.

e
S 7 S“.kkﬁg«

/ e '-W

. ot ] / /\"M A\ih

April L, 1973 Mo e

Mr. Charles T. Clingen

Cambridge Information Systems Laboratory
Honeywell Information Systems

575 Technology Square

Cambridge, Massachusetts

RE: Consistent calling sequences to Multics system procedures
Dear Charlie:

I have finally gotten to dabbling in hes_. A glaring‘deficiency in the
system is the lack of consistency in passing parameters to the various
entry points of hes_.

It would appear that some of these inconsistencies have been incurred

in pursuit of some sub-optimized concept of efficlency. I am going to
have to produce large pieces of readable code on Multics and train programmers
on my staff to readily write Multies code. These little uglies that have
been perpetrated on Multics sub-system writers clearly defeat both goals.,
In order to use an hes_ entry a programmer must know not only the name

of the entry and the parameters passed into and out of that entry, but
also know whether this particular entry point has a path name that is
passed as a fixed length string with a count field, a varying string,

a pointer to a fixed length string, s pointer to a varying string, etc.

It appears that even a proficient programmer will have to constantly have
a manual at his side to remind him which particular convention is in vogue
for each entry point each time he has to code it.

We originally became interested in Multics because of the cleanliness

of its design and the ease with which we could write subsystems. When

we made the initial Multics examination we were taken back by the exorbitant
price schedule Honeywell had chosen for the 6180. The only point that

kept our interest was the unusual cleanliness of the system which was
represented by how well everything seemed to fit together. That cleanlinesas .
could partially offset the hardware cost by significantly reducing our

system development cost.

As we have looked deeper into the system we have found that the cleanliness
of the original design has not always been followed. Somevhere between

the writing of the overviews and the implementation of Multics the beautiful
way in which the system meshed with its various components was at least
partially subverted. hcs_ is one of the more serious of these I have
discovered but there are others (e.g., I find myself executing entirely

too many "new_proc" commands). '

2 L "



S

April L, 1973
Page two

What I think Honeywell needs is a way of detecting these uglies, placing
them in a priority list and ascquiring the rescurces to fix them. This
clearly is a Honeywell procedural matter which might be best taken up
with the users group.

As far as hes _ goes I think there are several solutions. I can think

of two right off the top of my head. Provide a new set of consistent

entry points which can coexist along side the older, inconsistent entry
points which cleerly should be allowed to survive for reasons of compatibility.
If the use of the old entry points is discouraged the natural turn over

in code will slowly reduce the need for their existence. Another alternative
is to provide a slightly different philosophical approach to the problem.

For example, you could have a short and long initiate call. The long

call would return everything under the sun and would allow the description
of entry points, etc. The shorter call might sllow only a path name and
possibly an entry name and would return only a pointer and a code. All

other utilities use only the pointer returned by the initiate call to

access various status data. Most of the inconsistency in argument passing
occeurs in the passing of character strings. This solution would isolate

the use of character strings to the initiate procedure. It would then

be inconsequential if we chose a very convenient but possibly slightly
inefficient method of representing characters strings (e.g., as varying
strings). While I am on that point I think it would alsoc be nice if the
procedure would simply expand a relative path name rather than require

the input of absolute path names.

I am a novice Multics user and I really don't expect my suggestions would
be the best way of fixing this problem. They are,however, indicative
of the kind of solution which would be acceptable.

Well Charlie this makes two nasty letters. Maybe next time I can write
you & nice letter. Incidentally, your responses to my complaints about
MPM were good. The new revisions have been more helpful and I think the
new chapter U is outstanding. I learned more from that section about
what you can and cannot get away with in Multics than I did from all my
other readings in the manuals. It is now a whole lot easler, to understand
the more cryptic sections of the manuals. Incidentally, I might as well
throw in one more MPM dig. Whoever wrote the description of abbrev did
an absolutely abominable Jjob. I really would like to know how abbrev
works, but that description is Just lousy (I guess I really didn't like
it).

Sincerely,

Peter A. Alsberg

cc: Jerry Whitmore

LR 3



