Electronic Systems Laboratory
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

MESSAGE FORMAT AND PROTOCOL FOR
INTER-COMPUTER COMMUNICATION

by
A. K. Bhushan and R. H. Stotz

June 16, 1967
Project MAC Memorandum MAC-M-351

Work reported herein was supported (in part) by ProjecthAC, an
M.I.T. research program sponsored by the Advanced Research Pro-
jects Agency, Department of Defense, under Office of Naval Research
Contract Number NOnr-4102(01). Reproduction in whole or in part is
permitted for any purpose of the United States Government.

MESSAGE FORMAT AND PROTOCOL FOR
INTER-COMPUTER COMMUNICATION

A. K. Bhushan and R. H. Stotz

With the development of computer networks, the computer utility
approach, and sophisticated displays maintained by satellite com-
puters connected to multi-access time-shared computers, the need for
machine-to-machine communications has become evident. Communi-
cations between computing machines require the establishment of a
message format and protocol, by which we mean a uniform agreed-
upon-manner of exchanging information. This paper is an attempt
towards defining such standards.

A single message format for inter-computer communications may
not be feasible because of the large discrepencies in the hardware and
software supplied by the various manufacturers of computing machines,
the wide difference in the size and capabilities of different machines,
and the need to communicate at different levels. The fact that user's
needs may differ must also be taken into consideration. This paper does
not specify a single standard message format and protocol. What it
does is to provide the necessary guide lines toward the construction of
compatible message formats and outlines a general format. Some spe-
cific message formats that we propose for Project MAC and Multics
standards will appear as appendices. The purpose of these standards
is to provide a precedent for the manner to communicate to the system.
Establishment of a standard does not preclude users within Multics with
special requirements from implementing a variant method for communi-
cation.

At the simplest level of communication (e.g., to a teletype termi-
nal), the messages are all text with an arbitrary start and end, and
there is no means for error control or acknowledgment to determine
if the messages were received correctly. Such messages require no
formatting at all. A higher level of communication would include spe-
cifying the beginning and the end of the message, providing error
checks and requiring an acknowledgment, so that if the message is in
error it can be retransmitted. A still higher level would require the

inclusion of auxiliary information such as routing, security, and

-1-

2=

numbering of the message in a header that precedes the message. At
a final level would be the ability to transmit multiple messages and
acknowledge them individually.

The general message format described herein is compatible with
the American Standard Code for Information Interchange (ASCII) 12,3
and follows the standard recommended by ASA, given in "Control Pro-
cedures for Data Communications - An ASA Progress Report,"

published in the February 1966 issue of the Communications of the ACM.

The format is recommended for synchronous as well as asynchronous,
and for half-duplex (simplex) as well as full -duplex transmission™ at
speeds typically ranging from a few hundred to hundreds of thousands
of bits per second, for communication between various computers and
time -sharing systems with suitable communication adapters and inter-

faces,

For clarity we shall first define some terms:

A transmission - a group of one or more messages which are
transmitted continuously without interruption.
A transmission starts with SYN characters and
ends with the EOT character.

A message - a sequence of characters arranged for the purpose
of conveying information from an originator to
one or more destinations. It includes all text
and the appropriate header. A message starts
with the SOH character (STX if no header) and
ends with the ETX character (EOT if no text).

A header - a sequence of characters which constitute the
auxiliary information necessary to the communi-
cations of a text. Such auxiliary information may
include, for example, characters representing

B3
Synchronous transm1ss1on means characters (and bits) are trans -
mitted at a fixed rate. Asynchronous transmission means the interval

of time between characters can vary arbitrarily.

Full duplex is the ability to transmit simultaneously in both directions
while half auglex is the ability to transmit in both directions, but not
simultaneously.

v e s e

-3

routing, priority, security, message numbering
and associated separator characters. A header
starts with the SOH character and ends with the
STX character (EOT if no text).

A text - a block of data that is to be communicated to the
user. A text starts with the STX character and

ends with the ETX character (ETB if another
text follows).

BASIC MESSAGE FORMAT

A typical message is illustrated in Fig. 1.

e TRANSMISSION
, ,:LEADER"'-——MESSAGE ~}+ TRAILER
S [s[s [s S E |ERROR | E
Y|Y|Y|[O| HEADER |T |TEXT | T |CHECK | O
N|[N|N|H X X |(B.P.) | T

Fig. 1 Basic Message Format

Each character in the above message is a 7-bit ASCII character fol -
lowed by one bit of odd parity. The least significant bit is transmitted
first and the parity bit is transmitted last:.4 The Characters SYN,
SOH, STX, ETX, ETB and EOT are all standard ASCII communication

control characters and have the following code value and meaning:

ASCII Code Value

Octal Character ASCII Meaning
001 SOH Start of Heading

002 STX Start of Text

003 ETX End of Text

004 EOT End of Transmission
026 ' SYN Synchronous idle

027 ETB End of Transmission Block

-4~

The leader and trailer are always automatically supplied by a
communication adapter module (system-provided software and/or
hardware) in the transmitting computer. Similarly, they are auto-
matically stripped from the message on reception. The function of
the leader, which consists of SYN characters, is to stabilize the line
after turn-on and provide the data set with correct synchronization.
The trailer contains a longitudinal error check (B.P. in Fig. 1), and
signals the end of transmission with an EOT. For the error check,
longitudinal block parity is recommended by ASCII. This check is
easy to implement either in hardware or software. Other forms of
checking, such as the cyclic redundancy check for some IBM ma -
chines, are permissible within this framework. Whatever the form
of check, it includes the ETX character which ends the checked
sequence but does not include the SOH or the STX character that
starts the sequence, Character parity generation and checking will
usually be done in the hardware, but block parity may be generated
and checked either in software or hardware.

The character STX when it follows an SOH indicates the end of
header information and beginning of user's text. Messages that have
no header information may start with an STX as illustrated in Fig. 2.
Null text messages are allowed as illustrated in Fig, 3." The character
ETX indicates the end of the text and message. All messages con-
taining text would require acknowledgnients. Non-text messages
begin with an SOH and end with an EOT. These messages, illustrated
in Fig. 4, need not be acknowledged.

As shown in Fig. 5, some messages may be blocked for error
control (or other transmission purpose) in a manner not necessarily
related to the processing format. In this case each block starts with

an STX and ends with an ETB. Special characters (s.c.) for error

-5-

control may follow an ETB. When used for generating error check
characters, an ETB is treated like an ETX.*

A need is envisaged for sending multiple messages in a single
transmission, primarily in order to avoid interrupting the receiving
computer on each of many short messages which can be sent as a
group. As shown in Fig. 6, this is accomplished by omitting the
EOT from the trailer of all but the last message. Multiple messages
are acknowledged individually, and therefore each must contain an
SOH and message identification in its header.

An EOT always indicates the conclusion of a transmission, and
signals the receiver that the transmitted message(s) should be
acknowledged and processed. For half-duplex service the originating
station then relinquishes its right to transmit and goes into receive
mode. Messages are held in the transmission buffer pending receipt
of an acknowledgment that it has been properly received, On re-
ceipt of a positive acknowledgment (message OK), the message is
dropped from the transmit buffer. If a negative acknowledgment is
received, the message is retransmitted. This process continues
until successful transmission is achieved, or the message is abandoned.

On very long messages, there may be a problem with buffer
sizes, either in the transmitter or receiver. By suitable protocol
procedures, the transmitting computer will either control or be in-
formed of the transmit and receive buffer sizes, and will send an
EOT when the smaller of the two buffer sizes is about to be exceeded,
Transmission of the message can be resumed when proper acknowledg -

ments are received and buffer space is again available,

" The need for dividing the message into multiple blocks of text may
be obviated, and the same error control achieved, by dividing the
logical block of text into separate messages, and using the key
character '&' in the header to indicate that the logical block con-
tinues into the next physical block. It would be easier to acknowl -
edge and retransmit separate messages rather than separate blocks.
A slight overhead results because separate headers arc now needed,
but this may not be undesirable.

,-MESSAGE-—
S E | ERROR
—————————— T| TEXT [T | CHECK |==--ccoeo-
X X | (B.P.)
Fig. 2 Message with No Header
*—MESSAGE ———w
S S E | ERROR
---------- O [HEADER| T T | CHECK|-===ecoma-
H X X | (B.P.)
Fig. 3 Null Text Message
le—MESSAGE —»f
S E
---------- O [HEADER|O
H T

Fig. 4 Non-text Message -- Transmission Ends

MESSAGE
L-—Block] —e] LBlock 2 — L—Block 3 —m
S S | BLOCKI|E S | BLOCK | E S | BLOCK|E | ERROR
----- O |HEADER|T| OF T|S.C.| T|OF T|S.C.|T | OF T|CHECK |-----
| H X| TEXT |B| - X|TEXT (B X| TEXT|X| (B.P.)
Fig. 5

Message with Multiple Blocks of Text

Transmission
,-MESSAGE] "-MESSAGE 22— L—MESSAGE 3 =
S |S|S S E S S E S E E
Y|Y|O|HEADER| T |TEXT| T|B.R|O HEADER| T |TEXT| T |B.R|O HEADER|T|TEXT|T|B.RlO
N{N|H X X H X X H X X T

Fig. 6 Multiple Messages in a Single Transmission

HEADER INFORMATION

Information in the header of the message is machine -sensible ad-
dress or routing information used only to aid the communications pro-
gram to efficiently transmit, receive, sequence and route the messages.
The header information is never seen by the user, and all information
regarding the text portion of the message (e.g., should the ASCII
characters in the text be interpreted as ASCII or binary) is contained
in the text portion of the message.

The ASCII characters in the header are separated into two cate -
gories for convenience in transmission of information, and also to
achieve a measure of compatibility between different users. The
first category of characters is those that have a 'zero' as their most
significant bit. These characters (octal 000 to 077) are the ASCII
control characters, punctuation characters and some graphic symbols.
The non-control ASCII characters in this category shall be predefined
and the predefined characters will be hereafter referred to as Key
characters. The second category of characters is the remaining
ASCII characters which have a 'one' as their most significant bit (octal
100 to 177), and may be interpreted as ASCII or binary (the lower order
six bits representing the binary information). The ASCII character
set and its division is shown in Fig. 7.

The key characters have a predefined meaning and may be followed
by a string of characters from the second category called the argument
of the key. The argument of a particular key is interpreted by the
computer in accordance with the predefined meaning assigned to the
particular key. The key completely defines the interpretation of the
information contained in the argument. Additional separator charac-
ters are not needed, as key characters themselves act as separators.

The key characters together with some control characters serve
as header control characters. In general it will be wise to preserve
the meaning of the ASCII control characters when used for the purpose

of header control characters. It is advisable not to use communication

United States of Americo Standard
Code for Information Interchange

(USASCII)
b7 T —
{ . o5 0 0 0 0 1 ! o
LB = 0 0 1 1 0 0 Lo
j Positions 0 1 0 1 0] AR
[b4 | B3| b2 | bl T T
i | !
SIRENER ‘
| l > \ | o
po o Jo [o NUL DL s#{ | [.0 @ P P
. 0 0) v . ! 1 l
. 'sOR ZA=pa ||| 1 (4l A Q q
. 7 il
o 10 |1 0 STX = Bez—{|| - R 8 R ;
.
o [o |1 |1 Erx 7 F=bcs —4 ||| » L3 c s ‘
< T3
. 4 — I
{LO 1o |o /slofr {/oc«'t | s K “54‘:‘ 0 1 '
i 4 t o ’ : B
Co | o | EN // f% il e 3 U v
= HEs P
o | 1 0 /ACK/// / & {F, s F v v
r PR i B
| et ! 7
N TRE ,, TR r;// {[RIN | G w w
b jo o |o 85 —1 cAN—Lili(i | ’,‘8 H X x
)
vojo o [ey y H iy o © l Y y
I 0 —LF ——— sus —f|{!* || J z z
o | 1 VT ———J—EsC IR ; K c { 1
i oo 0 - FF] FS —— e < L \ ! E
N RE — CR ——}- Gs T - M 3 }
L SO LRS- —F > N A -}
; ST P us ———F i/ 0l ? o > DEL
N R A » i/ 1 . ~.DEL-
T
Control characters | Numerals interpreted as

Communication control characters

Key characters

Fig 7.

USASCII Character Assignments

special arguments

Second category representing
argument (includes the control

character DEL)

Control character DEL in-
cluded in the argument set

-9-

control characters like ACK, NAK and ENQ in the header because
some of the hardware may be sensitive to these. ASCII numerals
should not be used as key characters, but may be used as special
arguments. There is, however, no dearth of key characters, Ad-
ditional key characters may be generated by using the ESC (Escape)
character. An ESC followed by an ASCII graphic (octal 040 to 176)
assumes the meaning of a new key character (ESC grph). Also it
should be remembered that key characters are not control characters
- and should not be used for such a purpose. If a particular key charac-
ter is not recognized by the computer software (or device hardware), it
is to be ignored (together with the argument which may follow it) till
the next recognizable key or control character appears.

For convenience the header control characters have been divided
into three classes, representing communication requirements be -
tween different types of machines. For example, some small machines
may recognize only a limited class of header control characters,
Other small machines (e.g., satellite computers for display appli -
cation) may require unbuffered transmission. Table 1 illustrates a
tentative assignment of key characters and their meanings, This
list is subject to revision as requirements are better understood.

The basic Class I header control characters include only the
acknowledgment, identification, enquiry (not ASCII control charac-
ters) and a means to interrupt and quit. Messages containing identi -
fication will be acknowledged with that identification. Also a limi-
tation on the maximﬁm size of the message can be indicated. Such a
bound may be necessary, as some machines may have limited buffers,
(The number of characters in the message is equal to the sum of all
characters between the leader and the trailer plus the receivable
characters in the leader and the trailer, if any.)

Class II header control characters provide for unbuffered trans -
mission between machines (i.e., machine A can send data to ma-

chine B directly into its Proper location in B). This is particularly

-10-

Table 1
Assignment of Key Characters
Class I
arg argument is message identification
+ arg acknowledge message #arg (message O.K.)
- arg negative acknowledge message # arg (message in error)

? arg repeat acknowledgment of message #arg
(equivalent to ENK)

n send transmissions no longer than size n.*
" interrupt (similar to TTY break)

: quit (similar to TTY quit) stops transmission
of messages :

Class II
: arg sender's status

ar sender's interpretation of receiver's status
g P

Yo

arg number of characters in text of message

N

arg argument is core memory address of incoming text

arg binary checksum on header

Class II1

= n make standard buffer size n
< n "= n'" request rejected

> n "= n'" request accepted

* n size n blocks of text only

.

" The character n in the above list stands for any numeral. A mes-
sage of size n contains no more than 2%%(6+n) characters, with n
ranging between 0 and 9. This means that the range of allowable mes-
sage sizes falls between 64 and 32, 768 characters. Since messages
can be of variable length, n serves primarily as an upper bound on
the maximum size of the message.

-11-

important when a large time -sharing computer communicates with a
small satellite computer. In general, satellite computers will have a
limited amount of memory, and it is desirable not to have to provide
a large message buffer in this machine. On the other hand, if a small
message buffer is provided, it will take multiple calls on the time-
shared computer to get a large message across, which is also un-
desirable. Direct transmission is desirable in this case. Note that
the '""where to' and '""number of characters in this message' information
must come before the text (i.e., in the header), and that it is probably
desirable to send an error check on the header itself to ensure cor-
rect receipt before proceeding to store the text in the wrong location.

Class IIl header control characters are intended primarily to
obviate the need for computer processor intervention after each mes-
sage. It is inefficient to interrupt large multi-access computers every
time a short message is received. This can be avoided by transmit-
ting multiple messages in a single transmission and storing them in a
receive buffer. Class III header control characters can be used to
create the necessary receive buffers and indicate maximum size of a
transmission.

The unassigned key characters (or ESC graphic characters) may
be used to define supplementary header information as and when
needed, but ASCII control characters should be assigned meaning

only in accordance with ASA recommendations.

"TEXT INFORMATION

The text of a message always consists of a string of ASCII charac -
ters, even if binary information is being sent. The whole text may be
considered to consist of Files in which a Group of binary data can be
transmitted by inserting into the text stream the Group Separator (GS)
character (octal 035). The six least-significant bits of each ASCII
character which follows will be interpreted as transmitted binary in-

formation and the most-significant bit will always be 'one'. In a

-12-

message, transmission is assumed to be a File of '"pure' ASCII text
until the first GS appears. The ASCII stream is then interpreted as a
Group of binary data until the File Separator (FS) character (octal 034)

appears which indicates that what follows is a new file of ''pure"
ASCII text and signals the leaving of binary mode. The positioning of
GA and FS characters in text stream is completely independent of the
message itself. Thus a single message may contain both binary and
ASCII information, or any combination of the two.

Characters with 'zero' in their most significant bit may occur
within binary mode of transmission and be interpreted usefully. These
may be control characters or key characters. The ASCII control
characters are to be used in accordance with ASA recommendations.
The key characters occurring within binary mode may be used to
further define the binary information if it is so desired. The meaning
assigned to the key characters in text may be different from that as -
signed in the header. Thus key characters may be used to define the

binary information that follows it and indicate what it is about.

TRANSPARENT TEXT

Many people have expressed a desire for a '"Transparent Text"
mode of operation, in which the communication equipment between the
transmitting device and the ultimate addressee is insensitive to the
contents of the text. The unrestricted coding of data permitted by a
transparent text mode would allow transmission of full seven -bit
binary data. Thus, messages containing EOT, ETX, ETB, ACK,
NAK and similar control characters could be transmitted intact with -
out affecting the transmission system. If the parity bit is also ignored
in the transparent mode, then it would be possible to send full eight -
bit binary data. The ability to transmit binary data is extremely im-
portant in computer communications,

The difficulty with transparent transmission is that there is no
standard way to indicate the end of this mode. If all the 128 (256 if the
parity bit is also used for information) codes are allowed for data,

there can be no reserved ''end transparent mode' code. For

-13-

transmitting seven-bit transparent text, ASA has suggested a tech-
niciue which makes limited use of the eighth (parity) bit to achieve
this control. >
IBM, whose machines are based on eight-bit characters, has a

compelling motivation for providing an eight-bit binary "transparent
mode.' To accomplish this they have set aside the DLE code (with ‘
the normal odd parity) as a special character out of the possible 256.6’ 7

| In the IBM technique, the sequence DLE STX initiates the trans -
parent text mode and DLE ETX terminates it. If a bit pattern equiva-
lent to DLE appears within the transparent data it is replaced by the
sequence DLE .DLE to permit transmission of DLE as data. In ad-
dition, other control sequences using DLE are available to provide
active cdntrol characters within.transparent text as required (see
Fig. 8).

DIS D|D DIE DIS DIS
--|L | T |transtext | L |L |[transtext |L | T [B.P.|L|T ltranstext L|ITIB.P
E X EI|E E|B E X EIX

(-
data DLE

control DLE, this sets
apart the following data
DLE

Fig. 8 IBM Method for Transmission of
Transparent data
We see several difficulties with the IBM technique. First, all
equipment handling the message must be built to conform to the tech-
nique, and it will be ineffective if any of the equipment in the trans -

mission link (or computer network) is code sensitive. Second, if the

character that indicates the end of "transparent mode'" is in error

-14-

there will be no simple means for éscaping from the 'transparent
mode." This is because standard ASCII control characters are ignored,
once in ''transparent mode, " Third, the IBM method of transmitting
eight-bit binary is sensitive to errors since it has no character parity
checking (this also violates ASCII which requires the eighth bitto be
character parity check). Finally, there is the price that has to be

paid for inserting extra DLEs and extracting them (each character in
the transmitted and received messages has to be examined as to
whether it is or it is not a DLE).

Our approach for trahsmitting transparent or binary text is to
provide a six-bit binary mode within ordinary text by using the Group
and File separator characters, as suggested earlier. This has the
advantage that it is uniform, ASCII conforming, easy to implement, and
keeps aside the standard control character set for error control and
recovery protocol. Further, it is independent of code-sensitive equip-
ment, and does not require insertion and deletion of DLEs in the trans -
mitted and received texts. The price paid is the reduced effective
bandwidth, since only six bits out of each eight-bit character carry in-
formation. However transmission of six-bit binary data is desirable
for those machines which have word lengths based on six-bit charac-
ters. ‘

If a transparent mode for seven-bit characters is required, a
modification of the A.S. A, and IBM approaches may be taken without
violatin'g ASCII. In this, DLE STX defines the start of "transparent
text, " and ETX defines the end. All ASCII control characters (bit
7,6 = 00) appearing within the transparent text are detected by trans-
mitting hardware (or software) and are replaced by a two-character
sequence consisting of DLE followed by the character detected, with
its bit 7 converted from a 0 to 1. Thus the only control character
ever seen by the communication equipment is DLE. The receiver will
recover the original text by deleting the DLE and reconverting bit 7

of the next character from 1 to the original 0. ETX marks the end

-15-

of the message as with any other message. This approach is inde-
pendent of code -sensitive equipment and keeps aside the standard con-

trol character set for error control and recovery protocol.

MESSAGE PROTOCOL

Message protocol here refers to the uniform, agreed-upon manner
of exchanging messages between computing machines. This includes
link establishment, link relinquishing and acknowledgment procedure
for messages.

The following control characters will be used for message protocol.
The first group contains control characters with standard ASCII
meanings; the second contains our assignment of additional controls

vaw’“k Q@

for protocol purposes,

e

ASCII Code Value ASCII

octal Character Meamng Asmgned
005 ENQ (Enquiry) Request response from
remote station
006 ACK (Acknowledge) Last)message ok. Ready
eceive next message
026 NAK (Negative Acknowledge) message in error,

€peat transmission

020 DLE (Data Link Escape) Modifies the following
character for communi-
cation control purpose

030 CAN (Cancel) Disregard the message\)j\“5
1
ASCII Character Mnemonic
DLE ACK WBT(Wait Before Transmit) Last message ok. Wait
for ACK before trans-
mitting
DLE NAK BSY (Busy) Not ready
DLE CAN INT (Interrupt) Cause a higher level
interrupt (similar to I
teletype break) Lwt A
DLE! QIT (Quit) Cause the program to J/’\Q\N

quit (similar to a tele -
type quit)
DLE EOT HNG (Hangup) Disconnects the line

-16 -

To start transmission, a number of SYN characters (the exact
number being under program control) are sent to establish the correct
character and bit synchronization. The originating station will then
sen? an enquiry to request a response from the remote station. The
enquiry may be just a single ENQ, or an ENQ followed by an EOT, or
a message included within an SOH and an EOT including an enquiry
and indicating station identification, station status and a check sum
as desired. The response by the receiving station may be ACK, NAK
DLE ACK, or DLE NAK depending on the state of the receiving station.
These may or may not be followed by an EOT. The response could
also be a message within an SOH and an EOT including the acknowledg -
ment and indicating station identification, station status and a check
sum as desired.

Again there cannot be any single standard protocol format and
procedure because of the varying needs of different systems. The
exact protocol chosen in particular cases will depend on the type of
operation, the level of communication and the hardware character-
istics. Operation could be half duplex, or full duplex, synchronous or
asynchronous, point-to-point or multi-point, centralized (with one
station as master station always) or decentralized (no one station as
master station), and over private line or a switched network. In many
of the above cases the protocol needs would differ, and hence the
protocol procedures chosen would vary. The level of communication
would essentially dictate the particular protocol format rather than
the protocol procedures. Depending on the level of communication,
the acknowledgments may or may not be formatted within a header.
Finally, the protocol format would depend on the communication con-
trol character that puts the transmitting station into receive mode (i.e.,
turns the line around, and initiates action at the receiver). This
function may be under program control or it may be built into the

hardware. In computing machines of various manufacture, any one or
more of the characters EOT, ENQ, ACK, NAK, ETX or ETB may

-17-

cause a transmission reversal., If ETX and ETB are allowed to

cause a transmission reversal (and acknowledgments to be sent), then

it is not possible 'to transmit multiple messages. Allowing transmission
reversals on ENQ, ACK and NAK would limit the use of these charac-
ters considerably. Therefore it is our opinion that only an EOT should
be used to cause a transmission reversal, and initiate proper action

at the receiver, When such is the case, acknowledgments and en-

!

quiry must be followed by an EOT.

The only difference between synchronous and asynchronous
operation, so far as the message format and protocol are concerned,
is in the transmission and treatment of SYN characters. Full du-
plex allows simultaneous communication of messages in both di-
rections and thus obviates the need of transmission reversals, It
also completely avoids the issue of line priority and control, and
possible confusion arising thereof (i.e., both communicators trying
to transmit at the same time over a single line). In half-duplex trans-
mission, however, suitable protocol procedures must be adopted to
assign line priority to the stations and avoid such confusion and "hung"
conditions. In point-to-point communcations it is not necessary to
establish station identification and priority, but multi-point operation
over private lines would require suitable polling and selection pro-
cedures in the protocol. We recommend using a conversational mode
in which acknowledgments, identification and other information are
included in a properly formatted header. When operating in a switched
network, the point-to-point connection can be established either
manually or automatically; the manually dialed connections could
either be operated as point-to-point or multi-point with polling and
selection. When automatic calling and answering is employed, both
stations must first properly identify themselves, transmit messages
and disconnect after they have completed their message transmissions.

In point-to-point operation, receipt of an ACK after an enquiry is
sent by the originating station establishes the link. Messages can now

be exchanged between the computing machines. To avoid ""hung'' conditions

-18-

half -duplex operation, the transmitter is always responsible for getting
the message through and acknowledged. If the expected acknowledgment
s not received within a few seconds (exact time may be fixed by each
communicator depending on his requirements), an enquiry is sent

by the originating station to repeat last acknowledgment or indicate
station status. Similarly, if the ready condition (ACK) is not received
within a specified time after the "Wait Before Transmit'' (W BT

signal, an enquiry is sent to determine if the ready was lost,

When multiple messages are being transmitted, they may be all
individually acknowledged in a single transmission (between an SOH and
and EOT) by referring to their identification. This acknowledgment
may also be made part of the header of a return message, as shown

in Fig. 9 (the letters a, b, c.. are the message identifiers),

- W
o]

- —-]O |Ackge] a| Ackge| b | Ackge| c | Header contd TEXT|T |R.P.|-=-~
H

A
IA

Fig. 9 Acknowledgement of Multiple
Messages

If the called computer is busy and cannot accept a message, it sends
a BSY (DLE NAK) signal to indicate this condition. BSY docs not dis-
connect the link,

The control character HNG (DLE EOT) is rescerved for breaking
the link. The link must then be re-established if communication is to be
resumed. To avoid unwanted hangup by an incorrect transmission of
DLE EOT, additional error checking mechanisms muay be cmployed,
For example, the FING can be transmitted as part of a Header messape
with parity check, or one may rcduirc two or more HNGs in succession
to mean hangup.

The need for other control characters such as cancel, mmterrupt and
quit is envisaged. The character CAN appearing anywhere in the mes -

sape would cause the entire message to be disrcgarded. INT (DLE CGAN)

-19.

may be used for a higher level interrupt at the receiving computer.
QIT (DLE!) may be used to stop the execution and transmission of

messages, The link is not relinquished,

REFERENCES

""Proposed Revised American Standard Code for Information
Interchange'', Communications of the ACM, Vol.8, No. 4, April
1965, pp. 207-214 -

"Control Procedures for Data Communications - An ASA Progress
Report", Communications of the ACM, Vol, 9, No. 2, February
1966, pp. 100-107

""Code Extension in ASCII (An ASA Tutorial)", Communications of
the ACM, Vol. 9, No. 10, October 1966, pp. 758-762

IBM Systems Reference Library Form A27 -3004-0, General Infor-
mation - Binary Synchronous Communication

IBM Technical Newsletter No, N27-30ll, Re: Form A22-6468-1 on
SDA - 11

""Character Structure and Character Parity Sense for Serial-by-Bit
Data Communication in the American Standard Code for Information
Interchange'’, Communications of the ACM, Vol. 8, No. 9,
September 1965, pp. 553 -556

" Transparent-Mode Procedures for Data Communication; Using
the American Standard Code for Information Interchange ~ A
Tutorial", Communications of the ACM, Vol. 8, No, 4, April
1965, pp. 203-206 '

-20-

