficult to discuss at
this time and the reader is referred to one of the
subsequent papers in this session describing the
software for the new Multics system.?

A second form of segment addressing is made
available by means of the indirection facilities in
the 645. Two variants are provided. The first of
these is known as INDIRECT TO SEGMENT
(ITS). This form of modifier requires two words,
the first of which gives the segment number to-
gether with the tag that indicates it is an ITS word.
The second word appears as a normal indirect word
in either the 635 or 645. It contains an address to-

200 PROCEEDINGS — FALL JOINT COMPUTER CONFERENCE, 1965

gether with an address tag indicating whether fur-
ther indirection is to take place and if so what type,
and additionally if indexing is to take place before
using this address. The second variant is by means
of the indirect word pair which is called ITB, that
is, INDIRECT THROUGH BASE. This form of
indirection is identical to the ITS form with the ex-
ception that the first word of the pair contains the
ITB modifier and a number from O through 7
which indicates which of the 8 address base regis-
ters contains the segment number of this address.
When either form is encountered during indirec-
tion, the segment name then in effect is canceled
and replaced with that given by the pair. The indi-
rection will continue as prescribed by the pair.

THE THREE MODES OF PROCEDURE
EXECUTION;"

In the 635 there were two modes for program
execution: namely, master and slave. In slave mode
only a restricted set of processor instructions are
executable. Certain instructions such as I/O connect,
those instructions dealing with the loading of the
elapsed-time register and instructions affecting the
relocation register were trapped. In master mode
these privileged instructions could be executed and
the relocation feature disabled.

In the 645 three distinct modes of execution are
defined. These are absolute, master and slave. Slave
mode is considered to be the normal mode of in-
struction execution. In this mode no privileged in-
structions may be executed. Further the relocation
logic for segments and pages is fully operative.
Master mode uses the segment and paging hardware
identically to slave mode with the exception that
privileged instructions may be executed and certain
constraints on the access to segments are removed.
Absolute mode is superior to the other two modes of
operation. In the absolute mode, the segmentation
and paging hardware is disabled and all instructions
in the machine may be executed. Additionally, none
of the segment access restrictions apply. Absolute
mode is entered only by the occurrence of an inter-
rupt. The machine enters temporarily into absolute
mode to record system status but can be caused to
remain in this mode if desired. The segmentation
hardware can be temporarily enabled on any instruc-
tion merely by the use of the instruction word control
bit used to indicate base register selection. Further,
encountering either an ITS or ITB modifier will

cause the segmentation hardware to be turned on
for this instruction execution. When in absolute, the
mode of the program can be turned back to either
master or slave by the execution of an appropriate
instruction. This instruction is a branch instruction
that defines a segment number which indicates what
form of procedure shall be executed, that is, master
or slave.

Because it was felt desirable to make it possible
to branch easily between various programs includ-
ing between slave and master programs, a certain
degree of insurance has to be built into the hard-
ware to guarantee that spurious branches would not
take place into the middle of master mode programs
from slave programs. As a consequence, a master
mode procedure when viewed from a slave mode
procedure appears to be a segment which can neith-
er be written nor read. Further, the only method of
addressing this segment that is permitted is a
branch to the O location. Any attempt to get at
other locations by branch, execute, return or any
other instructions will result in an improper proce-
dure fault causing an appropriate interrupt. A spe-
cial form of procedure called EXECUTE ONLY
has also been defined which is similar to MASTER
PROCEDURE in terms of entry restrictions im-
posed on slave mode. Once entered, this procedure
has all of the execution characteristics of slave
mode.

THE ASSOCIATIVE MEMORY

The addressing system as now defined would be
very unsatisfactory if employed for each instruction
or operand reference. If both the descriptor segment
and the data segment are paged and if the proce-
dure being executed is paged, a large number of
memory cycles might be required to develop a
memory address. To overcome this an associative
memory is incorporated in the processor. This
memory “captures” a compounded descriptor, de-
rived from the segment and page descriptors. The
resultant working descriptor represents a particular
page of a particular segment. This can be either a
data segment or the procedure segment. As a conse-
quence, if a particular page of a segment is being
used quite heavily, its descriptor will always be in
this associative memory and no additional ref-
erences to main memory are required to develop the
memory address. The associative memory is “invis-

)

"

SYSTEM DESIGN OF A COMPUTER FOR TIME-SHARING APPLICATION* 201

ible” to the user. Its only effect is to greatly speed
up the execution of the programs. Whenever a new
working descriptor is created, it is placed in the as-
sociative memory. If the associative memory is al-
ready full, a wired algorithm selects a memory posi-
tion to be used for the new descriptor and causes an
older descriptor to be discarded. A set of commands
permit storing selected words from the associative
memory and clearing the associative memory. All
of these instructions are privileged.

ADDITIONAL AIDS TO MEMORY
ALLOCATION

The environment in which this system is to work
places a high premium on efficient management of
memory resources. Paging of itself simplifies the
allocation process. A further gain is possible if one
appreciates the effect of frequency and duration of
usage. Two distinct mechanisms are employed to
supply this information. The first of these involves
the page descriptors. A record is made in the de-
scriptor if the page is accessed for any reason. Once
this bit has been set to a one, it is unaffected by
subsequent page references. A supervisor program
will periodically reset these “use bits” to zero and
at the same time determine which pages have been
accessed since the last entry into this procedure. A
second bit in each of the page descriptors is set to
one if the contents of the page is altered in any
way.

The second mechanism involves the associative
memory. The privileged instructions that store the
contents of the entire associative memory or store
the contents of the cell whose contents are “the old-
est” descriptor provide the supervisory program
with a measure of the extent and frequency of page
usage.

INTERRUPT CONSIDERATIONS

In the 645 interrupts are generated by external
stimuli while faults are generated by processor con-
ditions. The occurence of either an interrupt or
fault causes the execution of two commands located
at specific “wired” addresses. On most computers,
interrupt can only take place between command ex-
ecutions. In the case of the 645, certain aspects of
segmentation made desirable the interruption of the
computer at many points during execution of a spe-
cific command. After the interrupt is serviced, exe-
cution is resumed. Resumption at the precise point

of interruption, rather than restart, is mandatory
because of the nature of the indirection in the 645.

The features of the segmentation system which
first made it mandatory to add this more general-
ized interrupt capability were associated with the
various control checks implied by the descriptors.
Examples of these control checks are the bounds
check, attempting to write in a Read Only segment,
etc. It is advantageous in a segmented environment
to cause an interrupt as a result of accessing an ap-
propriately coded segment or page descriptor. This
type of interrupt or fault is called a Directed Fault.
Its name is derived from the fact that this descrip-
tor directs control to a specific function based on
which one of 8-bit configurations is found in the
segment or page descriptor. The encoding and
placement of this type of descriptor is done by the
supervisor. The use of these descriptors for marking
missing pages or missing segments will be discussed
in a subsequent paper.

The 645 interrupt handling mechanism has been
called the “snapshot” register. This is a set of flip-
flops which, although used by other functions of the
machine, are primarily available for storing the ma-
chine state. A trap, be it either an interrupt or a
fault, causes the state of the machine to be stored in
this snapshot register. The contents of essential reg-
isters and a history of control states comprise the
snapshot. The first instruction in the interrupt han-
dling routine normally will be a store control unit
instruction. This privileged instruction stores the
contents of the snapshot register into six memory
locations. The subsequent execution of a restore
control unit instruction takes the contents of the six
words and reestablishes the control unit.

CONFIGURATION CONTROLS

Because of the highly on-line nature of this system
it is necessary to reconfigure the system relatively
easily. As a consequence, those switches required for
reconfiguration control are remotely located from the
units they control to allow rapid setting from a cen-
tral point. At first glance it might seem desirable to
make program configuration possible; however, if
the system is malfunctioning it would be necessary
in any event for the program to notify and probably
obtain permission from the floor supervisor. As a
consequence, it was decided initially to make recon-
figuration controllable by manual switches and to

202 PROCEEDINGS — FALL JOINT COMPUTER CONFERENCE, 1965

allow the computer to instruct the operator during
reconfiguration.

Reconfiguration is used for two prime purposes:
to remove a unit from the system for service or be-
cause of malfunction, or to reconfigure the system
either because of the malfunction of one of the
units or to “partition” the system so as to have two
or more independent systems. In this last case, par-
titioning would be used either to debug a new sys-
tem supervisor or perhaps to aid in the diagnostic
analysis of a hardware malfunction where more
than a single system component were needed.

The effectiveness of rapid reconfiguration is dif-
ficult to determine in a paper simulation and effi-
ciency of the system chosen will only be proved or
disproved after a number of months of practical use
in the one-line environment.

CONCLUSIONS

We have attempted in this paper to describe
some of the considerations that led to the unique
design of the GE 645 as a processor for a multi-
access, remote user, information processing system.
We have already learned much in the process of de-
signing this machine and feel that within the next
two to three years much more will be learned. It is
difficult at this time to make any statements about
what the future of such processors should be beyond
a few tentative conclusions.

First, additional speed both in arithmetic capabil-
ity and in the memory hierarchy is desirable still;
but even more, increased channel capacity of the
main store of the machine is required. At present it
appears that the principal limitation and expansion
of the system will be the channel capacity of core
memory. Obviously, this will be alleviated to a
great extent by the advent of higher speed central
memories for computers. However, this is but one
answer. We feel that superior facilities can be
gained by closer attention to the system functions
that we have emphasized with the 645; namely effi-
cient interrupt handling capability, and comprehen-
sive addressing logic to improve the allocation and
protection of physical and logical memory.

Finally, it is felt that the designer of future time-

sharing systems must remember that a main part of
the system is not in the computing center. Rather it
is composed of the communications lines, the ter-
minals and the various users, be they human beings,
experiments or the like at these terminals. There-
fore, the designer must keep in mind that he is en-
gaged in a communications activity as well as an
information processing activity and that proper at-
tention must be paid to both aspects. We have done
this to the best of our ability in the present system,
although we are sure that some several years from
now we will be able to return with the description
of a machine that will be as great a step over the
645 as the 645 is over previous designs when ap-
plied to this new emerging field of time-shared
computation.

REFERENCES

1. F. H. Sumner, “The Central Control Unit of
the Atlas Computer,” Proc. IFIP Congress, 1962,
pp- 291-296.

2. J. Fotheringham, “Dynamic Storage Alloca-
tion in the Atlas Computer,” Comm. ACM, vol. 4,
no. 10, Oct. 1961, pp. 435-436.

3. A. W. Holt, “Program Organization and Rec-
ord Keeping for Dynamic Storage Allocation,”
Comm. ACM, vol. 4, no. 10, Oct. 1961, pp. 422-
431.

4. M. N. Greenfield, “Fact Segmentation,” Proc.
SJICC, vol. 21, May 1962, pp. 307-315.

5. J. B. Dennis and E. B. Van Horn, “Nesting
and Recursion of Procedures in a Segmented Mem-
ory,” Project MAC Memo, M-187, M.L.T., Oct.
1564.

6. J. B. Dennis and E. L. Glaser, “The Structure
of On-Line Information Processing System,” Proc.
of the Second Congress on Information System
Sciences, Spartan Books, Inc., Washington, D.C,,
1965. _

7. “The Descriptor,” Burroughs Corp., 1961.

8. “IBM 360, Model 67, Computing Report for
the Scientist and Engineer,” 1, 1 (May 1965) p. 8,
Data Processing Division, I.B.M. Corporation.

9. V. A. Vyssotsky, F. J. Corbato, R. M. Gra-
ham, “Structure of the Multics Supervisor,” this
volume.

e

*

STRUCTURE OF THE MULTICS SUPERVISOR *

V. A. Vyssotsky
Bell Telephone Laboratories, Incorporated
Murray Hill, New Jersey

and

F. J. Corbato, R. M. Graham
Massachusetts Institute of Technology
Cambridge, Massachusetts

INTRODUCTION

This paper is a preliminary report on a system
which has not yet been implemented. Of necessity,
it therefore reports on status and objectives rather
than on performance. We are impelled to produce
such a prospectus by two considerations. First,
time-sharing and multiprogramming are currently of
great interest to many groups in the computing fra-
ternity; a number of time-sharing systems are now
being developed. Discussion of the issues and pres-
entation of goals and techniques is valuable only if
it is timely, and the appropriate time is now. Sec-
ond, every large project undergoes a subtle altera-
tion of goals as it proceeds, extending its aims in
some areas, retracting them in others. We believe it
will prove valuable to us and others to have on rec-
ord our intentions of 1965, so that in 1966 and
1967 an unambiguous evaluation of our successes
and failures can be made.

The scope of this paper is an operating system in

*Work reported herein was supported (in part) by Project

MAC, an M.LT. research program sponsored by the Ad-
vanced Research Projects Agency, Department of Defense,
under Office of Naval Research Contract Number Nonr-
4102(01).

203

the strict sense. It is only slightly concerned with
the hardware of the GE 645, for which the system
is now being implemented. It is equally little con-
cerned with the translators and utility programs
which make the system useful for computing. Fur-
thermore, this paper pays little attention to the file
system, which is the largest single component of the
operating system, including well over half of the
total code. A separate paper is devoted to the file
system.

"Much of the content of this paper is statements
of mechanisms or techniques for achieving particu-
lar goals. In very few cases do we discuss proposed
alternative methods, or our reasons for choosing
particular methods. Such discussion would require
an extended treatise; such a treatise might be use-
ful, but it does not exist, and is not likely to. We
hope to produce fragments of it in the future. In
every case, our choice of method is based on one or
more of four criteria. First, some of the mecha-
nisms were adopted from previous systems because
they proved satisfactory there. Second, alternative
solutions to some of the problems were tried on
previous systems and found unsatisfactory. Third,
in some cases the merits and defects of alternative

204 PROCEEDINGS — FALL JOINT COMPUTER CONFERENCE, 1965

methods have been vigorously debated and sub-
jected to gedanken experiments; the chosen method
was that which appeared most satisfactory (or least
unsatisfactory). Finally, many approaches were cho-
sen because they are evidently workable and are
well aligned with the overall approach advocated by
our firmly opinionated planning group. The Strong-
est opinion of our planning group is that consistency
is a virtue, and that general solutions are better than
particular ones.

VIEWPOINTS AND OBJECTIVES

We view an operating system as an evolving en-
tity. Every operating system with which we have
been associated has been greatly modified during its
useful life. Therefore, we view the initial version of
Multics not as a finished product to be cast in con-
crete, but as a prototype to be extended in the fu-
ture. In two ways this is an unhappy conclusion.
Users (except those users who benefit substantially
from a particular change) tend to resent bitterly
any fluidity in the tools with which they must work.
System programmers become satiated with rework-
ing programs which they would like to forget. How-
ever, the one thing which most users resent more
than a fluid system is a frozen system inadequate to
the users’ expanding needs. So the system must
evolve.

Therefore, one of the primary objectives of Mul-
tics is that it shall include any features that we can
clearly discern to be useful in allowing future
changes or extensions to be made with minimum
effort and minimum disruption of existing applica-
tions. The initial cost of including such features is
substantial. We believe from past experience that
the initial cost will be more than repaid in reduced
future cost of reworking both the operating system
and the application programs that use the system.

We view the operating system as having an ill-
defined boundary. The software field is replete with
examples of user installations or individual applica-
tion programmers using a cutting torch and jack
hammer to break into a neatly defined software
package. The effort involved in many such cases is
so large as to constitute prima facie evidence that
the job was not done for frivolous reasons.

Therefore, Multics is designed to be a single-level
system. Most modules of the operating system
itself are indistinguishable from user programs, ex-
cept that they are guarded against unintended or ill-
advised changes by protective locks administered by

the user installation. Changes to the operating sys-
tem can therefore be made by the same techniques
as are used to change user programs. A programmer
who wishes to change a module of the operating
system must be authorized to do so. He does not,
however, need a large “system edit” program, since
the format and conventions of operating system mod-
ules are the same as those of user programs.

We view a large open-shop computer facility as a
utility like a power company or water company.
This view is independent of the existence or non-
existence of remote consoles. The implications of
such a view are several. A utility must be dependa-
ble, more dependable than existing hardware of
commercial general-purpose computers. A utility, by
its nature, must provide service on demand, without
advance notice in most cases. A utility must pro-
vide small amounts of service to small users, large
amounts to large users, within very wide limits. A
utility must' not meddle in its customers’ business,
except by their request. A utility charges for its ser-
vices on some basis closely related to amount of
service rendered. A utility must provide its product
to customers more cheaply or more conveniently
than they could supply it for themselves. Most im-
portant of all, a utility must provide service to
customers who neither know nor wish to know the
detailed technology employed by the utility in pro-
viding the service.

All of these considerations save played a role in
the design of Multics. The file system contains
elaborate automatic backup and restart facilities to
make the dependability of information storage
within the system greater than the dependability of
the media on which the information is recorded.
The operating system is designed to be dynamically
adjustable to compensate for temporary loss of one
or more hardware modules. Multics is designed to
provide service without batching or prescheduling,
although prescheduling facilities will be provided
for runs whose size and urgency dictates such treat-
ment. Multics employs allocation and scheduling
algorithms intended to allow small and large jobs to
flow through the machine together, without dif-
ferentiation, with any special priorities supplied by
human beings on the basis of urgency of jobs (or
categories of jobs), rather than built-in priorities
based on size or type of job. An explicit criterion
of Multics is that computation center personnel
shall not be required to take cognizance of, or per-
form any action whatsoever for, a routine job which

~

STRUCTURE OF THE MULTICS SUPERVISOR 205

does not demand unusual facilities. Multics is in-
tended to accommodate within it standard (but re-
placable) charging and accounting routines. Multics
will accommodate a variety of input-output termi-
nals, ranging from Teletypes to line printers to lab-
oratory measuring equipment for the convenience of
its users. The scheduling and allocation algorithms
are intended to run the installation with low house-
keeping overhead, especially when the load is
heavy.

The most important consideration is the one
which Multics seems least likely to meet to the sat-
isfaction of its designers. Most of the ultimate users
of a large-scale computer have no interest what-
soever in computers or computer programming, let
alone the details of particular machines, program-
ming language and operating systems. They have
problems to which they wish answers, or data they
wish transformed or summarized in some particular
way. No computer shop can be considered to func-
tion satisfactorily as a utility unless the users can
get results without having to formulate the prob-
lems in an alien notation. In other words, the
system should be sympathetic to its users. Multics
provides no direct assistance toward this goal, and
little indirect assistance. Neither can any amount of
evolution of algebraic languages offer much assist-
ance, since they are still programming languages
closely reflecting the structure of a digital com-
puter, and most users are not interested in program-
ming computers in the first place. Progress in this
area will require extensive effort in analysis of par-
ticular application fields, and development of spe-
cialized program packages relevant to the specialized
needs of the application fields. The only assistance
Multics provides is a framework within which a
user can conveniently interact with such a spe-
cialized package if it exists, and a measure of isola-
tion from detailed hardware eccentricities which
should very substantially ease the life of program-
mers developing such packages.

We consider privacy of user information to be
vitally important. In many applications it is essen-
tial that all authorized personnel, and no unauthor-
ized personnel, should have easy access to programs
and data. Multics provides, in its hierarchial file
structure and its protection mechanisms, very sub-
stantial aids to privacy. These aids, when intelli-
gently used, should provide virtual certainty that
unintentional privacy violations will not occur, and
should provide excellent protection against inten-

tional, ill-advised, but unmalicious attempts to ac-
cess or modify private information without permis-
sion. Multics does not safeguard against sustained
and intelligently conceived espionage, and it is not
intended to.

ADMISSIBLE HARDWARE CONFIGURATIONS

The minimum hardware configuration with which
645 Multics can run is one 645 CPU, 64K of
core memory, one high-speed drum or one disc
unit, four tape units, and eight typewriter consoles.
However, Multics will not run efficiently on this
minimum configuration, and would normally be op-
erated thus only when a substantial part of a larger
configuration was unavailable for some reason.

A small but useful hardware complement would
be 2 CPU units, 128K of core, 4 million words of
high speed drum, 16 million words of disc, 8 tapes,
2 card readers, 2 line printers, 1 card punch and 30
consoles.

The initial implementation of 645 Multics soft-
ware is designed to support a maximum configura-
tion of up to 8 CPU’s, up to 16 million words of
core, up to 2 high speed drums, up to 300 million
words of disc and disc-like devices, up to 32 tapes,
up to 8 card readers, 8 punches, 16 printers, and up
to 1000 or more typewriter consoles. It will not, of
course operate efficiently (or in some cases at all)
with an arbitrary and unbalanced mixture of these.
For instance, 645 Multics would not run well with
6 CPU’s and 128K words of core.

TECHNICAL POLICY FOR WRITING
SOFTWARE

As stated earlier, Multics is intended to be a sin-
gle level system, and an evolving system. In spite of
evolutionary tendencies, 645 Multics must be a use-
ful product and it is to be in operational use in
1966. These factors combine to motivate a small
but crucial body of technical policy for system pro-
gramming. This technical policy differs from stand-
ards of good practice in that technical policy is
mandatory and enforced upon system programmers
working on 645 Multics, and requests for excep-
tions are skeptically reviewed by project supervi-
sion.

Absolute mode (execution without relocation of
addresses) is used only

206 PROCEEDINGS — FALL JOINT COMPUTER CONFERENCE, 1965

a) for the first two instructions of each trap-
answering routine

b) for startup of a cold machine

c) for the initial stages of catastrophe recovery
(e.g., recovery from a trouble fault), and

d) for appropriate product service routines
(hardware test and diagnostic routines).

Master mode (execution with unrestricted access
to privileged hardware features) is used only

a) for absolute mode execution

b) to exercise privileged hardware features

c) where temporary disabling of all interrupts
is required, and

d) for appropriate product service routines.

Code which is written in master mode because its
purpose is to exercise privileged hardware features
will be written as standard subroutines. Each such
subroutine may perform only one function (e.g.,
issue an I/O select). Each such subroutine will
check the validity of the call.

All operating system data layouts for the initial
implementation of 645 Multics will be compatible
with data layouts used by PL/I, except where hard-
ware constraints dictate otherwise. All modules of
the initial implementation of the operating system
will be written in PL/I, except where hardware
constraints make it impossible to express the func-
tion of the module in the PL/I language.

All procedures and data will be usable paged to
64 words, paged to 1024 words, or unpaged, except
for vectors and data blocks which are inherently un-
paged because of direct hardware access to them.

Since the PL/I translator which will be used un-
til mid-1966 generates inefficient object code, it is
clear that 645 Multics in its first few months of
existence will be inefficient. This penalty is being
paid deliberately. After mid-1966, two courses of
action will be available: upgrade the compiler to
compile more efficient code, or recode selected mod-
ules by hand in machine language. We expect that
both strategies will be employed, but we expect to
place preponderant emphasis on upgrading the PL/I
compiler; indeed, one subsequent version of PL/I is
already being implemented, and a second is being
designed.

PROCESSES

In Multics the activities of the system are di-
vided into processes. The notion of process is intui-
tive, and therefore slightly imprecise. To convey the
notion we shall talk around it a bit, and then give a
reasonably exact definition.

When a signal from the external world (e.g., a
timer runout signal) arrives, and a CPU interrupt
occurs, what is being interrupted? Presumably a
“run.” Observe that if a program is defined in the
usual way as a procedure plus data, there is no
meaning to the phrase “interrupt a program,” if it
is taken literally. What is interrupted is the execu-
tion of a program. In a time-sharing system this
distinction becomes so important, and ignoring the
distinction is so pernicious, that we shall use the
word “process” to denote the execution of a pro-
gram, and reserve the word “program” to denote
the pattern of bits (or characters) which the hard-
ware decodes.

In most cases a process corresponds to a job, or
run; it is a sequence of actions. Consider for exam-
ple the sequence of actions: build a source program,
compile it, execute it and the programs it requires,
produce output files including postmortem informa-
tion and accounting data. This sequence of actions
would typically be a single process in Multics.

If the notion of process is to be useful, it must be
possible, given some action, to determine to which
process it pertains; that is, it must be possible to
distinguish unambiguously between processes. In
645 Multics we base our distinction on descriptor
segments. At any given moment a 645 CPU is using
one and only one segment as the descriptor seg-
ment. At different times the CPU may use various
different descriptor segments. We define a process
to be all those actions performed by a CPU with
some given segment as descriptor segment, from the
first time that segment becomes the descriptor seg-
ment until the last time the segment ceases to be
the descriptor segment. Thus a process has a very
definite beginning; if it ends, it has an equally defi-
nite end.

For each process there is in addition to the de-
scriptor segment a stack segment, for the user’s pro-
grams and most supervisory routines, and a con-
cealed stack segment, used by some supervisory
routines to hold information such as charging data,
which must be safeguarded against garden variety
user program errors. There are also any other seg-

~

STRUCTURE OF THE MULTICS SUPERVISOR 207

ments (including supervisory segments) which are
required by the process. For each process there will
typically be many segments, containing the user and
supervisor programs and data, but most of the seg-
ments will be attached to the process only as they
are dynamically required.

Since we have already observed that almost no
procedures will run in absolute mode, and since the
operational definition of process places all master
mode and slave mode execution firmly in some proc-
ess, it follows that almost all CPU activity occurs
as part of some process. Most processes will be ini-
tiated by customers and charged to customers. Some
processes will be initiated by the installation and
charged to overhead. An example is a process which
purges a disc unit.

STATUS OF A PROCESS

Any process that exists in 645 Multics is either
running, ready, or blocked. A process is running if
its descriptor segment is currently being used as the
descriptor segment for some CPU. A process is
ready if it is not running but is not held up await-
ing any event in the external world or in another
process. A process is blocked if it is awaiting an
event in the external world or in another process
(e.g., arrival of input data, or completion of output,
or 3 PM, or retrieval of a page from drum, or re-
lease of a data file by another process).

SEGMENTATION, PAGING AND
ADDRESSABLE STORAGE

A general principle in Multics is that programs
are written to reference locations in addressable
storage, rather than locations in core. An address
consists of a segment number and word number.
The address of an item is clearly important to the
program, and possibly to the programmer. There-
fore, in Multics the division of programs and data
into segments, and the sizes, names and types of the
segments, are controlled (explicitly or implicitly)
by customers and customer processes.

Paging, on the other hand, is considered in Mul-
tics to be the responsibility of the operating system.
The view of the designers of Multics is that pro-
vided the customer gets his answers when he wants at
the price he expects to pay and agrees to pay, it is
none of his business where in core his programs
and data resided—nor, indeed, whether they were

in core at all. The 645 hardware was designed with
this philosophy, and the software is built to imple-
ment this approach.

‘However, in some real-time applications it is
demonstrable that the application cannot be cor-
rectly implemented unless certain programs and data
are in core when external signals arrive. In some
other applications reasonable efficiency may be at-
tainable only if the user program can specify expli-
citly what should be in core at which stages of exe-
cution. Therefore, calls to the paging routines are
provided for specifying:

a) that certain procedures and data must be
“bolted to core” in order for the applica-
tion to run,

b) that certain material is going to be accessed
soon, and should be brought into core if
possible,

c) that certain material will not be accessed
again, and may be removed from core.

It is expected that few application programs will
need to make use of such calls.

The paging routines will normally operate with
only three sources of input information.

The pager will know when a page must be
brought into core by the fact that a page-not-in-core
fault occurs. It will know which pages are candi-
dates to be removed from core by a usage measure
it derives from the “used” bit of each page table
entry, and by a specification in the core map of
whether the page is accessed other than through a
page table (e.g., a page which is itself a page table,
and therefore is referenced directly by CPU hard-
ware). The pager will also know from specifica-
tions in the core map which pages may not be re-
moved from core at all (e.g., because they are cur-
rently attached to peripheral devices).

A program such as the linker will deal with ad-
dressable storage, and will not consider the place of
physical residence of any procedure or data block in
establishing a linkage. If the linker happens to ac-
cess information which is not in core, the pager will
be invoked by a page-not-in-core fault, the process
in which the linker was working will be blocked un-
til the page arrives, and will then be ready to re-
sume.

SEGMENTS AND FILES

In 645 Multics, every segment is a file, and every
file is a segment. A reference to one of these ob-

208 PROCEEDINGS — FALL JOINT COMPUTER CONFERENCE, 1965

jects, however, may be made in two distinct ways:
by segment referencing and by file referencing. Seg-
ment referencing is, by definition, referencing by
means of a 2-component numerical address, each
component consisting of 18 bits, of which the first
component specifies a word number in the descrip-
tor segment and the second specifies a word number
in the referenced segment. File referencing is any-
thing else. Every file is a segment to some proce-
dure in some process at some time. Any file ref-
erence which results in retrieval or modification of
any part of the contents of a file (except retrieval,
replacement or deletion of the entire file) is a call
to a procedure which references the file by segment
referencing. Thus, the question of whether a data
object is a segment or a file is a question about the
viewpoint from which some particular procedure
sees the file.

Segments (files) come in two varieties: bounded
segments and unbounded segments. A bounded seg-
ment is a segment which is guaranteed to consist of
218 words or less. An unbounded segment may have
any number of words (e.g., 27), but is not guaran-
teed to have no more than 2!, You have to look at
it to find out. Segment referencing using the ap-
pending hardware can only be done directly for
bounded segments. To each unbounded segment
there may be associated a bounded segment called a
“window”; the origin of the window segment may
be set, by a supervisor call, to any 1024 word bound-
ary in the unbounded segment. More than one
window segment may be attached to a single un-
bounded segment, if desired, and the windows may
be adjusted independently. In principle, the size of
an unbounded segment could be arbitrarily large.
However, the software of 645 Multics will limit the
size of unbounded segments to 2 words, and in
some installations storage limitations will hold the
maximum segment size even below 228 words.

PERIPHERAL DEVICES AND FILES

In 645 Multics, one of the kinds of file given
special recognition will be the serial file. In 645
Multics, unit record equipment and typewriter-like
consoles will be treated as serial files of restricted
capabilities. User programs will be able to know
that such hardware units are not serial files, but it
will not normally be advantageous to make use of
that fact, and to use such knowledge may severely
restrict the applicability of a program. If a program

handling a peripheral device as a serial file attempts
to perform an illegal primitive (e.g., rewind a card
reader), then either

a) the effect on all ensuing processing will be
as if the primitive had been performed suc-
cessfully (e.g., the input file copied from the
card reader will be rewound) or

b) a diagnostic will occur (e.g., skip to the end
of file on typewriter input).

The effect of treating peripheral devices as serial
files is to make it possible for many programs to
run either with a typewriter console as a peripheral
device or with the console replaced by files on sec-
ondary storage.

SCHEDULING

In Multics the system is regarded as having a
pool of anonymous CPU’s; scheduling and dispatch-
ing procedures are executed by each CPU when it
must determine what to do next. The only result
with any operational meaning that can ensue from
scheduling and dispatching in Multics is that CPU
number n resumes process p at time ¢t . Further-
more that process must have been in ready status.

We shall state here some fundamental assump-
tions concerning schedullng which appear evident
to us, but some of which are not universally accept-
ed. The goal of scheduling in an open-shop general
purpose computer system is to give good service to
customers at reasonable cost. When the offered load
is greater than system capacity, it is impossible to
give good service to all those who desire it. There-
fore, on an overloaded system, scheduling should be
done so as to minimize overhead and to complete
the most urgent work first. Two basic techniques
for minimizing overhead are to employ service
denial rather than service degradation, and to mini-
mize the number of times control is switched from
one process to another. That is, it is more efficient
to serve a few users at a time and do it well than it
is to serve all users poorly at once. A job is urgent,
in the last analysis, because it is costing someone
time and/or money not to have the results. The ur-
gency of a job is only slightly correlated, if at all,
with the extent of its demands on such system re-
sources as CPU time, core storage, secondary stor-
age, and peripheral facilities. Hence, urgency of
work must be determined by human beings, not by
the computer.

STRUCTURE OF THE MULTICS SUPERVISOR 209

If offered load is less than system capacity, it is
possible in principle to give good service to all who
desire it. It may not be possible, however, to
achieve satisfactory service for all and still keep the
percentage of overhead low. A moderate increase in
overhead on a lightly loaded system is acceptable if
the increase permits improved service.

Switching between processes is mandatory when
a given process becomes blocked. Switching is done
at other times to meet explicit or implied service
guarantees. For example, placing a typewriter in a
customer’s office implies a guarantee that response
times to simple requests will usually be short.
Therefore, frequent switching between processes
makes excellent sense when offered load is light,
although not when offered load is heavy.

Offered load will rarely be well-matched to sys-
tem capacity. Any general-purpose open shop com-
puting installation where offered load is at the same
approximate level at 3 a.m. Sunday and 3 p.m.
Wednesday is either employing load flattening
measures outside the computing shop (e.g., by hu-
man prescheduling) or is so heavily overloaded that
offered load is almost always above system capaci-
ty, and service denial is the rule of the shop.

We believe that a general-purpose open-shop
computing facility which is never (or almost never)
overloaded is spending too much money for com-
puting hardware. It is cheaper to accept occasional
overloads. Further, we believe that any scheduling
technique for a time-shared multiprogrammed com-
puter system which behaves satisfactorily during
overload will require at most a very slight modifi-
cation to behave well under light load.

Hence, we contemplate an environment in which
offered load is almost always either substantially
above or substantially below system capacity. We
believe that scheduling algorithms should be de-
signed with good performance during overload as
the primary objective, and good performance when
load is light as a criterion to be met within the frame-
work imposed by the overload design. The scheduler
should get information concerning urgency of jobs
from human beings, and should not have any built-in
assumptions that console jobs are either more or
less urgent than absentee jobs, or that short runs
are either more or less urgent than long runs.

Unfortunately, in a multiprogrammed time-shar-
ing system with dynamic storage allocation neither
the machine nor human beings can determine di-
rectly how large the offered load is. How, for exam-

ple, could one tell how many people at typewriter
consoles would type messages if you unlocked their
keyboards? Similarly, it is not possible in most
cases to predict with any accuracy what demands a
given process will make upon system resources dur-
ing its next few seconds of running. Therefore, the
scheduling algorithm must base its action on
measurable quantities related to the unmeasurable
offered load.

Several such measurable quantities are conven-
iently available. The most important of these ap-
pears to be a running measure of the rate of prog-
ress toward completion of processes, compared with
a “satisfactory” rate of progress determined by in-
formation supplied by human beings about types of
_processes or individual processes. For example, if
there are exactly six processes to be considered each
requiring 20 seconds of CPU time and no I/0, all
with desired completion time 3 minutes away, and
if in one second each process has received 100 milli-
seconds of CPU time, then each process at its cur-
rent rate will require 3 minutes 20 seconds to com-
plete. Presumably the system is overloaded, and one
or more of the processes should be postponed. This
is a fairly typical example; overloads in a system
with dynamic storage allocation tend to become
manifest by excessive overhead rather than by ex-
«essive visible demand. The scheduling algorithms
for Multics will rely heavily on this fact.

The choice of which processes to postpone de-
pends on several factors. If some processes have
higher priority than others, the lower priority proc-
esses will be postponed. If, in the lowest priority
class which will continue to run, some processes
have been prescheduled for given completion times
or computing rates, the prescheduled processes will
be given preference. Finally, to make a choice
among processes otherwise equal, the scheduler will
prefer a process currently using expensive facilities
(e.g., core) over one occupying inexpensive facili-
ties (e.g., drum); the former is in some sense using
more system resources than the latter, so it is desir-
able to move it toward completion.

DYNAMIC LINKING

In Multics linking of one procedure segment to
another, or of a data segment to procedures, is by
and large done dynamically. That is, if a translator
compiles symbolic intersegment references, these
will not normally be replaced by numerical interseg-

210 PROCEEDINGS — FALL JOINT COMPUTER CONFERENCE, 1965

ment references until the first time the reference
actually occurs during execution of the compiled
program.

The standard form of programs in Multics will be
common shared procedure. Code run as common
shared procedure may not be modified for execu-
tion of any one process. Hence, for each compiled
segment of code there will be an accompanying link-
age section, which will be maintained on a per-
process basis, and all modifications required to link
two segments together will be made in the linkage
sections rather than in procedure segments. A link-
age section contains, among other things:

(a) the symbolic (character string) name of
each externally known symbol within the
segment to which the linkage section be-
longs.

(b) for each symbolic reference from this seg-
ment to some other segment, the symbolic
name of the foreign segment and the sym-
bolic name of the referent within the for-
eign segment, plus an indirect word which
is compiled with a tag that will cause a trap
to occur when an indirection through it is
attempted.

When a procedure is attached to a process, the
linkage segment of the procedure is copied into a
data segment of the process. If the procedure during
execution attempts to access a foreign segment by
indirection through the linkage section, a trap
(“linkage fault”) will occur. At this time the linker
will substitute the correct numerical valué into the
indirect word. The reference will then be complet-
ed; subsequent references, of course, will be com-
pleted without occurrence of a trap.

The original symbolic information is retained in
the linkage section even after linking. Hence, it is
possible to break such a link after it has been estab-
lished, and detach a segment from a process. This
will be done only upon explicit call to the unlinker,
and is expected to be infrequent.

TRAP HANDLING

The hardware traps on the 645 can be divided
into two categories. In one category are process
traps (e.g., overflow) which normally occur as a
consequence of action in the running process. Han-
dling of these traps will be done as part of the run-
ning process, by supervisory routines attached to

the process. In the other category are system traps,
some of which are relevant to some process but
probably not one which is running (e.g., I/O termi-
nation), and others of which indicate hardware or
software error (e.g., parity error in core).

Some of the process traps, such as the illegal pro-
cedure fault, will cause the process to be removed
from running state after a bit of initial flailing
around. The division between process traps and sys-
tem traps is not based on whether the running
process will continue to run, but on whether the
running process is known to be responsible for the
trap.

What happens when a trap occurs? It varies
somewhat, but generally speaking the status of the
running process is stored in its concealed stack seg-
ment. Then, for system traps only, control switches
to a special trap process. Then the concealed stack
of the process (trap process for system traps, proc-
ess which is still running for process traps) is
pushed one level, and the appropriate trap-handling
procedure is called. The supervisory routines have a
standard trap-handling procedure for each trap,
which discovers what caused the trap and takes ap-
propriate action. However, for every trap there is at
least one point in the trap-handling procedure
where control will pass to some other routine in the
process if the process is administratively entitled to
provide alternative treatment for the trap. The ex-
tent to which customer processes can provide non-
standard trap handling is, of course, controlled by
the installation, but it will by and large vary from
complete freedom (for handling overflow) to very
strict control (for handling page-not-in-core faults
from the appending hardware).

Many traps will have several intercept points,
corresponding to different causes of the trap. It
should thus be possible for authorized processes to
selectively modify the handling of every process
trap. Only a restricted group of people will normal-
ly be able to modify handling of system traps, since
these affect operation of the entire system. The
technique for making the modifications, however, is
the same as for process traps.

The work of the system trap process is to discov-
er which processes are responsible for system traps.
It must, for example, decode words in the status
storage channels of the general I/O controller to
find out what device caused an I/O interrupt, and
then check status tables to discover which process
issued the select that resulted in the interrupt. The

STRUCTURE OF THE MULTICS SUPERVISOR 211

trap process can then bring the process responsible
for the trap into ready status for further treatment
of the particular interrupt; the trap process is then
finished with that particular interrupt.

The process responsible for the interrupt may be
a customer process; if not, it is a housekeeping proc-
ess that behaves like a customer process. This proc-
ess, when it enters running state, will resume in an
interrupt routine exactly analogous to a process trap
routine, complete with intercept points.

To a very high degree of approximation, all I/O
for a process is handled within the process. This
does not imply that I/O for each process is handled
independently of I/O for other processes. The pro-
grams and tables involved in input and output are
for the most part common to all processes requiring
a given type of I/O activity, such as input from
magnetic tape. These programs and tables, however,
are attached to each of the processes which requires
them, so that they can be called by normal subrou-
tine calls.

This makes it possible to insert special I/O rou-
tines (e.g., for controlling a data lime to a special-
purpose device) in a particular customer process by
taking only two actions: get administrative authori-
zation to call relevant master mode routines and to
intercept interrupts in the process, and then link to
the I/O routines by calling with a standard call
However, this technique places stringent restrictions
on timing-dependent I/O, and virtually eliminates
the possibility of certain data-dependent I/O tech-
niques. These restrictions appear to be reasonable
in a system like Multics; we see no way to permit
complete control of I/0 by one user program with-
out danger to other user programs.

CREATION, BLOCKING AND
TERMINATION OF PROCESSES

Every process begins by being spawned from
some other process. In particular, certain system
processes exist for no end except to recognize cus-
tomers’ identification and spawn new processes for
the customers. However, any process may spawn
others by an appropriate call to the operating sys-
tem. The call specifies what segments the new proc-
ess is to share with its parent, what segments it
should receive copies of, what segments the new
process should not know, and at what point the new
process should resume.

A process may go into blocked state for many

reasons, such as waiting for 3 p.m., or waiting for a
page to arrive in core, or waiting for another proc-
ess to release a file. In all of these cases, the proc-
ess will indicate a particular flag which must be
reset before the process can resume, and the pre-
sumption is that some other process (alarm clock
routine in the scheduler, or system trap process, or
process holding the file) will be cooperative enough
to reset the flag. There is, however, no guarantee
whatsoever that the flag will ever be reset.

It would be poor strategy to allow the blocked
process to remain in limbo forever. Therefore, each
process will have attached to it a maximum time
for which it may remain continuously blocked.
Multics will provide a default value of this time,
but a customer may specify a value other than the
default value for any particular process. A proce-
dure in the scheduling process will occasionally
scan the task list for processes which have been
blocked for more than the allowable time. If one is
found, a diagnostic message will be generated and
shipped off to the error message file for the blocked
process, if that can be found, and also to a standard
system file. The blocked process will then be com-
pletely removed from the task list and, although its
procedures and data are still intact, it will not re-
sume if the condition on which it was waiting be-
comes satisfied. Human intervention is now re-
quired to retrieve it, either to attempt to resume it
or to obtain diagnostic information. If such human
intervention does not occur, the data segments of
the process will eventually be purged from the sys-
tem.

This is also the chain of events which occurs
when a process violates some restriction. If, for ex-
ample, a process attempts to execute a privileged
instruction in slave mode, the standard trap proce-
dure will generate a diagnostic message and then
call a standard program to force out any relevant
output. The process will then go into blocked state
to allow a human attempt for further diagnostics or
a fixup. If the attempt is not made, the process will
then be removed from the task list, and eventually
purged.

Termination of a process may occur in two ways.
It may call a procedure in the operating system and
say “I am through,” or some other process may
point at it and say “Get rid of him.” The second
method is used by the scheduler in disposing of
processes which have been blocked for too long a

212 PROCEEDINGS — FALL JOINT COMPUTER CONFERENCE, 1965

time. This second method may also be used by cus-
tomer processes, subject to some restrictions.

Both methods may be employed with two degrees
of severity. The process may merely be removed
from the task list, or it may be marked as complete-
ly dead and subject to immediate purging from the
system. In general, modules of the operating system
will only remove a process from the task list if
troubles occur, so that the customer may have a
reasonable chance to come and rummage around in
the procedures and data of the process to find out
what happened.

PROTECTION AGAINST MACHINE ERRORS

Like all other systems, 645 Multics will suffer
from hardware and software failures. The goal of
dependable operation can be achieved only if the
effect of these failures can be limited. A companion
paper discusses methods for safeguarding of data in
the file system. Equally important and equally diffi-
cult is the problem of keeping the system on the air,
or getting it back in a hurry, when a hardware fail-
ure occurs. This breaks down into two parts: how
to run the system on a crippled machine, and how
to share the machine with product service routines.
We have no solutions to either problem, but some
fragments of solutions are developing.

First, the policy of running the CPU’s symmetri-
cally is expressly intended to allow any CPU to be
pulled at any time without stopping the system (al-
though pulling a CPU at an arbitrary moment will
undoubtedly wreck a particular process and some
data files).

Second, the policy of minimizing absolute mode
operation is designed to allow the system to resume
execution with core banks missing with somewhat
less agony than would otherwise be the case, and to
allow the system to abandon a core bank with very
little effort. 1/O calls and fabrication of I/O data
control words will be concentrated in a few proce-
dures, with the explicit intent of allowing easy
abandonment of a general I/O controller. For in-
stallations which can afford the luxury of using less
than full core interlace, 645 Multics will provide

the ability to pick up the pieces more or less auto-
matically after loss of any one core bank, but this
feature -will probably not be included in the first
version of 645 Multics.

We do not know in general how to make the soft-
ware cope with a berserk CPU, drum controller or
general I/O controller: In 645 Multics such a trou-
ble will undoubtedly require a restart, the magni-
tude of which will vary greatly depending on exact-
ly what the sick hardware unit did before it was
caught.

The problem of coexisting with product service
routines will be partly solved by subordinating
some product service routines to Multics, and partly
by the fact that Multics can easily abandon half the
hardware of a large enough system on request, so
that product service routines can test the other half.
It appears likely, however, that integration of prod-
uct service routines into Multics will be the most
difficult aspect of the project, and the last to be sa-
tisfactorily completed.

We have no very useful techniques for protecting
the system from software bugs. We are reduced to
the old-fashioned method of trying to keep the bugs
from getting into the software in the first place.
This is a primary reason for programming the sys-
tem in PL/I, and for insisting that modules of the
operating system should conform to conventions for
user programs. The 645 lends itself exceptionally
well to being driven with repeatable sequences of
events, and this will help to find timing-dependent
software bugs. But some software bugs will survive;
they always do.

ACKNOWLEDGMENTS

It would be nearly impossible to name all those
who have participated in formulating the material
presented in this paper. All of the authors of the
other papers in this group have contributed substan-
tially, as have many others of our colleagues and
friends. We are particularly grateful to Dr. E. Wol-
man of Bell Laboratories for allowing us to para-
phrase some of his concise observations about the
problem of scheduling.

A GENERAL-PURPOSE FILE SYSTEM FOR SECONDARY STORAGE*

R. C. Daley
Massachusetts Institute of Technology
Cambridge, Massachusetts

and

P. G. Neumann
Bell Telephone Laboratories, Inc.
Murray Hill, New Jersey

1. INTRODUCTION

The need for a versatile on-line secondary stor-
age complex in a multiprogramming environment is
immense. During on-line interaction, user-
owned off-line detachable storage media such as
cards and tape become highly undesirable. On the
other hand, if all users are to be able to retain as
much information as they wish in machine-acces-
sible secondary storage, various needs become cru-
cial: Little-used information must percolate to
devices with longer access times, to allow ample
space on faster devices for more frequently used
files. Furthermore, information must be easy to ac-
cess when required, it must be safe from accidents
and maliciousness, and it should be accessible to
other users on an easily controllable basis when de-
sired. Finally, any consideration which is not basic
to a user’s ability to manipulate this information

*Work reported herein was supported (in part) by Proj-
ect MAC, an M.LT. research program sponsored by the
Advanced Research Projects Agency, Department of De-
fense, under Office of Naval Research Contract Number
Nonr-4102(01).

213

should be invisible to him unless he specifies other-
wise.

The basic formulation of a file system designed
to meet these needs is presented here. This formula-
tion provides the user with a simple means of ad-
dressing an essentially infinite amount of secondary
storage in a machine-independent and device-
independent fashion. The basic structure of the file
system is independent of machine considerations.
Within a hierarchy of files, the user is aware only
of symbolic addresses. All physical addressing of a
multilevel complex of secondary storage devices is
done by the file system, and is not seen by the user.

Section 2 of the paper presents the hierarchical
structure of files, which permits flexible use of the
-vstem. This structure contains sufficient capabili-
ties to assure versatility. A set of representative
control features is presented. Typical commands to
the file system are also indicated, but are not elabo-
rated upon; although the existence of these com-
mands is crucial, the actual details of their specific
implementations may vary without affecting the de-
sign of the basic file structure and of the access
control.

214 PROCEEDINGS — FALL JOINT COMPUTER CONFERENCE, 1965

Section 3 discusses the file backup system, which
makes secondary storage appear to the user as a
single essentially infinite storage medium. The back-
up system also provides for salvage and catas-
trophe reload procedures in the event of machine or
system failure. Finally, Section 4 presents a sum-
mary of the file system program modules and their
interrelationship with one another. The modularity
of design enables modules affecting secondary stor-
age device usage to be altered without changing
other modules. Similarly, the files are formatless at
the level of the file system, so that any changes in
format do- not affect the basic structure of the file
system. Machine independence is attempted wher-
ever it is meaningful.

Sections 2 and 3 are essentially self-contained,
and may be read independently of the companion
papers (see references 1-5). Section 4 requires a
knowledge of the first three papers.

2. THE FILE STRUCTURE AND ACCESS
CONTROL

In this section of the paper, the logical organiza-
tion of the file structure is presented. The file struc-
ture consists of a basic tree hierarchy of files,
across which links may be added to facilitate simple
access to files elsewhere in the hierarchy. Each file
has an independent means for controlling the way
in which it may be used.

If files are to be shared among various users in
a way which can be flexibly controlled, various forms
of safeguards are desirable. These include:

S1. Safety from someone masquerading as
someone else;

S2. Safety from accidents or maliciousness by
someone specifically permitted controlled access;

S3. Safety from accidents or maliciousness by
someone specifically denied access;

S4. Safety from accidents self-inflicted;

S5. Total privacy, if needed, with access only
by one user or a set of users;

S6. Safety from hardware or system software
failures;

S7. Security of system safeguards themselves
from tampering by nonauthorized users;

S8. Safeguard against overzealous application
of other safeguards.

These safeguards recur in the subsequent discussion.
The various features of the file system presented
below are summarized in Section 2.4, along with
the way in which these features help to provide the
above safeguards.

2.1 Basic Concepts

In the context of this paper, the word “user” re-
fers to a person, or to a process, or possibly to a
class of persons and/or processes. The concept of
the user is rigorously defined in terms of a fixed
number of components, such as an accounting num-
ber, a project number, and a name. (Classes of us-
ers may be defined by leaving certain components
unspecified.) For present purposes, the only users
considered are those who employ the file system by
means of its normal calls.

A file is simply an ordered sequence of elements,
where an element could be a machine word, a char-
acter, or a bit, depending upon the implementation.
A user may create, modify or delete files only
through the use of the file system. At the level of
the file system, a file is formatless. All formatting
is done by higher-level modules or by user-sup-
plied programs, if desired. As far as a particular
user is concerned, a file has one name, and that
name is symbolic. (Symbolic names may be arbi-
trarily long, and may have syntax of their own. For
example, they may consist of several parts, some of
which are relevant to the nature of the file, e.g.,
ALPHA FAP DEBUG.) The user may reference
an element in the file by specifying the symbolic
file name and the linear index of the element within
the file. By using higher-level modules, a user may.
also be able to reference suitably defined sequences
of elements directly by context.

A directory is a special file which is maintained
by the file system, and which contains a list of en-
tries. To a user, an entry appears to be a file and is
accessed in terms of its symbolic entry name, which
is the user’s file name. An entry name need be
unique only within the directory in which it occurs.
In reality, each entry is a pointer of one of two
kinds. The entry may point directly to a file (which
may itself be a directory) which is stored in sec-
ondary storage, or else it may point to another en-
try in the same or another directory. An entry

A GENERAL-PURPOSE FILE SYSTEM FOR SECONDARY STORAGE* 215

which points directly to a file is called a branch,
while an entry which points to another directory
entry is called a link. Except for a pathological case
mentioned below, a link always eventually points to
a branch (although possibly via a chain of links to
the branch), and thence to a file. Thus the link and
the branch both effectively point to the file. (In
general, a user will usually not need to know wheth-
er a given entry is a branch or a link, but he easily
may find out.)

Each branch contains a description of the way in
which it may be used and of the way in which it is
being used. This description includes information
such as the ‘actual physical address of the file, the
time this file was created or last modified, the time
the file was last referred to, and access control in-
formation for the branch (see below). The descrip-
tion also includes the current state of the file (open
for reading by N users, open for reading and writ-
ing by one user, open for data sharing by N users,
or inactive), discussed in Section 4. Some of this
information is unavailable to the user.

The only information associated with a link is
the pointer to the entry to which it links. This
pointer is specified in terms of a symbolic name
which uniquely identifies the linked entry within
the hierarchy. A link derives its access control in-
formation from the branch to which it effectively
points.

2.2 The Hierarchy of the File Structure

The hierarchical file structure is discussed here.
The discussion of access control features for select-
ed privacy and controlled sharing are deferred until
Section 2.3. For ease of understanding, the file
structure may be thought of as a tree of files, some
of which are directories. That is, with one excep-
tion, each file (e.g., each directory) finds itself di-
rectly pointed to by exactly one branch in exactly
one directory. The exception is the root directory,
or root, at the root of the tree. Although it is not
explicitly pointed to from any directory, the root is
implicitly pointed to by a fictitious branch which is
known to the file system.

A file directly pointed to in some directory is
immediately inferior to that directory (and the di-
rectory is immediately superior to the file). A file
which is immediately inferior to a directory which
is itself immediately inferior to a second directory
is inferior to the second directory (and similarly

the second directory is superior to the file). The
root has level zero, and files immediately inferior to
it have level one. By extension, inferiority (or su-
periority) is defined for any number of levels of
separation via a chain of immediately inferior (su-
perior) files. (The reader who is disturbed by the
level numbers increasing with inferiority may pre-
tend that level numbers have negative signs.) Links
are then considered to be superimposed upon, but
independent of, the tree structure. Note that the no-
tions of inferiority and superiority are not con-
cerned with links, but only with branches.

In a tree hierarchy of this kind, it seems desira-
ble that a user be able to work in one or a few di-
rectories, rather than having to move about con-
tinually. It is thus natural for the hierarchy to be so
arranged that users with similar interests can share
common files and yet have private files when de-
sired. At any one time, a user is considered to be
operating in some one directory, called his working
directory. He may access a file effectively pointed
to by an entry in his working directory simply by
specifying the entry name. More than one user may
have the same working directory at one time.

An example of a simple tree hierarchy without
links is shown in Fig. 1. Nonterminal nodes, which
are shown as circles, indicate files which are direc-
tories, while the lines downward from each such
node indicate the entries (i.e., branches) in the di-
rectory corresponding to that node. The terminal
nodes, which are shown as squares, indicate files
other than directories. Letters indicate entry names,
while numbers are used for descriptive purposes
only, to identify directories in the figure. For ex-
ample, the letter “J” is the entry name of various
entries in different directories in the figure, while
the number “0” refers to the root.

An entry name is meaningful only with respect to
the directory in which it occurs, and may or may
not be unique outside of that directory. For various
reasons, it is desirable to have a symbolic name
which does uniquely define an entry in the hier-
archy as a whole. Such a name is obtained relative to
the root, and is called the tree name. It consists of
the chain of entry names required to reach the entry
via a chain of -branches from the root. For example,
the tree name of the directory corresponding to the
node marked 1 in Fig. 1 is A:B:C, where a colon is
used to separate entry names. (The two files with
entry names D and E shown in this directory have
tree names A:B:C:D and A:B:C:E, respectively.)

216 PROCEEDINGS — FALL JOINT COMPUTER CONFERENCE, 1965

Figure 1. An example of a hierarchy without links.

In most cases, the user will not need to know the
tree name of an entry.

Unless specifically stated otherwise, the tree
name of a file is defined relative to the root. How-
ever, a file may also be named uniquely relative to
an arbitrary directory, as follows. If a file X is in-
ferior to a directory Y, the tree name of X relative
to Y is the chain of entry names required to reach
X from Y. If X is superior to Y, the tree name of
X relative to Y consists of a chain of asterisks, one
for each level of immediate superiority. (Note that
since only the tree structure is being considered,
each file other than the root has exactly one im-
mediately superior file.) If the file is neither infe-
rior nor superior to the directory, first find the di-
rectory Z with the maximum level which is superior
to both X and Y. Then the tree name of X relative
to Y consists of the tree name of Z relative to X (a
chain of asterisks) followed by the tree name of Y
relative to Z (a chain of entry names). For the ex-
ample of Fig. 1, consider the two directories
marked 1 and 2. The tree name of 1 relative to 2 is
:*:B:C, while the tree name of 2 relative to 1 is
:*:*:F. An initial colon is used to indicate a name
which is relative to the working directory.

A link with an arbitrary name (LINKNAME)
may be established to an entry in another directory
by means of a command

LINK LINKNAME, PATHNAME.

(A command is merely a subroutine call.) The
name of the entry to be linked to (PATHNAME)
may be specified as a tree name relative to the
working directory or to the root, or more generally
as a path name (defined below). Note that a file

may thus have different names to different users,
depending on how it is accessed. A link serves as a
shortcut to a branch somewhere else in the hierarchy,
and gives the user the illusion that the link is
actually a branch pointing directly to the desired
file. Although the links add no basic capabilities to
those already present within the tree structure of
branches, they greatly facilitate the ease with which
the file system may be used. Links also help to
eliminate the need for duplicate copies of sharable
files. The superimposing of links upon the tree
structure of Fig. 1 is illustrated in Fig. 2. The
dashed lines downward from a node show entries
which are links to other entries. When the links are
added to the tree structure, the result is a directed
graph. (The direction is of course downward from
each node.)

In the example of Fig. 2, the entry named G in
directory 2 is a link to the branch named C in di-
rectory 3. The entry named C in directory 4 (recall
that entry names need not be unique except within
a directory) is a link to the entry G in directory 2,
and thus acts as a link to C in directory 3. Both of
these links effectively point to the directory 1.

It is desirable to have a name analogous to the
tree name which includes links. Such a name is the
path name, and is assumed to be relative to the root
unless specifically stated otherwise. The path name
of a file (relative to the root) is the chain of entry
names used to name the file, relative to the root.
(For example, the directory 1 in Fig. 2 may have
path name A:B:C, A:F:G or H:C, depending on
its usage.) The working directory is always estab-
lished in terms of a path name. A user may change
his working directory by means of a command such
as

A GENERAL-PURPOSE FILE SYSTEM FOR SECONDARY STORAGE* 217

Figure 2. The example of Fig. 1 with links added.

CHANGEDIRECTORY PATHNAME,

where the path name may be relative to the (old)
working directory or to the root. The definition of
a path name relative to a directory other than the
root is similar to the definition of a tree name, with
the following exceptions: the concept of a file im-
mediately inferior to a directory is replaced by the
concept of a file effectively pointed to by the entry.
The concept of a directory immediately superior to
a file is replaced by a concept which is well defined
only as the inverse of the above effective pointer,
that is, dependent on what entry in which directo-
ry was previously used to reach the file.

In general, any file may be specified by a path
name (which may in fact be a tree name, or an en-
try name) relative to the current working directory.
A file may also be specified by a path name relative
to the root. In the former case, the path name be-
gins with a colon, in the latter case it does not.

To illustrate these somewhat elusive concepts,
consider the example of Fig. 2. Suppose that the
working directory has the path name H (i.e., direc-
tory 4). The command

CHANGEDIRECTORY :C

results in the working directory with path name
H:C (i.e., directory 1). Subsequent reference to a
file with path name :*:I (relative to the working
directory with path name H:C) refers to the file 5
in the figure. The command

CHANGEDIRECTORY : *

results in restoring the original working directory
with path name H. (With this interpretation of *,

the user believes he is working in a tree. Note that
the design could be modified so that a path other
than the one used on the way down could be used
on the way back up toward the root, but not with-
out adding considerable complexity to the design.)

The pathological case referred to above with re-
spect to a link effectively pointing to a file arises as
follows. Consider again Fig. 2. Suppose that the
branch C in directory 3 is deleted from this directo-
ry; suppose also that in the same directory a link
with name C is then established to the entry C in
directory 4, e.g., by means of the command

LINK CH:C.

Access to entry C in directory 3 (or to entry G in
2, or C in 4, for that matter) then results in a loop
in which no branch is ever found. This and similar
loops in which no branch is found may be broken
in various ways, for example, by observing whether
an entry is used twice on the same access. Note that
much more devious loops may arise, as for example
that resulting from the establishment of a link
(named K) from directory 1 to entry H in the root.
Then the path name :C:K relative to directory 4
refers to directory 4 itself. This and similar loops
which involve chains of directories are inherent in
the use of links, and may in fact be used construc-
tively.

2.3 Access Control

An initial sign-on procedure is normally desira-
ble in order to establish the identity of the user for
accounting purposes. It may also be necessary to
control the way in which the user may use the sys-

218 PROCEEDINGS — FALL JOINT COMPUTER CONFERENCE, 1965

tem. There are two basic approaches to using the
hierarchy of files described here. First, the file
structure may be essentially open, with initial ac-
cess unrestricted and with subsequent access per-
mitted to all other directories unless specifically de-
nied. On the other hand, the file structure may be
essentially closed, with initial access restricted for
any user to a particular initial directory (assuming
his ability to give a password, for example) and
with subsequent access to other directories denied
unless specifically permitted. There are in fact argu-
ments for each extreme. The essentially open
scheme implies that locks need be placed only
where they are essential (and most effective). The
essentially closed scheme provides well-defined
working areas, frees the user from worrying about
other users, and helps prevent the user’s files from
being accidentally altered. It may be observed that
the scope of capabilities of the file structure de-
scribed here does not depend on whether the struc-
ture is essentially open or closed. In practice, a po-
sition somewhere in between the two extremes is
likely to result.

In attempting to access a file, a user may or may
not be successful, depending upon what he is trying
to do. The basic framework within which permis-
sions are granted is now considered. This frame-
work is independent of the file structure described
above. Although the exact set of permissions may
therefore vary from system to system, a flexible set
adequate for normal usage is given here as an illus-
tration. All permissions are logically on the branches
which point to files. (In actual implementation, how-
ever, there may in some cases be permissions
associated with a directory rather than repeated for
each entry in that directory.)

The set of permissions with which a given user
may access a particular branch is called the mode of
the branch for that user. Associated with each
branch is an access control list, which contains the
list of users (or sets of users) along with the corre-
sponding mode associated with each user. The per-
missions for any users on the list may be overridden
(assuming permission to do so—see below) by add-
ing subsequent users and modes to the list. The list
is scanned in order of recency, and thus the addi-
tion acts as an override. (Each time the access con-
trol list is changed, a garbage collection is per-
formed in order to keep the list nonredundant.) All
access control information required for the use of a

given file is contained in the list on the branch
pointing to that file, and is thus independent of the
way in which the file was accessed.

The mode consists of five attributes, named
TRAP, READ, EXECUTE, WRITE and AP-
PEND, each of which is either ON or OFF. In per-
forming access control, the TRAP attribute is ex-
amined first. It is by itself powerful enough to ac-
complish the roles of the other four attributes,
which are called usage attributes. However, the four
usage attributes are included here for ease of de-
scription, as well as for ease of use of the system.
The four usage attributes indicate permission to
perform the given activity on the branch by the par-
ticular user only if the corresponding attribute is
ON. The function of each attribute is now defined.

TRAP. When a branch has the TRAP attribute ON
for a given user, a trap occurs on any reference by
that user which affects the contents of the file to
which that branch points. In this case, the access
control module calls a procedure whose name is
given as the first entry of a trap list. A trap list may
be associated with each user in the access control
list. Additional parameters may be defined in the
trap list, and are passed as constants to the called
procedure. Furthermore, all pertinent information
regarding the branch as well as the calling sequence
which caused the trap are passed to the called pro-
cedure. The traps are processed in the order speci-
fied by the trap list. The return to the access con-
trol module specifies the effective values of the four
usage attributes which are to govern the access. The
returned value may override the initial values of
these attributes.

The user of a branch may inhibit the trap proc-
ess. In this case, all references to an entry with the
TRAP attribute ON cause an error return to the
calling procedure. The TRAP attribute is extremely
useful for monitoring of file usage, for placing ad-
ditional restrictions on access (e.g., user-applied
locks), for obtaining subroutines only if and when
they are actually referenced, etc. A pair of com-
mands such as LOCK and UNLOCK provide the
user with a standard way of applying locks on an
entry.

LOCK FILENAMEKEY
UNLOCK FILENAME

(FILENAME is the name of a branch given as a

~/

A GENERAL-PURPOSE FILE SYSTEM FOR SECONDARY STORAGE* 219

path name.) The command LOCK inserts a trap
which on each attempted access may request the
user to supply the designated key, and permit access
only if the key is correctly supplied. UNLOCK re-
moves the lock. (A timelock command might also
be desirable, for example, to make a given branch
available to a particular user only between certain
times on certain days.) These commands are avail-
able to a user only if the branch pointing to the di-
rectory which contains the entry FILENAME has
the WRITE attribute ON for that user (see below).

The Usage Attributes. The READ, EXECUTE,
WRITE and APPEND attributes govern permission
to perform operations upon files with certain in-
tents, with an intent corresponding to each attri-
bute. Every operation on a given branch implies
one of the four intents, namely read, execute, write
or append. The interpretation of the intent depends
upon whether the accessed branch points to a direc-
tory (a directory branch) or to a nondirectory (a
nondirectory branch), as seen below.

If a branch is a nondirectory branch, the meaning
of each intent is quite simple. The read intent is the
desire to read the contents of the file. The execute
intent is the desire to execute the contents of the
file as a procedure. The write intent is the desire to
alter the contents of the file without adding to the
end of it. The append intent is the desire to add to
the end of the file without altering its original con-
tents. The attribute on a nondirectory branch which
corresponds to the particular intent of an operation
on that branch indicates permission to carry out that
operation only if that attribute is ON.

If a branch is a directory branch, the meaning of
each intent is different. The read intent is the de-
sire to read those contents of the directory which
may be available to the user, i.e., to obtain an item-
ization of the directory entries. The execute intent
is the desire to search the directory. The write in-
tent is the desire to alter existing entries in the di-
rectory without adding new ones. This includes re-
naming entries, deleting entries, and changing the
access control list for branches in that directory.
The last of these includes adding traps to the trap
list and changing the usage attributes. The append
intent is the desire to add new entries without alter-
ing the original entries. The attribute on a directory
branch which corresponds to the particular intent of
an operation on that branch indicates permission to

carry out that operation only if that attribute is
ON.

Several additional examples of system commands
are now given. Assuming the necessary WRITE at-
tributes are ON for the appropriate directory
branches, a user may by use of suitable commands
change the access control list of entries or delete
entries in various ways. For example, he may
change (wherever permitted by the WRITE attri-
bute of an inferior branch) the list for all inferior
directory branches, or for all inferior nondirectory
branches, or for all inferior nondirectory branches
whose names include the parts FAP DEBUG, or for
all directory branches not more than some number
of levels inferior. Similarly, an elaborate delete
command may be constructed. (The possibility of
no one having the WRITE attribute ON for a given
directory branch can be combatted in various ways.
One way is not to permit a change in the list to oc-
cur which brings about this circumstance, another
way is to make this condition imply no restriction.)

Assuming that the necessary READ attributes
are ON for the appropriate directory branches, a
user may obtain an itemization of desired portions
of desired inferior directories, possibly obtaining a
graphical picture of the hierarchy.

2.4 Summary of File System Features

At this point, it is desirable to summarize the
various features of the file system, and to state
which of these contribute to which of the safe-
guards S1 through S8 mentioned above. The basic
features of the file system may be stated as follows:

F1. The inherent hierarchical structure of the
file system itself;

F2. The access control which may be associ-
ated with a directory branch;

F3. The backup procedures (discussed in the
next section).

In addition, certain aspects of the hardware and
of the central software also contribute to providing
these safeguards:

F4. The hardware, and central software sys-
tem.23
The ways in which the safeguards S1-S8 interact with
the features F1-F4 are summarized in Table 1.

220 PROCEEDINGS — FALL JOINT COMPUTER CONFERENCE, 1965

Table 1. The Features of the File System and Which
Safeguards They Assist in Providing.

Safe-
guards MASQ PERM DENY SELF PRIV BUGS TAMP ZEAL
Features S1 S2 S3 $4 SSs S6 S7 S8
Fl1. Hier- Y Y Y Y Y
archy
F2. Attri- Y Y Y Y Y Y Y Y
butes
F3.Back- Y Y Y Y
up
F4. System Y Y Y Y

Note: Y = YES, the feature does assist.
Blank = NO, it does not.

3. SECONDARY STORAGE BACKUP
AND RETRIEVAL

One important aspect of the file system is that
the user is given the illusion that the capacity of
file storage is infinite. This concept is felt to be ex-
tremely important, as it gives all responsibility for
remembering files to the system rather than to the
individual user. Many computer installations al-
ready find themselves in the business of providing
tape and card-file storage for their users. It is in-
tended that most of this need will be replaced by
the file system in a more general and orderly man-
ner.

That portion of the file system storage complex
which is immediately accessible to the file system,
i.e. disks and drums, is called the on-line storage
system. Devices which are removable from the stor-
age complex, such as tapes, data cells and disk
packs which are used by the file system as an exten-
sion of the on-line facilities, are called the file
backup storage system. To the user, all files appear
to be on line, although access to some files may be

somewhat delayed. For the purpose of discussion, a

backup system consisting only of magnetic tape is
considered. However, the system presented here is
readily adaptable to other devices.

Incremental Dumping of New Files

Whenever a user signs off, additional copies of
all files created or modified by that user.are made
in duplicate on a pair of magnetic tapes. At the end
of every N hour period, any newly created or modi-
fied files which have not previously been dumped
are also copied to these tapes. When this is done,
the tapes are removed from the machine and re-
placed by a fresh set of tapes for the next N hour

period. Typically N would be a period of between 2
and 4 hours. This procedure has the advantage that
the effects of the most catastrophic machine or sys-
tem failure can be confined to the N hour dumping
period.

Weekly Dumping of Frequently Used Files

In the event of a catastrophe, the on-line stor-
age system could be reloaded from these incremen-
tal dump tapes. However, since many valuable files,
including system programs, may not have been
modified for a year or over, this method of reload-
ing is far too impractical. In order to minimize the
time necessary to recover after a catastrophe, a
weekly dump is prepared of all files which have
been used within the last M weeks. This dump is
also made on duplicate tapes for reliability.

Actually this weekly dump is taken in two parts.
The first part consists of all files which must be
present in order to start and run the basic system.
The second part consists of all other files which
have been used within the last M week period. Typ-
ically M would be a period of about three to five
weeks. The weekly dump tapes may be released for
other use after a period of about two or three
months. The incremental dump tapes must be kept
indefinitely. However, it may be advantageous to
consolidate these tapes periodically by deleting ob-
solete files.

Catastrophe Reload Procedure

Should a catastrophe occur in which the entire
contents of the on-line storage system is lost, the
following reload procedure can be used. First reload
a copy of the system files from the most recent
weekly dump tapes. When this has been done the
system may be started, with the rest of the reload-
ing process continuing under the control of the sys-
tem. Note that this does not necessarily represent
the most recent copy of the system. If an important
system change has been made since the weekly
dump was taken, it may be necessary to reload the
incremental tapes before starting the system.

After the system files are reloaded, the incremen-
tal dump tapes are reloaded in reverse chronological
order, starting with the most recent set of incremen-
tal tapes. This process is continued until the time of
the last weekly dump is reached. At this time, the
second part of the weekly dump tapes is reloaded.

A GENERAL-PURPOSE FILE SYSTEM FOR SECONDARY STORAGE* 221

During this process all redundant or obsolete files
are ignored. The date and time a file is created or
last modified is used to insure that only the most
recent copy of a file remains in the on-line storage
system. Since directories are dumped and reloaded
in the same manner as ordinary files, the contents
of the on-line storage system can be accurately
restored.

It is possible to continue to load the older weekly
tapes until the on-line system is totally reloaded.
However, the amount of new information picked up
from these tapes becomes increasingly small as one
goes further back in time. In view of this, files
which do not appear on the most recent set of
weekly dump tapes, due to inactivity, are not re-
loaded at this time. Instead, a trap is added to the
appropriate directory branch so that a retrieval pro-
cedure is called when the file is first referenced.
This allows these files to be reloaded as needed by
the retrieval mechanism which is discussed later in
this paper.

On-Line Storage Salvage Procedure

Although the catastrophe reload procedure can
accurately reconstruct the contents of the on-line
storage system, it is normally used only as a back-
stop against the most catastrophic of machine or
system failures. When the milder and more common
failures occur, it is often possible to salvage the
contents of secondary storage without having to re-
sort to the reload procedure. If this can be done,
many files which have been created or modified
since the end of the last incremental dump period
can be saved. In addition, much of the time neces-
sary to run the reload procedure can also be saved.

The usual result of a machine or system failure is
that the contents of secondary storage are left in a
state which is inconsistent. For example, two com-
pletely unrelated directory entries may end up
pointing to the same physical location in secondary
storage, while the storage assignment tables indicate
that this area of storage is unused. If the system
were restarted at this time, the situation might nev-
er be resolved. The usual effect is that any infor-
mation subsequently assigned to that area of sec-
ondary storage is likely to be overwritten.

This situation arises when the system goes down
before the file system has updated its assignment
tables and directories on secondary storage. What
has probably happened is that some user has deleted

a file and another user created a new file which was
assigned to the area of storage just vacated by the
previous file. When the system goes down, the
changes have not been recorded in secondary stor-
age. This is only one example of the type of trouble
which occurs when the system fails unexpectedly.

The salvage procedure is designed to read
through all the directories in the hierarchy and cor-
rect inconsistent information wherever possible.
The remaining erroneous files and directory entries
are deleted or truncated at the point at which the
error was found. Storage assignment tables are cor-
rected so that only one branch points to the same
area of secondary storage. Since it is necessary to
read only the directories and the storage assignment
tables, the salvage procedure can be run in a small
percentage of the time necessary to run a complete
reload procedure.

The salvage procedure also serves as a useful di-
agnostic tool, since it provides a printout of every
error found and the action taken. This program can
also be run in a mode in which it only detects er-
rors but does not try to correct them.

Retrieval of Files from Backup Storage

Unless a file has been explicitly deleted by a
user, the directory entry for that file remains in the
file system indefinitely. If, for some reason, the file
associated with this entry does not currently reside
on an on-line storage device, the corresponding
branch for that file contains a trap to a file retrieval
procedure. When a user references a file which is in
this condition, his process traps to the retrieval pro-
cedure. At this time the user may elect to wait until
the file is retrieved from the backup system, to re-
quest that the file be retrieved while he works on
something else, to abort the process that requested
the file, or to delete the directory entry.

If the user elects to retrieve the file, the date and
time the file was created or last modified (which
are available from the directory entry) are used to
select the correct set of incremental dump tapes.
The retrieval procedure requests the tape operator
to find and mount these tapes. These tapes are then
searched until the precise copy of the requested file
is found and reloaded. At this time the original ac-
cess control list of the branch is restored, and the
file is now ready to be used by the user.

If a user deletes a file, both the file and the cor-
responding directory entry are deleted. However, if

222 PROCEEDINGS — FALL JOINT COMPUTER CONFERENCE, 1965

a copy of this file appears on a set of incremental
dump tapes, this copy is not deleted at this time.
This file can still be retrieved if the user specifies
the approximate date and time when the file was
created or last modified. To help the user in this
situation, the incremental dump procedure provides
a listing for the operations staff of the contents of
each set of incremental tapes. These listings are
kept in a log book which may be consulted by the
operators in situations such as the above. Selected
portions of this listing may be made available to
the user.

The user is able to declare that he wishes a cer-
tain file to be removed from the on-line storage
system without deleting the corresponding directory
entry. This may be accomplished by using a system
procedure which places the file in a state where it
can be retrieved by the normal retrieval procedure.

General Reliability

Since the file system is designed to provide the
principal information storage facility for all users of
the system, the full responsibility for all considera-
tions of reliability rests with the file system. For this
reason all dumping, retrieval and reloading proce-
dures use duplicate sets of tapes. These tapes are
formatted in such a manner as to minimize the pos-
sibility of unrecoverable error conditions. When
reading from these tapes during a reload or retrieval
process, multiple errors on both sets of tapes can be
corrected as long as the errors do not occur in the
same physical record of both tapes. If an error oc-
curs which cannot be corrected, only the informa-
tion which was in error is lost. If the error is a sim-
ple parity error, the information is accepted as if no
error occurred. When a user first attempts to use a
file in which a parity or other error was found, he
is notified of this condition through a system pro-
cedure using the trap mechanism.

Secondary Storage Allotments

The file system assigns all secondary storage dy-
namically as needed. In general, no areas of the
on-line storage system are permanently assigned
to a user. A user may keep an essentially infinite
amount of information within the file system. How-
ever, it is necessary to control the amount of infor-
mation which can be kept in the on-line storage
system at a time.

When a user first signs on, the file system is giv-
en an account name or number. All files subse-
quently created by this user are labelled with his
account name. When the user wishes to increase his
usage of secondary storage, the file system calls
upon a secondary storage accounting procedure giv-
ing the user’s account name and the amount and
class of storage requested.

The accounting procedure maintains records of
a]l secondary storage usage and allotments. A stor-
age allotment is defined as the amount of informa-
tion which a particular account is allowed to keep
in the on-line storage system at one time. Normal-
ly the accounting procedure allows a process to ex-
ceed the allotment after informing the file system
that the account is overdrawn. However, the ac-
counting procedure may decide to interrupt the
user’s process if the amount of on-line storage al-
ready used seems unreasonable.

Multilevel Nature of Secondary Storage

In most cases a user does not need to know how
or where a file is stored by the file system. A user’s
primary concern is that the file be readily available
to him when he needs it. In general, only the file
system knows on which device a file resides.

The file system is designed to accommodate any
configuration of secondary storage devices. These
devices may cover a wide range of speeds and ca-
pacities. All considerations of speed and efficiency
of storage devices are left to the file system. Thus
all user programs and all other system programs are
independent of the particular configuration of sec-
ondary storage.

All permanent secondary storage devices are as-
signed a level number according to the relative
speed of the device. The devices which have the
highest transmission and access rates are assigned
the highest level numbers. As files become active,
they are automatically moved to the highest-level
storage device available. This process is tempered
by considerations such as the size of the file and the
frequency of use.

As more space is needed on a particular storage
device, the least active files are moved to a lower-
level storage device. Files which belong to over-
drawn accounts are moved first. Files continue to
be moved to lower-level storage until the desired
amount of higher-level storage is freed. If a file
must be moved from the lowest-level on-line

A GENERAL-PURPOSE FILE SYSTEM FOR SECONDARY STORAGE* 223

storage device, the file is removed and the branch
for this file is set to trap to the retrieval procedure.

4, FILE SYSTEM PROGRAM STRUCTURE

This section describes the basic program struc-
ture of the file system presented in the preceding
sections, as implemented in the Multics system.? (It
is assumed here that the reader is familiar with the
papers referred to in references 1, 2 and 3.)

A user may reference data elements in a file ex-
plicitly through read and write statements, or implic-
itly by means of segment addressing. It should be
noted here that the word “file” is not being used in
the traditional sense (i.e., to specify any input or
output device). In the Multics system a file is a lin-
ear array of data which is referenced by means of
a symbolic name or segment number and a linear
index. In general, a user will not know how or on
what device a file is stored.

A Multics file is a segment, and all segments are
files.'* Although a file may sometimes be ref-
erenced as an input or an output device, only a file
can be referenced through segment addressing. For
example, a tape or a teletype cannot be referenced
as a segment, and therefore cannot be regarded as a
file by this definition.

Input or output requests which are directed to
I/0O devices other than files (i.e. tapes, teletypes,
printers, card readers, etc.) will be processed di-
rectly by a Device Interface Module (see reference
4) which is designed to handle 1/O requests for
that device. However, 1/O requests which are direct-
ed to a file will be processed by a special procedure
known as the File System Interface Module (see
reference 4). This module acts as a device interface
module for files within the file system. Unlike other
device interface modules, this procedure does not
explicitly issue I/O requests. Instead, the file sys-
tem interface module accomplishes its I/O implicit-
ly by means of segment addressing and by issuing
declarative calls to the basic file system indicating
how certain areas of a segment are to be overlayed.

4.1 The Basic File System

Whether a user refers to a file through the use of
read and write statements or by means of segment
addressing, ultimately a segment must be made
available to his process. The basic file system may
now be defined as that part of the central software

which manages segments. In general this package
performs the following basic functions.

1. Maintain directories of existing segments
(files).

2. Make segments available to a process upon
request.

3. Create new segments.
4. Delete existing segments.

Figure 3 is a rough block diagram of the modules
which make up the basic file system. This diagram
is by no means complete but is used here to give
the reader an overall view of the basic flow. The
directional lines indicate the flow of control
through the use of formal calling sequences, with
formal return implied. Lines with double arrow-
heads are used to indicate possible flow of control
in either direction. The circles in the diagram indi-
cate some of the data bases which are common to
the modules indicated. The modules and data bases
drawn below the dotted line must at least partially
reside in core memory at all times since they will
be invoked during a missing-page fault (see ref-
erence 3).

Segment Management Module

The segment management module maintains rec-
ords of all segments which are known to the current
process. A segment is known to a process once a
segment number has been assigned to that segment
for this process. A segment which is known to a
process is active if the page table for that segment
is currently in core. If the page table is not current-
ly in core, that segment is inactive.

If a segment is known to a process, an entry will
exist for that segment in the Segment Name Table
(SNT). This entry contains the call name, the tree
name and the segment number of the segment (file)
along with other information pertinent to the seg-
ment as used by this process. The call name is a
symbolic name used by the user to reference a seg-
ment. This name normally corresponds to an entry
in the user’s directory hierarchy which effectively
points to the desired file. It should be noted that a
different copy of the segment name table exists for
each individual process.

If a segment is active, an entry for that segment
exists in the Segment Status Table (SST). This ta-

224 PROCEEDINGS — FALL JOINT COMPUTER CONFERENCE, 1965

ble is common to all processes and contains an en-
try for each active segment. If a segment is inactive
(no page table is in core), no entry exists for that
segment in this table. Each entry in the segment
status table contains information such as the num-
ber of processes to which this segment is known
and a pointer which may be used to reference the
file or files which are to receive all 1/O resulting
from paging this segment in and out of core.?

When a user references a segment for the first
time, a directed fault will occur. At this time con-
trol is passed to a procedure known as the linker.®
This procedure picks up the symbolic segment call
name from a pointer contained in the machine word
causing the fault. The linker must now establish a
segment number from this symbolic name. An entry
to the segment management module is provided for
precisely this purpose.

When a call is made to the segment management
module to establish a segment number from a call
name, the segment name table is searched for that
call name. If the call name is found in the segment
name table, the segment number from this table is
returned immediately to the calling procedure.
However, if this is not the case, the segment man-
agement module must take the following steps.

1. Locate the segment (file) in the user’s di-
rectory hierarchy via a call to the search
module.

2. Assign a segment number for this segment.

3. Update the segment name table indicating
that this segment is now known to this
process.

4. Open the file or files which are to receive
1/0 resulting from paging.

5. Create or update the appropriate entry in
the segment status table.

6. Establish a page table and segment de-
scriptor for this segment if the segment was
not already active for some other process.

7. Return the segment number to the calling
procedure.

If a segment is known to a process but is not cur-
rently active, the descriptor for that segment will indi-
cate a fault condition. If and when this fault occurs,

the segment can be reactivated by locating the appro- -

priate entry in the segment name table and repeating

steps 4 through 7. Note that the segment does not
have to be located again in the directory hierarchy
since the tree name is retained in the segment name
table.

If a segment is to be modified during its use in a
process, the user may elect to modify a copy of that
segment rather than the original. When this is the
case, the copying of this segment is done dynam-
ically as a by-product of paging. However, if the
copying is not complete at the time the segment be-
comes inactive, the copying must be completed at
this time.

If a segment is to be copied, there are actually
two open files involved, the original file and the
copy or execution file. When a page table is initial-
ly constructed by the segment management module,
each entry in that page table will contain a fault in-
dication and a flag indicating what action should be
taken if and when that fault occurs. This flag may
indicate one of the following actions:

1. Assign a blank page.

2. Retrieve the missing page from the origi-
nal file.

3. Retrieve the missing page from the execu-
tion file.

Once a page has been paged out (written) into the
execution file, it must be retrieved from that file.

An entry to the segment management module is
provided by which a user may declare a synonym or
list of synonyms for a segment name. For example,
a user may have a certain procedure which ref-
erences a segment called “Gamma” and another
procedure which references a segment called “Al-
pha.” If the user wishes to operate both procedures
as part of the same process using a segment called
“Data” he may do so by declaring Alpha and Gam-
ma to be synonyms for Data. This association is
kept by the segment management module in a Syno-
nym Table (SYNT). Whenever the segment man-
agement module is presented with a call name
which has been defined as a synonym, the appropri-
ate name is substituted before any further processing
takes place.

In addition to the functions described above, the
segment management module provides entries
through which the user may ask questions or make
declarations involving the use of segments known to
his process. Some of these functions are listed be-
low.

A GENERAL-PURPOSE FILE SYSTEM FOR SECONDARY STORAGE* 225

1. Declare that a segment or some specific
locations within a segment are no longer
needed at this time.

2. Declare that a segment or some specific
locations within a segment are to be reas-
signed rather than paged in as needed.
(The user is about to overwrite these loca-
tions).

3. Ask if a segment or some specific locations
within a segment are currently in core.

4, Declare that a certain segment is to be
created when first referenced.

5. Terminate a segment, indicating that this
segment is no longer to be considered as
known to this process.

Search Module

The search module is called by the segment man-
agement module to find a particular segment (file)
in the user’s directory hierarchy. The search module
directs the search of individual directories in the
user’s hierarchy in a predetermined pattern until
the requested branch is found or the algorithm is
exhausted. This module calls the file coordinator
to search particular directories and to move to other
directories in the hierarchy. The user is able to
override this search procedure by providing his own
search procedure at the initiation or during the
execution of his process.

The File Coordinator

The file coordinator provides all the basic tools
for manipulating entries within the user’s current
working directory. The functions provided by this
module perform only the most primitive operations
and are usually augmented by more elaborate system
library procedures. The following is a list of some of
these operations.

Create a new directory entry.
Delete an existing entry.

Rename an entry.

Ll

Return status information concerning a
particular entry.

5. Change the access control list for a partic-
ular branch.

6. Change working directory.

Whenever a user wishes to perform any operation
through the use of the file coordinator, the access
control module is consulted to determine if the op-
eration is to be permitted.

Since most calls to the file coordinator refer to
entries contained in the user’s working directory,
the file coordinator must maintain a pointer to this
directory. This is done by keeping the tree name of
the working directory in a Working Directory Table
(WDT) for this process.

Directory Management Module

When the file coordinator wishes to search the
user’s working directory, the actual search is ac-
complished by use of the directory management
module. This module searches a single directory
specified by a tree name for a particular entry or
group of entries. The actual directory search is con-
fined to this module to isolate the recursion process
which may be required to search a given directory.

The directory management module issues calls to
the segment management module to obtain a seg-
ment number for the directory for which it has only
a tree name. When the directory management mod-
ule obtains this segment number and references the
directory by means of segment addressing, a de-
scriptor fault may occur indicating that this segment
is no longer active. If this happens, the segment
management module will try to reactivate this seg-
ment by attempting to find this directory in the
next superior directory by means of the tree name
in the segment name table. To do this the segment
management module issues a direct call to the di-
rectory management module to search the next su-
perior directory for the missing directory. After ob-
taining a segment number for the superior directo-
ry, the directory management module may cause
another descriptor fault to occur when attempting
to search this directory. This process may continue
until a directory is found to be an active segment or
until the root of the directory hierarchy is reached.
Since the root is always known to the directory
management module, the depth of recursion is finite.

File Control Module

The file control module is provided to open and
close files for the segment management module. A

226 PROCEEDINGS — FALL JOINT COMPUTER CONFERENCE, 1965

file is said to be open, or active, if it has a corre-
sponding entry in the Active File Table (AFT). If
a file is active, the corresponding entry in the ac-
tive file table provides sufficient information to
control subsequent I/0 requests for that file.

If the file is inactive, the open procedure needs
only to open the file to the requested state and
make the corresponding entry in the active file ta-
ble. If the file is active, it may have N users read-
ing, or 1 user reading and writing, or N users data
sharing (using file as a common data base). If the
requested state is incompatible with the current
state of the file, the current process must be
blocked.® For example, if the current user wishes to
read a stable copy of the file and there is currently
a user writing into that file, the requested state
(reading) and the current state (reading and writ-
ing) are said to be incompatible.

If the requested state and the current state of the
file are found to be compatible, the number of users
using the file in that state is increased by one.
When a file has been successfully opened by the file
control module (with the permission of the access
control module), the pointer to the corresponding
entry in the active file table is returned to the call-
ing procedure. This pointer is used to direct re-
quests for subsequent input or output to the correct
file.

Access Control Module

The access control module is called to evaluate
the access control information for a particular
branch, as defined in Section 2. This module is giv-
en a pointer to the directory entry for the branch in
question and a code indicating the type of opera-
tion which is being attempted. The access control
module returns a single effective mode to the call-
ing procedure. The effective mode is the mode
which governs the use of a file with respect to the
current user or process. The calling procedure uses
this mode to determine if the requested operation is
to be permitted.

If the access control information indicates that a
trap is to be effected, the procedure to which the
trap is directed is passed the entry for the branch in
question and the operation code. The procedure
which processes the trap must return to the access
control module, specifying the effective mode to be
returned by the access control module to its calling
procedure. The procedure which processes the trap

may choose to strengthen, weaken or leave un-
changed the usage attributes which define the effec-
tive mode for the branch.

Page Marker Module

The page marker periodically interrupts the cur-
rent process and takes note of page usage, and re-
sets the page use bits? of all pages involved in the
current process. Pages which fall below a dynam-
ically set activity threshold are listed in the Page
Out Table (POT) as likely candidates for removal
when space becomes needed.

Page Management Module

Control passes to the page management module
by means of a missing-page fault in a page table
in use by the current process. This fault may indi-
cate that a new page should be assigned from free
storage or that an existing page should be retrieved
from an active file. In either case a free page must
be assigned before anything else can happen. If no
pages are currently available, the first page listed in
the page out table is paged out. If no pages are list-
ed in the page out table, a random page of ap-
propriate size is removed.

If a new page is to be read in, the page table en-
try for the missing page contains a pointer to the
appropriate entry in the segment status table and a
flag indicating whether this page is to be read from
the original file or the execution file. In either case
a pointer to the appropriate active file may be ob-
tained from the segment status table. This pointer
is passed as a parameter to the I/O queue manage-
ment module with a read request to restore the cor-
rect page to core memory.

I1/0 Queue Management Module

The I/0 queue management module processes
input and output requests for a particular active
file. The calling procedure specifies a read or a
write request and a pointer to an entry in the active
file table which corresponds to the desired file. This
request is placed on the appropriate queue for the
particular device interface module which will proc-
ess the request. The queue management module
then calls that device interface module indicating
that a new request has been placed on its queue.
When this is done, the queue management module

A GENERAL-PURPOSE FILE SYSTEM FOR SECONDARY STORAGE* 227

returns to the calling procedure which must decide
whether or not to block itself until the I/O request
or requests are completed.

Device Interface Modules

For each type of secondary storage device used
by the basic file system, a device interface module
will be provided. A device interface module has the
sole responsibility for the strategy to be used in
dealing with the particular device for which it was
written. Any- special considerations pertaining to a
particular storage device are invisible to all mod-
ules except the interface module for that device.

A device interface module is also responsible for

assigning physical storage areas, as needed, on the
device for which it was written. To accomplish this
function, the interface module must maintain rec-
ords of all storage already assigned on that device.
These records are kept in storage assignment tables
which reside on the device to which they refer.

4.2 Other File System Modules

The modules described below are not considered
part of the basic file system and are not indicated
in Fig. 3. However, these modules are considered to
be a necessary and integral part of the file system as
a whole.

CALLS CALLS
PERIODIC FROM USER FROM USER
INTERRUPT PROCEDURES PROCEDURES
PAGE SEGMENT SEARCH FILE DIRECTORY
MARKER MANAGEMENT MODULE COORDINATOR MANAGEMENT
DI-
RECTORY
FILE ACCESS
CONTROL CONTROL
MODULE MODULE
AFT DEVICE
INTERFACE
MODULE
/ To
PAGE Q I/O
MANAGEMENT MANAGEMENT \ =
DEVICE
INTERFACE
| MODULE

Figure 3. The basic file system.

Multilevel Storage Management Module

The multilevel storage management module oper-
ates as an independent process within the Multics
system. This module collects information concern-
ing the frequency of use of files currently active in
the system. In addition, this module collects infor-
mation concerning overdrawn accounts from the

secondary storage accounting module.

The storage management module insures that an
adequate amount of secondary storage is available
to the basic file system at all times. This is accom-
plished by moving infrequently used files downward
in the multilevel storage complex. This module also
moves the most frequently used files to the high-
est-level secondary storage device available.

228 PROCEEDINGS — FALL JOINT COMPUTER CONFERENCE, 1965

Storage Backup System Modules

The storage backup system consists of five mod-
ules which operate as independent processes.
These modules perform the functions described in
Section 3.

1. Incremental Dump Module—The sole
responsibility of this module is to prepare
incremental dump tapes of all new or re-
cently modified files.

2. Weekly Dump Module—This module is run
once a week to prepare the weekly dump

tapes.

3. Retrieval Module—This module retrieves
files which have been removed from the
on-line storage system.

4. Salvage Module—This module is run after a
machine or system failure to correct any
inconsistencies which may have resulted in
the on-line storage system. Since the
Multics system cannot safely be run until
these inconsistencies are corrected, the sal-
vage module must be capable of running
on a raw machine.

5. Catastrophe Reload Module—This module
is used to reload the contents of the on-
line storage system from the incremental
and weekly dump tapes after a machine or
system failure. Normally, this module is
run only when all attempts to salvage the
contents of the on-line storage system
have failed. This module must be capable
of running on a raw machine or under the
control of the Multics system.

Utility and Service Modules

A large library of utility modules is provided as
part of the file system. These modules provide all
the necessary functions for manipulating links, and
branches using the more primitive functions provid-
ed by the file coordinator.

A special group of utility modules is provided to
copy information currently stored as a file to other
input or output media, and vice versa. The fol-
lowing functions are provided as a bare minimum:

1. File to printer

2. File to cards
3. Cards to file
4. . Tape to file
5. File to tape

Actually these modules merely place the user’s re-
quest on a queue for subsequent processing by the
appropriate service module. The service module ex-
ecutes the requests in its queue as an independent
process. As soon as the user’s request has been
placed on an appropriate queue, control is returned
to the calling procedure although the request has
not yet been executed.

5. CONCLUSIONS

In this paper, a versatile secondary storage file
system is presented. Various goals which such a
system should attain have been set, and the system
designed in such a way as to achieve these goals.
Such a system is felt to be an essential part of an
effective on-line interactive computing system.

6. ACKNOWLEDGMENT

The file system presented here is the result of a
series of contributions by numerous people, begin-
ning with the MIT Computation Center, continuing
with Project MAC, and culminating in the present
effort.

REFERENCES

1. F. J. Corbaté and V. A. Vyssotsky, “Introduc-
tion and Overview of the Multics System,” this vol-
ume.

2. E. L. Glaser, J. F. Couleur and G. A. Oliver,
“System Design of a Computer for Time-Sharing
Applications,” this volume.

3. V. A. Vyssotsky, F. J. Corbat6 and R. M.
Graham, “Structure of the Multics Supervisor,” this
volume.

4. J. F. Ossanna, L. E. Mikus and S. D. Dunten,
“Communications and Input-Output Switching in
a Multiplex Computing System,” this volume.

5. E. E. David, Jr., and R. M. Fano, “Some
Thoughts About the Social Implications of Accessi-
ble Computing,” this volume.

Additional References

A GENERAL-PURPOSE FILE SYSTEM FOR SECONDARY STORAGE* 229

C. W. Bachman and S. B. Williams, “A General
Purpose Programming System for Random Access
Memories,” Proceedings of the Fall Joint Computer
Conference 26, Spartan Books, Baltimore, 1964.

J. B. Dennis and E. C. Van Horn, “Programming
Semantics for Multiprogrammed Computations,”
ACM Conference on Programming Languages, San

Dimas, Calif., Aug. 1965. To be published in Comm.
ACM.

A. W. Holt, “Program Organization and Record
Keeping for Dynamic Storage Allocation,” Comm.
ACM 4, pp. 422-431, Oct. 1961.

T. H. Nelson, “A File Structure for the Complex,
the Changing and the Indeterminate,” ACM Na-
tional Conference, Aug. 1965.

M. V. Wilkes, “A Programmer’s Utility Filing

System,” Computer Journal 7, pp. 180-184, Oct.-
1964,

COMMUNICATIONS AND INPUT/OUTPUT SWITCHING
IN A MULTIPLEX COMPUTING SYSTEM *

J. F. Ossanna
Bell Telephone Laboratories
Murray Hill, New Jersey

L. E. Mikus
General Electric Company
Phoenix, Arizona

S. D. Dunten
Massachusetts Institute of Technology
Cambridge, Massachusetts

INTRODUCTION

This paper discusses the general communications
and input/output switching problems in a large-
scale multiplexed computing system. A basic goal
of such a computing system is to serve simultane-
ously and continuously a wide range and large num-
ber of users. By rapidly time-multiplexing the use
of computer system facilities on behalf of these users,
the system attempts to satisfy the completion time
and response time desires of both the on-line interac-
tive user and the absentee user.

Problems arise in such systems because of the
large humber and variety of on-line input/output
devices, the dynamically changing hardware and
software environment, and the need to efficiently
use devices such as line printers.

In this paper a new general purpose input/output

*Work reported herein was supported (in part) by Project
MAC, an M.LT. research program sponsored by the Ad-

anced Research Projects Agency, Department of Defense,

nder Office of Naval Research Contract Number Nonr-
102(01).

231

controller is described which is capable of simulta-
neously operating a large number of devices of al-
most arbitrary variety and speed. An input/output
software system philosophy is presented which is
tailored to the environment of a multiplex computer
system. It includes a message coordinator which
connects a user program’s input and output streams
to various input/output devices and to the secon-
dary storage file system. Execution-time redirection
and multiple-direction of these connections is a soft-
ware system feature.

This paper represents the philosophy and direction
of the development of the communications and input/
output portions of the Multics system (Multiplexed
Information and Computing System).'

GENERAL PROBLEMS

The on-line input/output devices in a computer
system may be classified as local or remote. The
local peripherals such as drums, discs, tapes, line
printers, card readers and punches are typically con-

232 PROCEEDINGS — FALL JOINT COMPUTER CONFERENCE, 1965

nected to the computer by short, many-conductor
cables. The computer system usually has considera-
ble status information available about local devices
and has operators to assist in their care and feeding.

By comparison, remote devices such as typewrit-
ers, line printers, card readers and punches are typi-
cally connected to the computer system via private
or switched telephone company transmission facili-
ties. The computer system can directly obtain only
some status of the transmission facilities. The re-
mote operator, if any, is likely to be reachable only
via his remote terminal. The number of remote ter-
minals will generally be large compared to the num-
ber of local peripherals, and will vary dynamically
with the number of remote users.

The actual and potential variety of input/output
devices is a challenge to a large-scale multiplex
computer system. Likely additions to the devices
mentioned above are removable discs, some form of
inexpensive mass storage such as the data cell, a
variety of both local and remote graphical display
terminals, a microfilm processor, remote data col-
lectors and various dependent peripheral analog and
digital computers. Further, devices like remote
typewriters and line printers will typically abound
in several models. In some cases the computer itself
will need to originate calls to remote terminals.

Certain remote terminals can impose stringent
real-time response obligations on a multiplex
computer system. Examples are remote process con-
trol or experiment control and certain types of dis-
continuous remote high-speed data collection.

Supervisory program modules which attend to
bulk input/output devices such as line printers and
card readers must be scheduled for execution fre-
quently enough to guarantee the efficient use of
these devices. Because the supervisor is multipro-
gramming (processing in parallel) the programs of
perhaps hundreds of users, the problem of allocating
such facilities as tapes and removable discs to these
user programs is nontrivial.

INPUT/OUTPUT HARDWARE SYSTEM
PHILOSOPHY

A basic goal of the Multics system is continu-
ous service. The principal method in achieving this
goal is to include more than one copy of each hard-
ware module and to configure the connecting paths
between modules such that no single module is es-
sential for continued system operation.

CENTRAL CENTRAL
PROCESSOR PROCESSOR
MEMORY MEMORY
MODULE MODULE
GENERAL GENERAL
INPUT-OUTPUT INPUT-OUTPUT
CONTROLLER CONTROLLER
Bhrrs
TELEPHONE DISC DISC
SWITCHING CON- CON-
SYSTEM TROLLER TROLLER
LLLLLLLLI
LINES TO LINE
REMOTE PRINTER
TERMINALS DISC DISC
UNIT UNIT

Figure 1. Skeletal hardware system configuration.

Figure 1 is a skeletal system configuration, and
shows just enough modules to illustrate this princi-
ple. In this example, there are two central proces-
sors (CPU), two memory modules, two general in-
put/output controllers (GIOC), two disc controllers,
and two disc units. In each case the number two
is illustrative and can be higher. Each CPU and
GIOC can access every memory module. The disc
controller is twin-tailed and accessible by either
GIOC; each disc is reachable from either disc
controller. Thus there are multiple paths for data
flow between disc and main memory.

Single-tailed input/output devices (connectible
to only one controller at a time), illustrated by the
line printer in Fig. 1, must be manually switched
when necessary by the local computer operator.

Remote terminals such as typewriters may access
the system via some switching system such as a reg-
ular telephone central office or private branch ex-
change. A number of lines connect each GIOC to
the switching system providing multiple-path
availability. GIOC ports intended for different
types of remote terminals operating at different
transmission rates can be assigned different tele-
phone numbers. The switching of remote terminals
is discussed below (Connecting and Switching
Remote Terminals).

INPUT/OUTPUT SWITCHING IN MULTIPLEX COMPUTING SYSTEM 233

A GENERAL INPUT/OUTPUT CONTROLLER

The need to handle simultaneously input/output
devices having a wide range of speeds, and the
need to impose automatically priorities dictated not
only by this speed range but also by real-time require-
ments and by the actual relative importance of differ-
ent terminals, have motivated the design of a gen-
eralized input/output controller (GIOC). The GIOC,
conceived for the real-time environment, achieves
several functions not highly developed in current
large-scale computer input/output subsystems.

A tradeoff between hardware complexity and
memory usage is available for all speed ranges of
terminal devices, whether they be 10-character-
per-second teletypewriters or 400,000-character-per
second mass storage peripherals. A modular organi-
zation allows functional building blocks to be
assembled and tailored specifically for the terminal
complement of any rational system.

The input/output capacity of the system is in-
creased over present computer systems by a hard-
ware priority scheme which considers individually
the allowable latency of every event requiring the
use of main memory. No event requiring the use of

main memory is given any higher priority than it
requires for error-free operation.

Corresponding to the hardware priority scheme
for memory usage is a hierarchy of program inter-
rupt priorities that can ensure rapid response times
for real-time events at the expense of slower re-
sponse times for nonreal-time events.

To facilitate real-time responses to terminal
devices, channel commands may be executed with-
out program intervention. By placing commands in
a list of channel control words, the commands can
be conditionally or unconditionally triggered by the
data stream.

All input/output operations are under the direct
control of an input/output software system, and
hardware memory protection for input/output is
not required. Uniform programming is facilitated
by the implementation of identical formats and pro-
cedures for the control of all terminal devices.

Functional Division

The functional division of the GIOC hardware is
illustrated in Fig. 2. The modular functional build-
ing blocks are the common control, adapter control,
and adapter channels.

COMMUNICATION
UPE

ADAPTER
CONTROL
! |
[I !
TO I
COMMON |
|
ng‘gs&* | CONTROL :
| [
| |
ADAPTER
CONTROL

|
ADAPTER DATA| __ ¥y__ | DATA
CHANNEL SET SET
|
I
ADAPTER DATA | __ ____|DATA
CHANNEL SET SET

ADAPTER

TERM-
CHANNEL INAL

Figure 2. Functional organization of the input/output controller.

Two general types of adapters are used—direct and
indirect. Direct adapters, for which the active con-
trol word for data transfer resides in the adapter
hardware rather than in main memory, are em-
ployed with high-data-rate devices. Data are
transferred directly to or from the designated loca-
tions in main memory using the control word resi-
dent in the adapter hardware. By transferring up to

12 characters in a single main memory cycle, direct
adapters efficiently utilize memory cycles at the ex-
pense of adapter complexity.

Indirect adapters, which contain minimum con-
trol within themselves, are employed with low- and
medium-data-rate devices. Control words reside in
main memory and must be accessed and updated
every time a data transfer occurs. Up to 12 charac-

234 PROCEEDINGS — FALL JOINT COMPUTER CONFERENCE, 1965

ters of data can be transferred in three main memory
cycles.

Adapter channels supply the proper termination
to lines connecting the terminal devices to the
GIOC. Adapter channels may contain data buffer-
ing or simply supply the line interface.

The common control section does not contain
any data buffering, but serves mainly to order and
control all data transfers. For .direct adapters, the
common control provides the functions of:

1. Adapter priority ordering and allocation.

2. Communicating program command infor-
mation.

3. Interfacing to the adapters.

4. Sequencing and subsystem control.

5. Diagnostics and error control.

In addition to the above, for indirect adapters the
common control also provides the functions of:

6. Word assembly and disassembly.

7. Parity checking and generation.

8. Control word updating.

9. Dynamic control function detection.
10. Temporary adapter status buffering.

For control of data transfers, the mailbox tech-
nique is used. Each adapter channel has a dedicated
area, or mailbox, in protected main memory for the
residence of control words. Data transfer control
words are independent for every adapter channel
but command, diagnostic, and status control words
are shared by all adapter channels.

Each adapter channel mailbox contains two types
of control words: Data Control Words (DCWs)
and List Pointer Words (LPWs). DCWs control the
data transfer between main memory and adapter
channels. Each adapter channel has associated with
it an LPW which is a pointer for locating the next
DCW to be used for data transfer.

Except for command initiation and termination
of unit record peripherals, all information necessary
to carry out an input/output operation is uniquely
contained within the control words of each adapter
channel. In this manner, no adapter channel is de-
pendent upon any other adapter channel in the
GIOC for control.

Hardware Priority Scheme

A hardware priority scheme minimizes the ef-
fects of low-data-rate devices upon the latency
of high-data-rate devices by the establishment of

priority for all events which require the use of main
memory. Six general classes of events exist:

1. $Status (communication from the hardware
to the program).

2. Commands (communication from the pro-

gram to the hardware).

Direct adapter data services.

Indirect adapter data services.

List pointer services.

Diagnostic functions.

Su e w

Each class of events itself contains several levels
of hardware priority. The priority levels for one
class of events can be intermixed with those of
another. For example, seven levels of normal status
priority are allowed. These seven levels may be inter-
mixed with the priority levels of the other classes.

Commands are treated in the same way as all
other events which require the use of main memory.
They must wait until the common control grants
priority for their issuance.

Two levels of hardware priority for commands
are allowed. To issue commands, the program loads
one of the two allocated mailboxes with a pointer
to the command list. The program then issues an
interrupt to the common control. One command is
executed each time this event receives priority, un-
til no further commands remain in the command
list.

Indirect data service events are those required to
transfer data between main memory and indirect
adapter channels. Each data transfer takes three
main memory cycles.

Direct data service events are those required to
transfer data between main memory and direct
adapter channels. Each data transfer takes one main
memory cycle.

Whenever a DCW exhausts, a list pointer service
is required to obtain another DCW and place the
new DCW in the proper mailbox. An LPW contains
the address of the next DCW to be used in scat-
ter-gather operations.

Instead of accessing the LPW immediately upon
a DCW exhaust, the list pointer service event is
given a priority just higher than the data service
priority for that adapter channel. To initiate the list
pointer service, priority must first be granted for
that list pointer service event. In this way, the new
DCW is guaranteed to be in the proper mailbox
before the next data service for that adapter channel
occurs. However, the list pointer service time does

o/

INPUT/OUTPUT SWITCHING IN MULTIPLEX COMPUTING SYSTEM 235

not add to the latency of higher priority events.
This feature allows low-speed terminal devices to
operate using sophisticated scatter-gather and control
techniques without adding additional latency to
higher priority events.

All work to be done on the GIOC is partitioned
into events in such a way that no single event re-
quires more than four accesses to main memory.
With the exception of direct adapter data services,
priority is allocated to a new event at the comple-
tion of every current event.

To further reduce latency for® high-transfer-
rate terminal devices, any direct adapter data serv-
ice can temporarily preempt the priority of any
lower priority event and thus gain access for the
next main memory cycle. Thus, high priority direct
adapter data services do not wait for other events
using multiple memory cycles (such as indirect
adapter data service) to complete their sequence
before gaining access to main memory.

Each adapter uses one or more levels of hardware
priority. All adapter channels within a single adap-
ter are assigned subpriorities among themselves by
the adapter control.

A complete look at all levels of hardware priority
is taken after the completion of every event, and the
event which will receive the next memory access is
then determined. This priority determination occurs
concurrently with other common control functions.
In effect, after every event the priorities of all
events requiring further memory accesses are recon-
sidered, and the allocating of the next event to re-
ceive a memory access is granted.

Except for direct channel data services, which
can temporarily preempt the priority of other
events, any event which requires the services of
main memory is guaranteed to be recognized in its
allocated hardware priority sequence within four
main-memory access times used by the common
control.

Program Interrupt Priorities

Program interrupt priorities can be dynamically
assigned by the supervisor on a per-channel basis.
Program interrupts result from status being stored
in main memory after an event occurs which re-
quires program action.

In addition to the seven priority levels for memo-
ry access provided by the hardware, status has seven
levels of program interrupt priority. For any given

event, when a level of hardware status priority is
changed by the software, its corresponding level of
program interrupt priority is also automatically
changed, guaranteeing the associated change in

‘ real-time response for that event.

Four subclasses of status events exist:

1. Exhaust

2. Terminate

3. External signal
4. Internal signal

Exhaust status indicates the current active con-
trol word for an adapter channel cannot be used for
further control. This event implies that a new con-
trol word must be obtained to continue data trans-
fer.

Terminate status indicates that the current active
control word for an adapter channel cannot be used
for further control and that, in addition, no further
data transfer for that adapter channel is allowed.

The external signal status is the vehicle by which
events outside the GIOC can gain recognition by
the program. Such events as operator actions on
peripherals fall into this subclass.

The internal signal status is the vehicle by which
special control events within the GIOC can gain
recognition by the program. Such events as the dy-
namic detection of incoming communication con-
trol characters fall into this subclass.

Each adapter channel, through its control words,
can independently activate any one of the status
levels when one of the four subclasses of status
events occurs. For any given adapter channel, the
status levels associated with the subclasses of events
may be the same or different. At any given time,
each adapter channel thus has access to four levels
of status response corresponding to the four sub-
classes of status events.

Under program control, the same status event oc-
curring on different adapter channels can be assigned
different levels of hardware priority and corre-
spondingly different levels of program interrupt
priority. This allows optimization of the real-time
effect of any event upon any other queued events.

Channel Commands

Channel commands can be accepted by an adap-
ter channel at any time, but not all allowable com-
mands have rational meaning when executed with-
out program intervention. Command execution

236 PROCEEDINGS — FALL JOINT COMPUTER CONFERENCE, 1965

without program intervention can occur only as a
result of a data transfer.

Commands such as “change from transmit to re-
ceive mode” can be preplanned in the data sequence
and executed without the need for program cogni-
zance at the time of execution. Other commands,
such as “change from the inactive to active mode”
only have meaning when initiated by the program.

INPUT/OUTPUT SOFTWARE PHILOSOPHY

The input/output software philosophy must sim-
plify wherever possible the design of a large-scale

multiplex computer system and must adequately
cope with the general communication and in-
put/output problems discussed earlier.

Modularity

In order to accommodate a dynamically changing
device environment and to permit the introduction
of new input/output devices without major effort,
the input/output software should be highly modu-
lar. The device-dependent software for each de-
vice should be isolated in a separate, replaceable
module. Figure 3 shows a general overall block di-
agram of the input/output software and its relation-

(INC. PAGE AND
SEGMENT MANAGEMENT)

N

INTERFACE
MODULE

USER ZORMAT INTERFACE
PROGRAM INTERPRETER MODULE
FILE SYSTEM FILE SYSTEM

MESSAGE
COORDINATOR

—_ DisC SPECIAL SPECIAL STANDARD TELETYPE LINE
INTERPACE INTERFACE DEVICE TAPE TAPE MODEL 35 PRINTER
MODULE MODULE INTERFACE INTERFACE INTERFACE INTERFACE INTERFACE
MODULE MODULE MODULE MODULE MODULE
COMMON TAPE
INTERFACE MODULE
DRUM HIGH SPEED TYPEWRITER LOW SPEED
CONTROLLER ADAPTER ADAPTER ADAPTER
INTERFACE INTERFACE INTERFACE INTERFACE
MODULE MODULE " MODULE MODULE

TO I!)RUM \ /

CONTROLLER

GIOC
INTERFACE
MODULE

T0 GIOC

Figure 3. Block diagram of input/output software system.

ship to other software. The message coordinator
(MC) and other blocks are discussed below. The MC
essentially switches a user’s input/output streams to
various device interface modules (DIM). A stand-
ard DIM will exist for each type of device; for ex-
ample, there will be a DIM to operate all currently
attached Teletype Model 35 typewriters using a

standard strategy. This DIM as well as others must
be replaceable during system operation. In addition,
it must be possible to add a second DIM to operate
one or more Model 35’s with some special strategy,
and to easily associate it with the proper user’s
streams and the proper communication lines (i.e.,
the proper Model 35’s). This indicates the necessity

"

INPUT/OUTPUT SWITCHING IN MULTIPLEX COMPUTING SYSTEM 237

for a well-defined, standard software interface for
DIMs. The same standard interface must apply to
the user interface modules (UIM) and the file sys-
tem interface module (FSIM).

Because the GIOC is a device, all software which
knows about standard GIOC behavior is isolated in
the controller interface module (CIM) for the
GIOC (the GIOC CIM is hereafter called the
GIM). Inasmuch as the GIOC can accommodate
various adapter control modules, any special behav-
ior inherent in one kind of adapter control should
also be isolated. The typewriter adapter control and
adapter channels, for example, may have an echo-
plex feature (retransmit what is being received),
which has no connection with the basic GIOC phi-
losophy or with any particular typewriter. Thus a
need exists for adapter interface modules (AIM).

Flexible Input/Output Direction

It should not be necessary for a user to decide at
the time he writes a program what actual sources
and destinations are to be associated with his pro-
gram input/output streams. The term “stream” is
used here to include all input/output transactions,
whether they be sequential access or random access
in nature. For example, the “title” of a “file” in a
PL/I program is the “stream” name to the in-
put/output system.

Prior to execution, a declaration to the UIM es-
tablishes a stream-device connection. The absence
of such a declaration implies a default connection;
a program invoked from a remote typewriter would
have that typewriter connected to all input/output
streams in the default case. It must be possible to
alter this connection during execution by a call to
the UIM. Further, it must be possible to multiple-
connect streams and devices. During debugging, a
particular program might direct both bulk-produc-
tion printout and commentary printout to a remote
typewriter. Later the bulk printed output might be
directed to a computation center high-speed line
printer or a file in the secondary storage file sys-
tem. At another time, some printout may need to
be directed simultaneously to two line printers in
two different locations and to a tape file.

It should be understood that the “user program”
may be some supervisory system module. Printer-
destined streams are normally diverted to a file in
the file system for later scheduled printing, unless
the user really meant to attach a printer to his pro-

gram. Such diversion is also useful for output on
tape, removable disc, etc., to facilitate allocation of
such devices.

Description

A user program initiates input/output by calling
a standard or special UIM. The call arguments in-
clude the stream name. The redirection and multi-
ple-direction of streams and devices require a mod-
ule which acts as a switchboard; the message coor-
dinator (MC) in Fig. 3 has this purpose. The UIM
uses the MC to implement the stream-device con-
nections for a call. If a stream is associated with a
file in the File System (FS), a connection is made
to the FSIM.

The File System contains (or knows how to re-
trieve) all retained files; it is described in detail in
a companion paper.! Files in the File System are
essentially formatless. The FSIM can impose a
standard file format. The FSIM makes only declara-
tive calls to the File System; it accomplishes the
input/output of files implicitly by means of seg-
ment addressing. %4

Figure 3 shows a few representative DIMs. The
DIMs basically invoke the strategy for handling
particular devices. For example, they may convert
between the system’s standard character set and the
device’s particular character set. This conversion
includes handling of escape conventions necessary
to represent characters absent on the device. The
Model 35 DIM knows what messages are needed to
operate various terminal features. Two standard
tape DIMs are shown, because of the need for two
distinct tape strategies. One tape DIM handles tapes
in standard system format. The second tape DIM
permits handling of nonstandard tape formats in a
standard way. Both of these tape DIMs call a sub-
sidiary tape DIM which handles common tape
problems. S

A single level of format interpretation is availa-
ble from the DIMs and the FSIM. File System files
and device data can be interpreted as being format-
less or as having arbitrarily long logical records. In
the latter case the files and data must contain for-
mat information. Any additional format interpreta-
tion such as that required by PL/I can be done by
the user or by some standard stream format inter-
preter (see Fig. 3).

Certain DIMs, such as the disk DIM used exclu-
sively by the File System, do not use the Message

238 PROCEEDINGS — FALL JOINT COMPUTER CONFERENCE, 1965

Coordinator. Some may not funnel through the
GIM; this is illustrated by the drum DIM and sepa-
rate drum controller CIM in Fig. 3. The File Sys-
tem may also directly call certain DIMs that are
normally reached via the message coordinator. For
example, disc pacs can be used for extending the
File System storage.

An input/output software interface language which
is independent of the computer, of the input/output
controllers, and of the input/output devices them-
selves should be used for communicating between
software modules. The ease of adding, substituting,
and replacing modules implies the need for every
module to check the validity of each call to it. For
example, the GIM must determine whether a re-
quest for service from a DIM or AIM is valid—per-
haps whether or not the requester has the right to
initiate activity on the referenced channel. The in-
terface language must facilitate this validity check-
ing. All address references in the language are rela-
tive. An inner module in the GIM will translate to
absolute addresses when actual DCWs are formed.

Interrupt Handling. All basic trap or interrupt han-
dling is begun in a supervisor module outside the in-
put/output system.> This module determines which
module of which process is to be informed about
the interrupt. Interrupts originating from the GIOC,
for example, are passed for handling to the GIM
which knows how to disentangle the associated sta-
tus information from the GIOC. In turn the GIM
passes back to the Tape DIM interrupt and status
information relevant to tape handling. Certain in-
terrupts might ultimately be reflected back to a user
process.

Random and sequential input/output calls are per-
mitted to be mixed and used for all of a user’s in-
put/output streams. Sequential calls include calls
for the next record, message, character, etc., and
calls for spacing and backspacing. A call for “rec-
ord fourteen” is a random call. All DIMs and the
FSIM shall take some action for every type of call.
A call to backspace the card reader may result in an
error return or no-operation depending on circum-
stances. Backspacing a typewriter with reverse line
feed might be valid. Random calls to a tape file are
permitted, because of the inclusion of logical record
numbers within the logical record on the tape file.
There is no intended direct correlation between
the type of call and efficient device utilization. The
user of files in the file system will not usually know

on what physical device the file exists. Even if the
user did, the file may be scattered on the device in
an unknown way. The multiplex character of the
monitor system will overlap rewinds, seeks, etc.

Synchronous and asynchronous input/output are the
two basic operating modes for any particular in-
put/output stream. In the asynchronous mode, the
physical input/output transactions are not necessar-
ily synchronized or interlocked with the execution
of a program’s input/output statements. For exam-
ple, a user at a typewriter would be allowed to type
messages into the system prior to the execution of
the read statement which would use them; every ex-
ecution of a read statement merely plucks the next
waiting message out of an input buffer. This exam-
ple of asynchronous input is analogous to buffered
read-ahead schemes which have been used with
discs, tapes, etc. An example of asynchronous out-
put is the collecting of output in a core buffer until
some physical record size is reached.

In the synchronous mode, the physical transac-
tion associated with a program’s input/output state-
ment is carried out during the statement’s execu-
tion; i.e., control is not returned to the program un-
til the actual transaction is completed. For example,
a typewriter user would not be allowed to type (the
keyboard might be locked) until the read statement
was encountered.

For a particular stream, the input and output
modes are independent; for example, the input
might be interlocked and the output not. The modes
are declarable both prior to and during execution
by calls to the UIM. Appropriate interpretation of
these modes appears possible for multiple-con-
nected streams and devices. Establishment of a
mode amounts to determining which system module
in the chain initiates the return to the user pro-
gram.

Under most circumstances asynchronous in-
put/output is the most efficient. The synchronous
or interlocked input/output is useful when operator
or user attention is required, and most important
when a user is interacting with an undebugged,
strange, or many-branched program. The synchro-
nous mode should be imposed on a remote terminal
whenever a stream is not associated with the termi-
nal, i.e., when there is no program to which to give
messages.

Statistics. Sufficient statistical collecting ability
must be included in the input/output software de-

INPUT/OUTPUT SWITCHING IN MULTIPLEX COMPUTING SYSTEM 239

sign to accommodate almost any conceivable charg-
ing and facilities-allocation schemes. Modes of
operation for taking extensive data relevant to sys-
tem performance should be possible.

REMOTE TERMINAL CHARACTERISTICS

Remote terminals may be classified as indepen-
dent or controlled, insofar as the computer system is
concerned. A remote small computer which inter-
rupts occasionally for a fast calculation is largely
independent. A typical remote typewriter.is com-
pletely controlled when connected to the system.
The following discussion pertains to controlled ter-
minals generally and is illustrated by reference to
remote typewriters. The discussion is not intended
to provide a list of all of the desirable remote type-
writer characteristics.

Status

It is important that the system always have as
complete a knowledge of terminal status as possible.
Therefore, all pertinent terminal functions must be
accompanied by transmission to the system of ap-
propriate information. For example, line feed, car-
riage return, ribbon color shift, etc., on a typewriter
all must transmit characters to the system. Of
course, these same functions must be performable
by the system by transmission of suitable codes to
the terminal. The Proposed Revised ASCII charac-
ter set provides 32 control characters.

Terminal Lock

To implement the synchronous input mode, the
terminal must be lockable by the system. When a
read statement is executed, the typewriter keyboard
can be unlocked by the system. Even in the asyn-
chronous input mode the keyboard should not be
unlocked until the input/output software and hard-
ware are ready to buffer a message. The inability to
lock a terminal is an invitation to unexpected
and/or unwanted input. The terminal is typically
locked during computer output. Of course, a print-
ed, audible, or preferably visual proceed indication
is needed to alert the user that input is possible.

An alternative to a terminal lock on terminals
producing their own local copy of the input is to
operate them full-duplex and to have the computer
system echo or retransmit the input back for dis-

play. The lack of local copy becomes an indication
that input is not wanted. This scheme is workable
provided the proceed indication is available. Long
transmission delays due to long distances or due to
intervening store-and-forward systems would
however render this approach awkward or unusable.

The error-detecting possibilities of the echo-back
scheme suggest its use even when terminal lock is
used. Provision to switch to half-duplex in cases of
excessive echo delay is then necessary.

Interrupt

An absolutely essential feature of remote termi-
nal operation is the “interrupt” ability. There must
be a key or button whose depression causes instant
detachment of the terminal from the current pro-
gram stream. This interrupt must work even when
the terminal is locked. The resulting status of the
previously attached program is not discussed here.
Normally the terminal is attached to some supervi-
sor command module and is readied for command
level input.

Reasons for needing interrupt ability include:
(1) the need to stop the attached program which
may for example be looping or producing meaning-
less printout; (2) the desire to attach the typewriter
to another stream, possibly belonging to some other
program.

Implementation of this interrupt feature requires
either full-duplex operation of both terminal and
computer, or half-duplex operation with some
sort of an auxiliary, possibly narrowband indepen-
dent channel. The latter is effectively provided by
the teletype line-break technique of putting a
“space” on the line whose duration is long enough
for unique interpretation. The terminal lock must
not lock the interrupt button.

Identification

All terminals must be able to identify themselves
uniquely to the system. The teletype automatic an-
swer-back scheme is a good example of this abili-
ty, because the answer-back message can be long
enough not only to provide unique identification
but also to independently indicate possible special
terminal features.

Although user identification rather than terminal
identification should normally be used to control
access to the computer and to files in the File

240 PROCEEDINGS — FALL JOINT COMPUTER CONFERENCE, 1965

System,* positive terminal identification permits
default user identification and can indicate that the
terminal is in fact a type known to the system.

CONNECTING AND SWITCHING REMOTE
TERMINALS

As suggested in Fig. 1, remote terminals can ac-
cess a computer system via a telephone central of-
fice or private branch exchange (PBX). The basic
reasons why such automatic switching is advisable
in a large-scale multiplex computer system in-
volve its general flexibility and lower cost. This is
especially true if continuous system availability is
important. The removal from service for repair or
preventative maintenance of one of a system’s
GIOC:s, for instance, requires expensive duplication
of computer ports to guarantee access to private
lines.

Complete automatic switching provides:

1. User-controlled access to more than one
computer. The Bell Telephone Laborato-
ries, for instance, will have four geograph-
ically separated, large multiplex computer
systems by 1967.

2. User-controlled or switching-system-con-
trolled avoidance of unusable computer
ports.

3. Static and dynamic load sharing of remote
users with multiple computers.

4. Greater flexibility in planning.

5. Concentration of low-usage terminals.

6. Automatic Direct Distance Dialing access
and possible use of existing tie lines be-
tween PBXs.

7. Easier terminal maintenance, because of

the availability of test centers via the

switched network.

Terminal-to-terminal communication.

9. Ability to speedily assign, connect, move,
reassign, etc., terminals.

%

An interesting problem can arise while switching
remote computer terminals through a telephone
switching system. Existing telephone switching
plant is engineered to handle the traffic of talkers.
A crucial parameter of talker traffic statistics is the
product of the average circuit holding time and the
average calling rate during the “busy” hour; this
quantity is typically in the range of 3-6 call-
minutes. Thus an adequate number of talking paths

through the switching system may be from 5-10
percent of the number of subscribers. A study made
of the holding times of Project MAC users revealed
an average holding time of about 1 hour; 20 percent
held less than 5 minutes, 50 percent less than 30
minutes, and 80 percent less than 100 minutes.

It may therefore be difficult to add any sizable
number of remote typewriters to an existing
switching system without impairing telephone serv-
ice, unless the terminals are to be used for only
short holding time inquiries. It is possible to modi-
fy existing switching facilities or engineer new fa-
cilities at reasonable cost. This, however, can be
time-consuming, and planners of remote comput-
ing systems should alert telephone companies as
soon as possible.

Transmission Status

Each communication-oriented adapter channel
on the GIOC can, in addition to receiving and
transmitting data, sense a number of local external
conditions. These sense lines will be used typically
to read status information from standard telephone
data sets. The system can then be fully aware of
when the ringing signal is present, when data set
carrier is present, when data can be sent, etc. These
adapter channels also provide control outputs which
can operate data set functions, such as causing a

hangup.
CONCLUSION

The communication and input/output problems
inherent in a large-scale multiplex computer sys-
tem have been discussed. Hardware and software
philosophies and a description of a general in-
put/output controller intended to cope with these
problems have been presented.

It is felt that the modular and dynamic structure
of the input/output software and its flexible stream
switching ability are essential to the success of a
multiplex computer system. Similarly, the hardware
flexibility and the uniform software approach per-
mitted by the new controller greatly simplify the
design of such computer systems.

ACKNOWLEDGMENT

The material presented here includes the
thoughts and efforts of many colleagues.

INPUT/OUTPUT SWITCHING IN MULTIPLEX COMPUTING SYSTEM 241

REFERENCES

1. F. J. Corbaté and V. A. Vyssotsky, “Introduc-
tion and Overview of the Multics System,” FJCC,
1965.

2. E. L. Glaser, J. F. Couleur and G. A. Oliver,
“System Design of a Computer for Time-Sharing
Applications,” this volume.

3. V. A. Vyssotsky, F. J. Corbaté and R. M.
Graham, “‘Structure of the Multics Supervisor,” this
volume.

4. R. C. Daley and P. G. Neumann, “A General-
Purpose File System for Secondary Storage,” FJCC,
1965.

5. E. E. David, Jr.,, and R. M. Fano, “Some
Thoughts About the Social Implications of Accessi-
ble Computing,” FICC, 1965.

SOME THOUGHTS ABOUT THE SOCIAL IMPLICATIONS OF ACCESSIBLE COMPUTING*

E. E. David, Jr.
Bell Telephone Laboratories, Inc.
Murray Hill, New Jersey

and

R. M. Fano
Massachusetts Institute of Technology
Cambridge, Massachusetts

Prominent among the products of technology that
have shaped our society are automobiles, electric
power, and telephones. They provide us with per-
sonal transportation, with aids' in our physical la-
bor, and with convenient communication. They
have radically altered the pattern of our business
and private lives. Nobody will deny that these prod-
ucts of technology have substantially increased our
mobility, have eliminated a great deal~of tedious
physical labor, and have contributed vital threads to
the fabric of society and commerce.

Yet, they have also brought to our society ills,
frustrations, and problems, few of which seem on
the wane. The flight to suburbia in search of more
elbow room and greenery has left a disproportionate
fraction of economically and culturally underprivi-
leged families in the cities. The same technology
which has given us new dimensions in communica-
tion has been used to implement eavesdropping
equipment. The same power tools and machines
that are at the foundation of our industrial society

*Work reported herein was supported (in part) by Project
MAC, an M.LT. research program sponsored by the -Ad-
vanced Research Projects Agency, Department of Defense,

under Office of Naval Research Contract Number Nonr-
4102(01).

243

caused great grief to people whose obsolete skills
were their only source of livelihood 4dnd pride as
working members of society. Finally, automobiles
and power tools are causing us to lose our physical
stamina, thereby making us easier prey for disease.

The full influence of these products of technology
was felt only some years after the underlying tech-
nical advances had come to pass; namely, at about
the time each of them became accessible to a large
segment of the population. We are now at that stage
with computers. Technical means are now available
for bringing computing and .information service
within easy reach of every individual in a commu-
nity. What will be the effect on our society?

Such service will provide to the individual
“thinking tools,” somewhat analogous to power
tools, to aid him in his daily intellectual labor.
These thinking tools will increase the power, skill,
and precision of his mind, just as power tools today
increase the power, precision, and skill of his mus-
cles. As a matter of fact, there is some question
whether our increasingly complex society can sur-
vive much longer without falling apart from its own
weight, unless individual thinking aids become

244 PROCEEDINGS — FALL JOINT COMPUTER CONFERENCE, 1965

available. At the same time, the benefits they may
bring to society will unquestionably be mixed with
a dose of new problems and frustrations.

The following remarks cannot help being superfi-
cial because of the great complexity of the issues
involved. Not one but several papers would be re-
quired to analyze these issues to any depth. Thus,
this paper is being presented primarily to stimulate
discussion and further thought.

A HANDLE ON COMPLEXITY

The increasing sphere of influence of all events
and human decisions is a characteristic of our so-
ciety. Any change or perturbation in the status quo
has reverberations which reach often into unexpect-
ed quarters. The increasing complexity of provi-
sions embodied in our laws, regulations, and busi-
ness operating procedures means that the individual
has to contend more and more often with situations
that he cannot personally master. Frustration and
loss of time are among the least painful results.

The tax laws are a good example, as well as one
of considerable importance to all of us. As a matter
of fact, the tax situation of any one particular indi-
vidual or business is usually rather straightforward.
The difficulty lies in reducing general laws and reg-
ulations to one’s own specific case. The laws and
regulations must apply to a great variety of situa-
tions and their complexity is probably unavoidable.
Examples, which are intended to illustrate applica-
tion to cemmon situations, are seldom useful, be-
cause they differ in some minor detail, not obvious-
ly unimportant, from the case of interest. The crux
of the matter is that the number of special situa-
tions differing in some material details is so great,
it would be impossible to explain for each of them
the implications of the applicable laws and regula-
tions. Even if it were possible to do so, the individ-
ual would still have the problem of finding the one
applicable to his case among all possible special sit-
uations.

On the other hand, it would be perfectly feasible
to write a computer program that would ask per-
tinent questions, in sequence, and provide necessary
instructions and warnings on the basis of the an-
swers supplied by the individual. In its simplest
form, such a program would operate as a mecha-
nized income tax form, with the important difference
that it would not ask questions clearly inappropri-
ate in view of preceding answers. Of course, com-

putations would be made automatically on the basis
of the data supplied, but this would be the least im-
portant and least helpful aspect of the program.
Such a program would not have to store a dictiona-
ry of specific situations, but could work out the log-
ical consequences of the laws and regulations in
each particular instance. Where choices were avail-
able, an individual could investigate their implica-
tions in his own special case and follow the course
of action most advantageous to him. One can con-
ceive also of having the program approved by the
Internal Revenue Service so that no question would
exist about its correct interpretation of the law.
Even further, we can envision the income tax laws
and regulations being originally prepared in the
form of computer programs so that legislators and
Internal Revenue officials could explore more accu-
rately and efficiently their consequences. Speculat-
ing about such matters is merely an amusing exer-
cise, and at this time we are bound to invent merely
the equivalent of a horseless carriage, rather than
the modern automobile.

One can think of many other instances in our so-
ciety where accessible computing service, with the
appropriate software, could help individuals to con-
tend more successfully and with less frustration
with the complexities of the modern world: from
paying bills and balancing one’s bank account to
planning a will; from budgeting the family income
to selecting investments and making plans for re-
tirement. It may seem strange at this time to envi-
sion the average man and housewife using a com-
puter. Yet, to some people years ago it must have
seemed equally inconceivable and perhaps sacrile-
gious to allow the average housewife to turn on
powerful motors and operate such complex ma-
chines as today’s automatic washing machines and
driers. Not many years ago we would have winced
at the thought of allowing teen-agers to spend
hours monopolizing such a priceless creation of hu-
man inventiveness and technology as the telephone.

A HANDLE ON INFORMATION

Information is alarmingly plentiful these days.
We are dutybound to acquire, record, search, and
use it. While a great deal of effort is being spent in
acquiring and recording information, our effective-
ness in searching and using it still leaves much to
be desired. Information has the unfortunate habit of
most often being outdated, hard to locate, and re-

SOME THOUGHTS ABOUT THE SOCIAL IMPLICATIONS OF ACCESSIBLE COMPUTING* 245

corded in a form poorly suited to one’s needs. One
reason information is often outdated is that it takes
so long to collect and process it. Perhaps nothing
short of a widespread information and computing
service could provide an effective handle on infor-
mation.

If such a service were in widespread use, infor-
mation could be acquired and digested in near
real-time and automatically recorded in the mass
memory of the computer system. Thereby invento-
ries, abstracts, bank balances, and on and on could
then be available on a topical basis. The cost of
storing information in the mass memory of a com-
puter is still high, but not inordinately so. A page
of single-spaced text stored in the disk file of the
current MAC computer system costs approximately
10 cents per month. We see no reason why re-
cording in the mass memory of a computer system
should not become competitive with other recording
media. With all significant actions being taken with
the aid of a computer system, the contents of the
system’s mass memory would provide a complete,
up-to-date representation of the state of the
community that it serves. Technical means are not
lacking for protecting private information from
unauthorized access, while at the same time mak-
ing it available for statistical surveys and other le-
gitimate purposes.

Once the necessary raw data are automatically
available in a computer system, we envision the de-
velopment of programs to answer any well-defined
queries;. even those not specifically envisioned by
the developers of the programs. We do not intend to
imply that we or anybody else knows how to pre-
pare such programs yet, but we do not see any ma-
jor roadblock to progress in this direction. We are
optimistic about technological progress, and can
envision computer systems that permit communica-
tion (voice and other) interspersed with data proc-
essing. On a “conference telephone call,” the third
party would be a computer. Such a system would
enhance, by orders of magnitude, the ability of peo-
ple to interact and cooperate with one another in a
manner both convenient and meaningful to each of
the individuals concerned.

THE THREAT TO PRIVACY

The very power of advanced computer systems
makes them a serious threat to the privacy of the
individual. If every significant action is recorded in

the mass memory of a community computer system,
and programs are available for analyzing them, the
daily activities of each individual could become
open to scrutiny.

While the technical means may be available for
preventing illegal searches, where will society draw
the line between legal and illegal? Will the custodi-
ans of the system be able to resist pressure from
government agencies, special-interest groups, and
powerful individuals? And what about the custodi-
ans themselves? Can society trust them with so
much power?

These are very difficult questions indeed. For
many purposes, information can be depersonalized
before it is put into the central file. We can devise
means for providing the equivalent of safe deposit
boxes for private information. A hierarchical file
system, personal and modular on the lower levels,
and impersonal and merged on the upper levels, is
another possibility. Processing and access by other
than the owner could be restricted to the upper lev-
els. In any case, privacy can be preserved if the
lower levels are left decentralized.

THE CULT OF IMPERSONALITY

The use of identification numbers and the issuing
of authoritative and authoritarian instructions and
answers are associated in the public mind with
computers. Of course, these associations are the re-
sults of attempts, for the sake of efficiency, to fit
people to the capabilities and idiosyncrasies of
computers. The attempt to bring computers within
easy reach of individuals is in the opposite direc-
tion. Proper names and other means of identifying
individuals and locations are just as understandable
to computers as identification numbers, and are
much more pleasant to people. Computer programs
can ask and answer questions in a very polite man-
ner, and can even be made to chitchat realistically
enough to fool a person for a little while. Computer
programs don’t have to be authoritarian and can be
made to act unpretentiously. They can make sugges-
tions that leave room for choice, simply warn the
person that his course of action may be ill-ad-
vised, and still allow him to proceed.

There is nothing we can see inherent in the use
of computers that will impersonalize, institutional-
ize, or automate our behavior. The danger lies in
ourselves. Through mental laziness, or fear of ac-
cepting responsibility, or just plain neglect we may

246 PROCEEDINGS — FALL JOINT COMPUTER CONFERENCE, 1965

delegate to computers prerogatives that should re-
main ours. Computers are literal-minded, as the
late Norbert Wiener was never tired of pointing
out. They will not take into account any premise,
any limitation, or any fact that has not been made
available to them. We should never delegate to
them either the formulation of our problems, or de-
cisions as to the adequacy of the solutions they pro-
duce.

Our institutions are continuously changing, and
some of these changes may appear impersonal simply
because they are in conflict with the customs in-
grained in us from our youth. The widespread
availability of a computing and information service
will encourage institutions to change in new direc-
tions which may well be inconsistent with our pres-
ent customs. These changes will not be required by
the use of computers, but by the needs of institu-
tions themselves. An example we can foresee con-
cerns financial transactions.

Years ago, money consisted of gold and silver
coins whose intrinsic value was identical with the
nominal value marked on them. With the increasing
number of financial transactions, gold coins proved
to be too heavy and inconvenient and were relegat-
ed to the vaults of banks and to the strongboxes of
individuals. Paper currency came into being, and
with it a clear separation between the evidence of
wealth and wealth itself. The value of paper curren-
cy was both guaranteed and enforced by govern-
ment. Eventually, it became inadequate to the needs
of private individuals and businesses, and personal
checks came into use. Checks are twice removed
from wealth itself, but one can still touch them and
carry them in his own pocket. They are still a tan-
gible evidence of wealth.

We are now at the threshold of a further step
away from tangible wealth, in our financial transac-
tions. With the same computer system serving
banks, stores, business organizations, and private
individuals, we will have available a more conven-
ient form of implementing financial transactions. It
will no longer be necessary to mail bills and return
checks. Yet, each individual will always be able to
have a current accounting of his financial affairs and
to authorize payments by simply pressing a key.
However, will people be willing to accept the reply
of a computer system as evidence of their wealth?
We think so, given time. But we are also mindful of
the fact that many people “around the world are still
unwilling to accept personal or even travelers’

checks, some don’t trust banks and hide currency in
their homes, and some refuse to accept anything but
gold and silver coins.

UNEMPLOYMENT

Much has been written about unemployment that
computer automation has caused, and may cause in
the future. An answer often given is that computer
automation will create more jobs than it will elimi-
nate. It has been said too that a good man will al-
ways find a job, and in any case our affluent society
will surely provide a more than adequate livelihood
for the jobless. We think such statements miss the
mark. The economic aspects of unemployment are
only part of the problem. Work is not only a way of
making a living, it is also the channel through
which one contributes to his family and to society
as a whole. Without a job one loses his self respect
and the respect of those around him. This is partic-
ularly true when the job has been lost to a machine.
In our present society, not only must one-work to
be happy, but one must also feel that he is contribut-
ing through some special skill of his own. Compet-
ing with a machine is difficult and frustrating, and
so is the acquisition of new skills. The most dis-
tressing aspect of unemployment is common to the
forced retirement of the man who is still physically
and mentally fit. Feeling useless in an active society
is a sad lot indeed.

Perhaps we can devise better ways of educating
people to meet the demands of a changing world
and enable them to learn new skills as older ones
become obsolete. Perhaps our job-centered society
must change many of its present attitudes. In any
case, neither of these alternatives seems likely to
provide the whole answer. Women have long been
faced with “early retirement” to the household,
which holds few satisfactions for many. Some wo-
men compete with men for jobs effectively; many
more spend much of their creative effort in service,
social and community or government. Many take up
art or music or sports. When all routine and per-
haps some nonroutine data collection and proc-
essing tasks are performed by computers, many
men may have to make similar adjustments. Al-
ready our economy is service-oriented. The U.S.
Office of Business Economics estimates that today
55 pergent of U.S. jobholders are in service indus-
tries. The decline in manufacturing jobs began in
1953, but has not produced the expected unemploy-

SOME THOUGHTS ABOUT THE SOCIAL IMPLICATIONS OF ACCESSIBLE COMPUTING* 247

ment because of an explosive increase in service
jobs. Certainly, this is a hopeful sign, but an effort
is needed to make a wider range of service jobs so-
cially acceptable.

It has been said that many, perhaps a majority, of
people in our society are incapable of anything ex-
cept routine work. We are unwilling to accept this
as a basic premise. Experience shows that people
have vast resources, both intellectual and otherwise,
which can be brought to the surface by appropriate
means. We share the enthusiasm of Dr. George Gal-
lup in the vast potential of people, as yet
undeveloped.! The limitations we see today in the
crystallized part of our population are probably
more a result of their past experience than of their
basic abilities. One particularly impressive piece of
evidence comes from the several high school curric-
ulum revisions undertaken since the middle 1950’s.
Children are now being taught in high school what
their parents or older brothers and sisters were
taught as sophomores in college. Typically, it has
been found that children can be taught almost any-
thing; the limitations lie in teachers who have diffi-
culty in overcoming their past. The remarkable
progress in high school education came from mas-
sive efforts in both subject matter and pedagogy.

Similar efforts are underway in continuing educa-
tion and retraining programs. These are vital to
solving the problems of people and machines.

CONCLUSION

We do not pretend to have answers to the many
questions raised here. While we have opinions
which tend toward the optimistic, we take for
granted that the new resources, among them com-
puters, will be abused as well as used. We believe,
however, that abuses (namely those uses which rob
us of opportunity and individuality) will be recog-
nized as such, for computers can affect our ethics,
creeds, or standards only slowly compared to tech-
nological change. Preservation of these will, as al-
ways, depend upon the thoughtful and conscientious
action of individuals and institutions. In the end,
exploitation of computers for the benefit of society
hinges upon two pivots: education, and responsible
considered action by those of the technical commu-
nity able to exert some influence.

REFERENCES

1. G. Gallup, The Miracle Ahead, Harper and
Row, New York, 1964.

