
··-------·-·---~ f2- ~'"d-----~----·--; ______ - -- -
;~

Section VI Design Notebook

General Comments on Scheduling, Resource Alloc~tion,
and Storage Management

F.J. Corbato
J.H. Saltzer
May 6, ·1965

The following remarks are an attempt to summarize
discussions at Project MAC and Bell Labs. Some of the
active participants ln. these discussions have been: v.
Vyssotsky, H. MacDonald, J. Ossanna, D. Eastwo~d, at Bell
and E. Glaser, R. Graham, and R. Daley at MAC.

In general, resource allocation and scheduling in the
time-sharing system for the GE 636 should be more elegant.
and simple than on the present MAC 7094 system. In

particular, the strategy of usage of the new machine must be
such that all processes are multi-programmed In a general
way by a supervisor program using queues. By using queues

it Is possible to separate the policy setting mechanisms
from the mechanics of servicing queues. Distinct policies

may establish the relative priorities of distinct entries in
a queue but the servicing mechanism does not have to be
aware of these individual policies. When viewed in this
li~ht the scheduling algorithm becomes really a priority
mechanism for the tasks that the system must accomplish.
Thus when a processor becomes idle it should go to the list
of tasks ready for a processor (i.e. tasks with at least an
Initial page of program in core) and assign itself to the
highest priority process. Similarly, when an 1/0 controller

becomes available, the priority of 1/0 requests in the queue
for that controller has already been determined by the
scheduling algorithm. Thus, the l/0 controllers and the
CPU's take on the simple symmetry which is required in a
multi-programming system.

l \~
'-..__ ,_...-

· PAGE 2

As is hinted already, it is proposed that the 636
system be· fmplemented with a full page-turning philosophy in

which a process Is ·~ligible for a processo~ as soon· as the
first program page is loaded into core memory. Since it is
probable that another. page will be needed quite abruptly,
page turning implies that a large number of processes are
available for the·processors to dart among. Clearly, the
overhead of switching a processor from one process to
another must be small compared with typical process running
times. In addition, no attempt should be made in this
system to distinguish syste~ processes from user processes
but rather the pag~ turning mechanism, on the basis of
activity alone, should determine which program.pages should
remain in core memory •. Of course,· exceptions will probably
be necessary for certain processes, such ·as those which
answer timing-critical interrupt5. Similarly the page
turning algorithm itself. will probably r.equire · permaner:~t
presence in core memory.

~~-Turning Algorithm
To explore this page-mechanism further, a reasonable

lmplementation would be to keep a· table in the supervisor

which con~tsts of a cell per page where each cell acts as a
counter of Inactivity of the page. Whenever a fixed
ihterv~l of tlme, whi~h should be a parameter of the system
occurs, e.g. 200 ~.s., the supervisor should inspeCt all
page activity bits, increment the counters ot those pages.
which have not been active in the interval, and reset to
zero the counte~s of pages which have been active. Whenever
the.supervisor needs .a fresh page in core memory :Jt should

·,

r~fer to a free page list. Whenever the free page list
·•

becbmes lo~ the supervisor should trigger a page-eviction
algorithm which removes from core memory those pages which
have b~en least active. The eviction algorithm should be a·
function of inactivity sampling rate, inactivity threshold,
free-page ref~eshment levels, etc., all of which may be
dynamically adjusted With some damping algorithm~ The

"""''; j

PAGE 3

supervisor then automatically defers to secondary storage
inactive pages, taking into account that pages which have

not been modified since loading need not. be written out
again. It is expected that the super~isor will initiate
secondary storage 1/0 tasks in the same manner as a user

program so that as much as possible the supervisor resemb.les
a user's program

A special problem is posed by the fact that the 636
hardware paging mechanism may be ~perated with 2 page sizes,
64 word blocks and 1024 word blocks. One possible strategy
for this problem is to have two completely independent
page-eviction algorithms operate in the two types of memory.
If one of the two page evictors b~comes "overworked" before
the other it may become worth while to juggle the amount of

·,

memory run in each page size mode. Breaking up a 1024 word

page is no problem, but a special garbage collector must be
us~d to-coliect enough 64-word pages to make a larger page
if memory juggling is done dynamically. This garbage
collector may work in one of two ways after locating a 1024
word block with a minimum of active 64-word pages contained
in it:

1. Move each active page with load and store
to a different 64-word block taken from the free
storage.list.

2. Eject the ~ctive pages from memory as though they
had become inactive, and depend on the page fault
mechanism to retrieve them as soon as they are
needed.

In both cases, the appropriate page· descriptor table
must be modified, and a check must be made to insure. that
some other processor is not actively taking instructions·
from th~ page b~ing moved or ejected. The relative
attractiveness of these two techniques depends Gn the speed
with which they can be accomplished.

~ .f ---
-----····----\

i PAGE 4

Other Supervisor Housekeeping Functions

The supervisor should basically be programmed such that
its various processes operate on an Independent asynchronous
basis. A process may operate recurrently by going to
"sleep11 for a specified period of'time and being reactivated

by a clock interrupt. To maintain order among several such
11 sleeping" processes, there must be a master timer routine
which contains a wake-up list of all processes that wish to
be called upon. The basic information a process gives to
the timer routine Is that of the time and location at which
it.wlshes to be restarted. When a process goes to sleep the
timer always resets the active hardware clock interrupt to
the time that it must next wake any process ·up. (This
procedure resembles that used in the program MITMR at

M.I.T.)

It Is important to recognize that in the 636
time-sharing system the secondary storage mechanism will be
handled in.a hierar~hial fashion without explicit control
by the user. The user 1 s process wi 11 interface the
secondary storage mechanism using calls wherein files are
referred to by symbolic name and by relative address, much
as in the MAC 7094 system today, but without explicit
knowledge of the physical location or the media upon which
the material is stored. The secondary storage media should
be arranged Jn a hierarchy according to performance and
capacity with high speed drums on top, discs next, data
cells next, and tapes perhaps last. The supervisor will
include a "demon" process whose sole function will be to
move files up and down the hierarchy according to activity.
At least initially it is expected that up-and-down file
movement will be sufficient although clearly there can be
more elaborate reservation schemes. Again files belonging
to system proc~sses should remain on the high end of the
hierarchy only on the basis of activity. Thus, after some
period of tfme when. the high-speed drum ts becoming full,
the most infrequently used files ~hould be· copied down to

';' , ..

I
I

------------------~-----· r%U~--------------------------~--.k.,. r --------- ------h-- .. ------------~ - 'li
~ :._____.;.., l,_, __ _

------------------]
PAGE 5

the disc and so forth. Similarly, when a user refers to ~

file which has been Inactive for a long period of time it

should be copied up the hierarchy. The advantages of such
an automatic system should be relatively obvious, and
moreover it should be clear that great flexibllity of
equipment configuration is possible. For ~xample, one may
be able to remove a defective unit on a particular day from
within the hierarchy, increase capacity, etc. The full
details of how a procedure similar to this one should
operate are covered elsewhere in the work of M. Bailey at
Project MAC. Suffice it to say that a great deal of care
and thought must go into considering the separate issues of
1) backtip, 2) maintenance, 3) retrieval from accidents, and
4) retrieval from inactivity.

Finally, In addition to
hierarchy, there must also be an
storage, such as, tapes, disc
interfaces with detachable devices

the secondary storage
interface to detachable
packs, · etc. The user
with exactly the same

kinds of calls as for normal secondary storage, but clearly
the attachable devices are not in the hierarchy. Moreove~,

the user must have the facility for referring to
no~-standard detachable units which must be read using every
trick of the physical reading device.

An important part of the file hierarchy system is that
every file which is created and which has existed for some
period of time Is backed up with a duplicate copy on lower
class storage. The backup mechanism would typically come in
to play when the user logs out after a console session.
From an organizational point of view it should be clear too
that core memory may be treated as the highest member of the
storage hierarchy. Thus, if possible the directory system
and eviction algorithms used on the secondary storage media
could also be available for core memory. (If they do not
become too ponderous.) This viewpoint may become quite
important as the number of processes kept in .core memory
becomes large, (e.g. 100).

. -·--·-- --··-·········· ~ -''1
._

PAGE 6

Monitoring, Scheduling, gnQ 11m& Accounting

Three very Similar functions must be kept distinct:
(1) monitoring of resource usage, (2) scheduling on the
basis of resource usage, and (3) "time accounting" or
charging the user for his resource usage. Since all three
of these functions have a basis in the use of hardware, a
fundamental piece of information kept for each user of the
system must be a resource us~ge list. In th)s list, the
suPervisor might keep track of (for example):

Tc CPU usage time
Tt 1/0 controller usaie time
Tt Console usage time ·
Tm Memory usage time weighted by pages used
Tp Program usage time (for proprietary programs)
Ts Secondary storage space-time usage

In general, this list reflects the amount of service
the system has provided the user, In cold hard quantities.
By examining this list for every user one can answer
questions such as "Are the 1/0 controllerS being used more
.than predicted?" The actual 1 ist used might break some of
the system resources down Into finer divisions, or add new
classes of system resources.

It ts proposed that the priority scheduling
used be roughly analogous to the one used on

algorithm
the 7094

time-sharing system but with some important generalizations.
A multi-level priority system with several levels and a
floor-level still appears to be a reasonable technique.
This mechanism should be serviced periodically with the
period a dynamically adjustable system parameter. The
current algorithm assigns central processor time on the
basts of the formula t = C2.P.j)•q where "j" is the priority
level of the process, and "q" is a time quantum. This time
ts assigned to the first member of the highest priority
(that is lowest level number) queue. Jobs enter the queue
with a small level number (adjusted for program size) and

PAGE 7

grad~ally cascade to higher levels after using up the

allotment at each level until they finally finish an
interaction. Periodically the queue structure is inspected
and pre-emptlon is allowed whenever an equal or higher
priority process is available and a current user has run as
many quanta as the pre-emptor will be granted; Otherwise
pre-emption is deferred and the current process is
continued. Because the present scheduling algorithm does
not take into account 1/0 channel usage, core
etc., it is not in proper form. To genera 1 i ze
algorithm it is proposed that in place of CPU

memory space
the present

time as the
baslc variable which causes processes to cascade down the

queue structure, that a resource usage function Qe
substituted. This function is defined as a sum of resource
time usages with cost coefficients. The level number at any

time is defined as j = logJ.r.

The resource usage function is then defined as a
weighted sum of the individual resources which the user has
used during this interaction. For example,

r = Al* A.Tc + A2* ATi + A3* ATn

might be a possible function, with the A's constants, and
the 6.T 1 s the amount of resource used since the beginning

of the interaction. By properly adjusting the coefficients
it should be possible to make the system fight back in the
right places and give best use of its limited resources. (A
presumption here of course, it that the heavy user of
resources will not really notice that fraction of time used
to service with higher priority the small user of
resources.) One remark based on intuition and experience
perhaps is in order concerning tuning of the scheduling
algorithm. In general, it would appear wise to tune the

algorithm such that most jobs operate on a first in, first
out basis and only if they use an "unusual" amount of
resources do they go to a lower level. (This is how Project
MAC is currently tuned.)

) ··.'j;

PAGE 8

The third function based on resource usage is
accounting for user charges. Again, the user is called to
account for his resource usage by a price function, P, which
might be defined as

The B's are now adjustable coefficients, possibly
identical to some of the A's in the priority resource usage
function. It is more likely, however, that Bland 82 will
have different values during "prime-shift" time than late at
night.

In the same general area of time-accounting, there is
the subject of quotas. It is assumed that the user is
charged for whatever resources he actually uses, according
to the P function. Quotas are not necessarily rigid stops
but rather trigger thresholds for special supervisor
procedures. Depending on which quota has been exceeded, any
of several possible policies may be followed. The user may
be queried about his desire to proceed (and spend more than
planned) or perhaps an automatic usage reduction mechanism
may come into play such as the demon which moves files among
secondary storage devices. Another possibility is that
exceeding a certain quota requires the authorization of
another user. A user (or his superior) should be allowed to
adjust any of his quotas at any time, or declare a quota
meaningless if necessary. A short list of possible quotas
is the following:

1. Resource usage (in the priority sense) for a
single interaction.

2. CPU time used for a single interaction.
3. Additional secondary ~torage added by a single

interaction.
4. Number of pages of core memory.
s. Total space used by this user on drum storage.
6. Total space used by this user on disk storage.

r \i!

PAGE 9

7. Total dollars spent by this user this week.
8. Total time spent using a console this week.

(Useful for classes.)

Classes Qf Service

There are, from a user's point of view, at least three
distinct classe~ of service which he would like to obtain
from a general purpose computation facility:

1. Interactive console service - the class of
service now offered by the MAC 7094.

2. Console-less service similar to
"background" on the 7094.

3. Guaranteed access, for speci a 1 real-time
experiments.

We have already Indicated the nature of a scheduling
algorithm for interactive console service. The second class
of service fits into the same general framework very easily.
It Is assumed that a console-less job is initiated at a
console. However, there Is no desire to tie up (and pay
for) a console on long jobs and on the other hand It is
already observed that no user cares to watt for more than 15
seconds for a response to an t nteract ion. In fact, t t is.
obser~ed that the largest satisfaction arises when a user

·can be scheduled on a predictable basis (barring machine
failure) for the return of a run. This goal is not even
achievable today in the usual batch processing environment
but still it seems reasonable to ask that it be. achieved
within the highly organized system we are proposing.

To accomplish the scheduling of console-less jobs in
this environment the following technique is proposed. A
hypothetical division of the machine resources is made into
streams of servicei for example, perhaps 85 percent of the
machine is allocated to the foreground users at consoles, a
remaining 10 percent is allocated to non-interactive jobs at

.. ""··.-·-··

PAGE 10

a certain cost figure and perhaps another 5 percent is

allocated for non-interactive jobs, on a premium cost basis
with, say, 50 percent higher price. It should be clear that

all resources have dollar prices in this environment. There
also may be a category of absolutely bottom priority jobs
which will run on an unpredictable termination basis.
Presumably such service would have a very cheap rate
as with electric power and the aluminum industry). In

case, whenever a user wishes to leave a job of
duration {or with a limit of what he wishes to pay in
the job does not terminate properly), the supervisor on

{e.g.
any

known
case

the
basts of its 10 percent allocation of resources and its list
of previously submitted background jobs can make a
prediction of the latest time the job will be terminated.
The user, when notified of this terminatibn time, can decide
whether or not he wishes to avail himself this service, or
perhaps ask for a quote on premium service. Clearly this

technique can.be extended to many price levels of premium
service. In any case, the sys tern then has on 1 y the prob 1 em

of allocating 10 percent its resources to background jobs as
time goes on. It should be obvious that resources and time
are not equivalent but to a high degree of approximation the
system can make such an equivalence when it has the ability
of averaging over many users. Certainly the maximum amount
of resource the system has available per unit time is fixed
and there will be an average utilization factor. A
mechanism for giving the background process 10 percent of
the resources, is to place it in the scheduling algorithm
with all other processes. Since the background process will
quickly cascade to the bottom of the queue structure it will
normally cease to get service. However the supervisor
knowing that it must devote 10 percent of its time to this
process should periodically extrapolate to the termination
time and whenever it fihds it is within a safety factor of
missing the deadline, arbitrarily jump the priority level of
the console-less process by 1. This will assure increased
attention for the process and it should keep up. Note that

PAGE 11

the background job does not require pre-emption, since it is

not sensitive to minor fluctuations.

The third class of user is the guaranteed access user.
An example of this type of use might be a radar tracking.

antenna whtch.periodically
its next azimuth. In this
valueless unless it can

maximum response time to
computation.

needs a very short computation of
type of service the computer is

guarantee to provide a certain

predictable size requests for

The supervisor, when operating with one or more users
of this type is careful at all times to insure that it has
enough resources available to meet simultaneous demands by
All users of guaranteed service. A user wishing to use this

class of service must sign up in advance for it, since he
may discover another user using a guaranteed service whose

specifications conflict with his own.

up time, The user negotiates with the system at sign

juggling his cost, .the ti~e at which the
available, and his performance specifications.

system is
In general,

he must tell the supervisor four things:

1. The time period he wishes to use the service.

2. The maximum amount of each system resource
needed for a response.

3. The earliest time that (2) will be needed
after the system is notified.

4. The minimum time between requests.

With this information, the system can examine Its other
commitments for service and quote availability and price to
the user. Part of the policy Involved here might be to
commit not more than, say, 10% of the system resources to
this class of service without special authorization.

\··~
..... ~----

PAGE 12

At the time of actual tisage of the guaranteed service,
the user notifies the system that he wishes to use his

sign-up privileges, and the system from then on assures
without fail that resources are available to meet this
commitment. A guaranteed access process, appears at the
high end of the highest priority queue, and does not
normally cascade down in priority unless, for example, it
uses more resource (2} than was predicted and a shut off
quota was not set. (Perhaps for simplicity, the shutoff
quota is rigidly set to the amount of guaranteed system
resource (2) above.)

Two special qualifications for this type of service
must be noted:

1. It may be very expensive.

2. The user may discover that his computation is
actually done earlier than the deadline he

has set. He should be prepared to accept
results early If necessary.

Svstem Partitioning

The above survey is meant to give an overall philosophy
for the specific implementation of resource allocation
within the time-sharing system. There is in addition one
larger Issue which needs to be included in such a mechanism.
This is the issue of partitioning both on a physical and a
logical basis. (We have already discussed one simple
partitioning problem connected with page sizes.) Clearly,
it is relatively straight-forward to develop a physical
partitioning mechanism wherein some processors, memory
modules, etc., are isolated from the remainder and utilized
separately. However, It must be noted that because of the
high dependence on secondary storage this may not be a
trivial problem. For example, one can remove a processor
from the system very quickly, but removing a disk storage
unit from the secondary storage hierarchy may require 15

' .
j
;

PAGE 13

minutes of transferring of the files stored there. The

logical partitioning, which may or may not be done on a
physical basts too, is quite important· in the continuous

operation of the system. This is especially so because lt
is becoming essential that all system programming be done
on-line while most of the system continues to operate. Thus
to check out sensitive areas of the supervisor such as
scheduling, etc., lt will be necessary to operate a second
ttme-sharing sy~tem whi~h is highly independent of the
normally used one.

-...,;;

